organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­phen­yl)-3,4,5-tri­meth­oxy­benzamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, and bDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 12 July 2008; accepted 23 July 2008; online 31 July 2008)

In the title compound, C16H16ClNO4, the dihedral angle between the two aromatic rings is 67.33 (8)°. The crystal packing shows strong inter­molecular N—H⋯O hydrogen bonds that link the mol­ecules to form chains along [[\overline{1}]01].

Related literature

For related literature, see: Capdeville et al. (2002[Capdeville, R., Buchdunger, E. Zimmermann, J. & Matter, A. (2002). Nature Rev. Drug Discov. 1, 493-502.]); Ho et al. (2002[Ho, T.-I., Chen, W.-S., Hsu, C.-W., Tsai, Y.-M. & Fang, J.-M. (2002). Heterocycles, 57, 1501-1506.]); Igawa et al. (1999[Igawa, H., Nishimura, M., Okada, K. & Nakamura, T. (1999). Jpn. Patent Kokai Tokkyo Koho JP 11171848.]); Jackson et al. (1994[Jackson, S., DeGrado, W., Dwivedi, A., Parthasarathy, A., Higley, A., Krywko, J., Rockwell, A., Markwalder, J., Wells, G., Wexler, R., Mousa, S. & Harlow, R. (1994). J. Am. Chem. Soc. 116, 3220-3230.]); Makino et al. (2003[Makino, S., Nakanishi, E. & Tsuji, T. (2003). Bull. Korean Chem. Soc. 24, 389-392.]); Zhichkin et al. (2007[Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415-1418.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16ClNO4

  • Mr = 321.75

  • Monoclinic, C c

  • a = 9.487 (2) Å

  • b = 25.666 (6) Å

  • c = 6.9781 (15) Å

  • β = 112.340 (5)°

  • V = 1571.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 120 (2) K

  • 0.41 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.901, Tmax = 0.975

  • 6765 measured reflections

  • 3581 independent reflections

  • 3104 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.106

  • S = 1.02

  • 3581 reflections

  • 202 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1780 Friedel pairs

  • Flack parameter: 0.06 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.18 2.878 (3) 136
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The benzanilide core is present in compounds with a wide range of biological activities that it has been called a privileged structure. Benzanilides serve as intermediates towards benzothiadiazin-4-ones (Makino et al., 2003), benzodiazepine-2,5-diones (Ho et al., 20022), and 2,3-disubstituted 3H-quinazoline-4-ones (Zhichkin et al., 2007). Benzanilides have established their efficacy as centroid elements of ligands that bind to a wide variety of receptor types. Thus benzanilides containing aminoalkyl groups originally designed as a peptidomimetic, have been incorporated in an Arg-Gly-Asp cyclic peptide yielding a high affinity GPIIb/IIIa ligand (Jackson et al., 1994). Imatinib is an ATP-site binding kinase inhibitor and platelet-derived growth factor receptor kinases (Capdeville et al., 2002). Benzamides have activities as acetyl-CoA carboxylase and farnesyl transferase inhibitors (Igawa et al., 1999)

Geometric parameters of the title compound, C16H16ClNO4, are in the usual ranges. The dihedral angle between the two aromatic rings is 67.33 (8)° and the torsion angles N1—C1—C2—C3 and C1—N1—C11—C12 are -31.1 (3)° and -39.2 (4)°, respectively. Of the three methoxy groups two of them lie nearly in plane with the aromatic ring, the O(3) group is almost perpendicular with C9—O3—C5—C4 of 92.2 (3)°. The crystal packing shows strong intermolecular N—H···O bonds that link molecules to endless chains along [-101]. Details are given in Table 1.

Related literature top

For related literature, see: Capdeville et al. (2002); Ho et al. (2002); Igawa et al. (1999); Jackson et al. (1994); Makino et al. (2003); Zhichkin et al. (2007).

Experimental top

Trimethoxybenzoyl chloride (5.4 mmol) in CHCl3 was treated with 4-chloroaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 4 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq 1 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in CHCl3 afforded the title compound (84%) as white needles: IR (KBr) 3226, 1665, 1616, 1520, 1352 cm-1; 1H NMR (CDCl3, 400 MHz) δ 8.13 (d, J = 8 Hz, 1H), 7.81 (d, J = 8 Hz, 1H), 7.51 (dd, J = 8 Hz, 1H), 7.66 (dd, J = 8 Hz, 1H), 7.43 (d, J = 8 Hz, 2H), 7.36 (br s, 1H), 7.25 (d, J = 8 Hz, 1H), 3.89 (9H, s, OMex3). Anal. Calcd. For C16H16ClNO4, C, 59.73; H, 5.01; 11.02; N, 4.35; found C, 59.69; H, 5.04; 11.02; N, 4.42

Refinement top

Hydrogen atoms were located in difference syntheses, refined at idealized positions riding on the carbon or nitrogen atoms with isotropic displacement parameters Uiso(H) = 1.2Ueq(C or N) and 1.5U for methyl-C.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing viewed along [001] with intermolecular hydrogen bonding pattern indicated as dashed lines. H-atoms not involved in hydrogen bonding are omitted.
N-(4-Chlorophenyl)-3,4,5-trimethoxybenzamide top
Crystal data top
C16H16ClNO4F(000) = 672
Mr = 321.75Dx = 1.360 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 879 reflections
a = 9.487 (2) Åθ = 2.5–26.6°
b = 25.666 (6) ŵ = 0.26 mm1
c = 6.9781 (15) ÅT = 120 K
β = 112.340 (5)°Prism, colourless
V = 1571.5 (6) Å30.41 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3581 independent reflections
Radiation source: sealed tube3104 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 27.9°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1212
Tmin = 0.901, Tmax = 0.975k = 3329
6765 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.1374P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3581 reflectionsΔρmax = 0.33 e Å3
202 parametersΔρmin = 0.24 e Å3
2 restraintsAbsolute structure: Flack (1983), with 1780 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (6)
Crystal data top
C16H16ClNO4V = 1571.5 (6) Å3
Mr = 321.75Z = 4
Monoclinic, CcMo Kα radiation
a = 9.487 (2) ŵ = 0.26 mm1
b = 25.666 (6) ÅT = 120 K
c = 6.9781 (15) Å0.41 × 0.10 × 0.10 mm
β = 112.340 (5)°
Data collection top
Bruker SMART APEX
diffractometer
3581 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3104 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.975Rint = 0.040
6765 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.106Δρmax = 0.33 e Å3
S = 1.02Δρmin = 0.24 e Å3
3581 reflectionsAbsolute structure: Flack (1983), with 1780 Friedel pairs
202 parametersAbsolute structure parameter: 0.06 (6)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.24506 (8)0.52096 (2)0.45259 (9)0.03098 (17)
O10.0700 (2)0.75731 (7)0.2052 (3)0.0251 (4)
O20.3495 (2)0.83040 (7)0.6718 (3)0.0293 (4)
O30.2739 (2)0.92522 (7)0.5093 (3)0.0287 (4)
O40.1760 (2)0.94204 (7)0.1029 (3)0.0293 (4)
N10.2656 (2)0.71265 (7)0.0305 (3)0.0206 (4)
H10.33660.71360.15620.025*
C10.1742 (3)0.75494 (10)0.0350 (4)0.0201 (5)
C20.2087 (3)0.79915 (9)0.1153 (4)0.0190 (5)
C30.2689 (3)0.79115 (10)0.3293 (4)0.0207 (5)
H3A0.29260.75700.38460.025*
C40.2938 (3)0.83381 (10)0.4601 (4)0.0217 (5)
C50.2589 (3)0.88383 (10)0.3797 (4)0.0217 (5)
C60.2015 (3)0.89163 (10)0.1650 (4)0.0226 (6)
C70.1739 (3)0.84890 (9)0.0330 (4)0.0209 (5)
H7A0.13140.85380.11290.025*
C80.4275 (4)0.78426 (12)0.7598 (5)0.0380 (7)
H8A0.35600.75490.72230.057*
H8B0.47270.78780.91090.057*
H8C0.50830.77790.70730.057*
C90.4195 (4)0.94971 (13)0.5730 (6)0.0457 (8)
H9A0.49860.92510.65410.069*
H9B0.42130.98030.65820.069*
H9C0.43870.96060.45060.069*
C100.1094 (4)0.95144 (11)0.1151 (5)0.0375 (7)
H10A0.17640.93770.18070.056*
H10B0.09600.98900.14050.056*
H10C0.01000.93410.17360.056*
C110.2554 (3)0.66682 (9)0.0888 (4)0.0194 (5)
C120.1169 (3)0.64558 (10)0.2157 (4)0.0238 (5)
H12A0.02440.66180.22580.029*
C130.1133 (3)0.60093 (10)0.3273 (4)0.0269 (6)
H13A0.01840.58680.41580.032*
C140.2479 (3)0.57674 (10)0.3103 (4)0.0218 (5)
C150.3862 (3)0.59685 (10)0.1809 (4)0.0259 (6)
H15A0.47840.57980.16750.031*
C160.3897 (3)0.64200 (10)0.0706 (4)0.0250 (6)
H16A0.48470.65610.01820.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0333 (3)0.0268 (3)0.0286 (3)0.0033 (3)0.0071 (3)0.0101 (3)
O10.0181 (9)0.0240 (10)0.0225 (9)0.0011 (7)0.0043 (7)0.0031 (7)
O20.0373 (11)0.0277 (10)0.0193 (9)0.0051 (8)0.0066 (8)0.0008 (8)
O30.0346 (11)0.0236 (9)0.0262 (10)0.0009 (8)0.0097 (8)0.0075 (8)
O40.0406 (12)0.0171 (9)0.0248 (10)0.0013 (8)0.0062 (9)0.0014 (8)
N10.0170 (10)0.0186 (10)0.0186 (10)0.0016 (8)0.0019 (8)0.0021 (9)
C10.0157 (11)0.0203 (12)0.0207 (13)0.0004 (9)0.0026 (11)0.0003 (10)
C20.0154 (12)0.0179 (12)0.0214 (13)0.0006 (9)0.0046 (10)0.0017 (10)
C30.0172 (11)0.0188 (12)0.0221 (13)0.0002 (9)0.0027 (10)0.0033 (10)
C40.0218 (13)0.0241 (14)0.0184 (13)0.0003 (10)0.0068 (11)0.0015 (10)
C50.0218 (12)0.0203 (13)0.0230 (13)0.0009 (10)0.0085 (11)0.0056 (10)
C60.0227 (13)0.0181 (13)0.0248 (14)0.0016 (10)0.0065 (11)0.0010 (10)
C70.0192 (11)0.0211 (13)0.0187 (12)0.0010 (9)0.0029 (10)0.0005 (10)
C80.052 (2)0.0397 (17)0.0211 (14)0.0166 (15)0.0126 (14)0.0076 (13)
C90.0401 (18)0.0386 (18)0.050 (2)0.0104 (14)0.0079 (16)0.0163 (15)
C100.058 (2)0.0190 (14)0.0282 (15)0.0046 (13)0.0084 (14)0.0044 (12)
C110.0225 (12)0.0159 (12)0.0161 (11)0.0007 (9)0.0031 (10)0.0018 (9)
C120.0176 (12)0.0218 (13)0.0294 (14)0.0030 (10)0.0059 (11)0.0023 (11)
C130.0200 (13)0.0283 (15)0.0255 (14)0.0029 (10)0.0011 (11)0.0080 (11)
C140.0286 (13)0.0161 (12)0.0209 (13)0.0003 (10)0.0095 (11)0.0039 (10)
C150.0208 (13)0.0263 (14)0.0285 (14)0.0057 (10)0.0069 (11)0.0015 (11)
C160.0191 (13)0.0233 (14)0.0255 (14)0.0013 (10)0.0005 (11)0.0014 (11)
Geometric parameters (Å, º) top
Cl1—C141.737 (2)C8—H8A0.9800
O1—C11.225 (3)C8—H8B0.9800
O2—C41.369 (3)C8—H8C0.9800
O2—C81.408 (3)C9—H9A0.9800
O3—C51.367 (3)C9—H9B0.9800
O3—C91.426 (4)C9—H9C0.9800
O4—C61.357 (3)C10—H10A0.9800
O4—C101.429 (4)C10—H10B0.9800
N1—C11.356 (3)C10—H10C0.9800
N1—C111.423 (3)C11—C161.386 (4)
N1—H10.8800C11—C121.386 (4)
C1—C21.494 (3)C12—C131.378 (4)
C2—C71.387 (3)C12—H12A0.9500
C2—C31.397 (4)C13—C141.384 (4)
C3—C41.387 (3)C13—H13A0.9500
C3—H3A0.9500C14—C151.380 (4)
C4—C51.390 (4)C15—C161.385 (4)
C5—C61.400 (3)C15—H15A0.9500
C6—C71.392 (4)C16—H16A0.9500
C7—H7A0.9500
C4—O2—C8116.6 (2)H8B—C8—H8C109.5
C5—O3—C9113.2 (2)O3—C9—H9A109.5
C6—O4—C10117.0 (2)O3—C9—H9B109.5
C1—N1—C11124.9 (2)H9A—C9—H9B109.5
C1—N1—H1117.5O3—C9—H9C109.5
C11—N1—H1117.5H9A—C9—H9C109.5
O1—C1—N1123.0 (2)H9B—C9—H9C109.5
O1—C1—C2121.6 (2)O4—C10—H10A109.5
N1—C1—C2115.5 (2)O4—C10—H10B109.5
C7—C2—C3120.9 (2)H10A—C10—H10B109.5
C7—C2—C1117.0 (2)O4—C10—H10C109.5
C3—C2—C1122.0 (2)H10A—C10—H10C109.5
C4—C3—C2119.1 (2)H10B—C10—H10C109.5
C4—C3—H3A120.5C16—C11—C12119.5 (2)
C2—C3—H3A120.5C16—C11—N1118.1 (2)
O2—C4—C3124.0 (2)C12—C11—N1122.4 (2)
O2—C4—C5115.4 (2)C13—C12—C11120.1 (2)
C3—C4—C5120.6 (2)C13—C12—H12A119.9
O3—C5—C4120.1 (2)C11—C12—H12A119.9
O3—C5—C6119.8 (2)C12—C13—C14120.0 (2)
C4—C5—C6120.0 (2)C12—C13—H13A120.0
O4—C6—C7125.0 (2)C14—C13—H13A120.0
O4—C6—C5115.3 (2)C15—C14—C13120.3 (2)
C7—C6—C5119.6 (2)C15—C14—Cl1119.1 (2)
C2—C7—C6119.7 (2)C13—C14—Cl1120.5 (2)
C2—C7—H7A120.1C14—C15—C16119.5 (2)
C6—C7—H7A120.1C14—C15—H15A120.2
O2—C8—H8A109.5C16—C15—H15A120.2
O2—C8—H8B109.5C15—C16—C11120.5 (2)
H8A—C8—H8B109.5C15—C16—H16A119.8
O2—C8—H8C109.5C11—C16—H16A119.8
H8A—C8—H8C109.5
C11—N1—C1—O11.5 (4)O3—C5—C6—O45.1 (3)
C11—N1—C1—C2178.5 (2)C4—C5—C6—O4177.9 (2)
O1—C1—C2—C729.2 (3)O3—C5—C6—C7174.4 (2)
N1—C1—C2—C7150.8 (2)C4—C5—C6—C72.6 (4)
O1—C1—C2—C3148.9 (2)C3—C2—C7—C61.1 (4)
N1—C1—C2—C331.1 (3)C1—C2—C7—C6179.2 (2)
C7—C2—C3—C40.0 (4)O4—C6—C7—C2178.2 (2)
C1—C2—C3—C4178.0 (2)C5—C6—C7—C22.4 (4)
C8—O2—C4—C319.9 (4)C1—N1—C11—C16143.0 (3)
C8—O2—C4—C5161.6 (3)C1—N1—C11—C1239.2 (4)
C2—C3—C4—O2178.7 (2)C16—C11—C12—C131.8 (4)
C2—C3—C4—C50.2 (4)N1—C11—C12—C13179.6 (2)
C9—O3—C5—C492.2 (3)C11—C12—C13—C141.0 (4)
C9—O3—C5—C690.8 (3)C12—C13—C14—C150.5 (4)
O2—C4—C5—O33.1 (3)C12—C13—C14—Cl1179.1 (2)
C3—C4—C5—O3175.5 (2)C13—C14—C15—C161.1 (4)
O2—C4—C5—C6179.8 (2)Cl1—C14—C15—C16178.5 (2)
C3—C4—C5—C61.6 (4)C14—C15—C16—C110.3 (4)
C10—O4—C6—C72.9 (4)C12—C11—C16—C151.2 (4)
C10—O4—C6—C5176.6 (3)N1—C11—C16—C15179.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.182.878 (3)136
Symmetry code: (i) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H16ClNO4
Mr321.75
Crystal system, space groupMonoclinic, Cc
Temperature (K)120
a, b, c (Å)9.487 (2), 25.666 (6), 6.9781 (15)
β (°) 112.340 (5)
V3)1571.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.41 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.901, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
6765, 3581, 3104
Rint0.040
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.106, 1.02
No. of reflections3581
No. of parameters202
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.24
Absolute structureFlack (1983), with 1780 Friedel pairs
Absolute structure parameter0.06 (6)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.182.878 (3)135.6
Symmetry code: (i) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

AS gratefully acknowledges a research grant from Quaid-I-Azam University, Islamabad.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCapdeville, R., Buchdunger, E. Zimmermann, J. & Matter, A. (2002). Nature Rev. Drug Discov. 1, 493–502.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHo, T.-I., Chen, W.-S., Hsu, C.-W., Tsai, Y.-M. & Fang, J.-M. (2002). Heterocycles, 57, 1501–1506.  CrossRef CAS Google Scholar
First citationIgawa, H., Nishimura, M., Okada, K. & Nakamura, T. (1999). Jpn. Patent Kokai Tokkyo Koho JP 11171848.  Google Scholar
First citationJackson, S., DeGrado, W., Dwivedi, A., Parthasarathy, A., Higley, A., Krywko, J., Rockwell, A., Markwalder, J., Wells, G., Wexler, R., Mousa, S. & Harlow, R. (1994). J. Am. Chem. Soc. 116, 3220–3230.  CSD CrossRef CAS Web of Science Google Scholar
First citationMakino, S., Nakanishi, E. & Tsuji, T. (2003). Bull. Korean Chem. Soc. 24, 389–392.  CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415–1418.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds