organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3,4-Tri­hydroxy­benzaldehyde

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 July 2008; accepted 15 July 2008; online 23 July 2008)

The title compound, C7H6O4, crystallizes with two independent mol­ecules in the asymmetric unit. In both mol­ecules, the 2-hydr­oxy group is bound via intra­molecular hydrogen bonds to the aldehyde group. The mol­ecules inter­act through O—H⋯O hydrogen bonds to form a three-dimensional network structure; each hydr­oxy group serves as a donor to only one acceptor atom.

Related literature

For some references on hydr­oxy-substituted benzaldehydes, see: Kretz et al. (2007[Kretz, T., Lerner, H.-W. & Bolte, M. (2007). Acta Cryst. E63, o4673.]); Ng (2005[Ng, S. W. (2005). Acta Cryst. E61, o2301-o2302.]). For the crystal structures of Schiff base derivatives of 2,3,4-trihydroxy­salicylaldehyde, see: Petek et al. (2006[Petek, H., Albayrak, Ç., Ağar, E. & Kalkan, H. (2006). Acta Cryst. E62, o3685-o3687.]); Sun et al. (2007[Sun, Y.-F., Li, J.-K., Zheng, Z.-B. & Wu, R.-T. (2007). Acta Cryst. E63, o2522-o2523.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6O4

  • Mr = 154.12

  • Monoclinic, C c

  • a = 3.6222 (3) Å

  • b = 24.006 (2) Å

  • c = 14.8965 (9) Å

  • β = 93.524 (5)°

  • V = 1292.9 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 (2) K

  • 0.30 × 0.03 × 0.03 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 5464 measured reflections

  • 1491 independent reflections

  • 1087 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.132

  • S = 1.01

  • 1491 reflections

  • 217 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.84 (1) 1.99 (5) 2.631 (5) 133 (6)
O3—H3⋯O7i 0.84 (1) 2.04 (3) 2.816 (5) 153 (6)
O4—H4⋯O1ii 0.84 (1) 1.90 (3) 2.701 (5) 159 (6)
O6—H6⋯O5 0.84 (1) 1.87 (3) 2.653 (5) 154 (6)
O7—H7⋯O2 0.84 (1) 2.02 (3) 2.772 (5) 149 (6)
O8—H8⋯O5iii 0.84 (1) 1.86 (2) 2.679 (5) 162 (7)
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-1, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

2,3,4-Trihydroxybenzaldehyde condenses with primary amines to afford Schiff bases. The crystal structures of only few such Schiff bases have been reported. The 2-fluoroaniline derivative exists as a zwitterion as the hydrogen atom of the 2-hydroxy substituent is transferred to the imino nitrogen atom (Petek et al., 2006). On the other hand, the antipyrine derivative has the expected neutral structure (Sun et al., 2007). Although there are several structural studies on hydroxy-substituted benzaldehydes (Kretz et al., 2007; Ng, 2005), the structure of 2,3,4-trihydroxybenzaldehyde has not been reported.

2,3,4-Trihydroxybenzaldehyde (Scheme I) crystallizes with two independent molecules in the asymmetric unit. In both, the 2-hydroxy group is hydrogen-bonded to the aldehyde group via an intramolecular hydrogen bond (Fig. 1). The molecules interact through O–H···O hydrogen bonds to form a three-dimensional network structure; each hydroxy group serves as donor to only one acceptor atom.

Related literature top

For some references on hydroxy-substituted benzaldehydes, see: Kretz et al. (2007); Ng (2005). For the crystal structures of the Schiff base derivatives of 2,3,4-trihydroxysalicylaldehyde, see: Petek et al. (2006); Sun et al. (2007).

Experimental top

Commercially available 2,3,4-trihydroxybenzaldehyde was recrystallized from ethanol to furnished light-brown, needled-shaped crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The hydroxy H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H 0.84±0.01 Å; their displacement parameters were set to 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Plot (Barbour, 2001) of the two independent molecules of 2,3,4-trihydroxybenzaldehyde with 50% probability ellipsoids. Hydrogen atoms are drawn as spheres of arbitrary radius.
2,3,4-Trihydroxybenzaldehyde top
Crystal data top
C7H6O4F(000) = 640
Mr = 154.12Dx = 1.584 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C cCell parameters from 446 reflections
a = 3.6222 (3) Åθ = 2.8–19.5°
b = 24.006 (2) ŵ = 0.13 mm1
c = 14.8965 (9) ÅT = 100 K
β = 93.524 (5)°Needle, light brown
V = 1292.9 (2) Å30.30 × 0.03 × 0.03 mm
Z = 8
Data collection top
Bruker SMART APEX
diffractometer
1087 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.088
Graphite monochromatorθmax = 27.5°, θmin = 1.7°
ω scansh = 43
5464 measured reflectionsk = 3030
1491 independent reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0467P)2 + 2.3366P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
1491 reflectionsΔρmax = 0.30 e Å3
217 parametersΔρmin = 0.32 e Å3
8 restraintsAbsolute structure: Friedel pairs were merged
Primary atom site location: structure-invariant direct methods
Crystal data top
C7H6O4V = 1292.9 (2) Å3
Mr = 154.12Z = 8
Monoclinic, CcMo Kα radiation
a = 3.6222 (3) ŵ = 0.13 mm1
b = 24.006 (2) ÅT = 100 K
c = 14.8965 (9) Å0.30 × 0.03 × 0.03 mm
β = 93.524 (5)°
Data collection top
Bruker SMART APEX
diffractometer
1087 reflections with I > 2σ(I)
5464 measured reflectionsRint = 0.088
1491 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0548 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.30 e Å3
1491 reflectionsΔρmin = 0.32 e Å3
217 parametersAbsolute structure: Friedel pairs were merged
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5000 (11)0.19999 (15)0.5000 (3)0.0203 (9)
O20.4561 (11)0.18738 (14)0.6744 (3)0.0177 (9)
H20.432 (19)0.172 (2)0.6236 (19)0.027*
O30.2999 (11)0.23611 (14)0.8356 (2)0.0186 (9)
H30.253 (18)0.2022 (8)0.827 (4)0.028*
O40.0704 (11)0.34509 (15)0.8358 (3)0.0187 (9)
H40.046 (19)0.324 (2)0.879 (3)0.028*
O51.4505 (11)0.00937 (16)1.0289 (3)0.0206 (9)
O61.1992 (11)0.08512 (14)0.9559 (2)0.0195 (9)
H61.297 (17)0.062 (2)0.993 (3)0.029*
O70.8968 (11)0.13655 (14)0.8094 (3)0.0187 (9)
H70.801 (18)0.142 (2)0.7575 (19)0.028*
O80.7396 (10)0.07867 (14)0.6555 (2)0.0172 (9)
H80.696 (19)0.056 (2)0.613 (3)0.026*
C10.3888 (16)0.2489 (2)0.5099 (4)0.0182 (12)
H10.35710.27170.45790.022*
C20.3068 (15)0.2725 (2)0.5942 (4)0.0140 (11)
C30.3431 (15)0.2416 (2)0.6752 (4)0.0148 (11)
C40.2636 (16)0.2646 (2)0.7557 (4)0.0151 (12)
C50.1496 (15)0.3204 (2)0.7578 (4)0.0153 (11)
C60.1124 (15)0.3520 (2)0.6789 (4)0.0171 (12)
H6A0.03280.38960.68120.021*
C70.1914 (16)0.3285 (2)0.5982 (4)0.0184 (12)
H7A0.16800.35010.54480.022*
C81.3595 (16)0.0319 (2)0.9554 (4)0.0182 (12)
H8A1.40390.07070.94980.022*
C91.1938 (15)0.0035 (2)0.8791 (4)0.0146 (11)
C101.1232 (16)0.0546 (2)0.8814 (4)0.0150 (11)
C110.9686 (16)0.08085 (19)0.8055 (4)0.0142 (11)
C120.8902 (15)0.0499 (2)0.7274 (3)0.0142 (11)
C130.9584 (15)0.0072 (2)0.7239 (4)0.0160 (12)
H130.90430.02760.67010.019*
C141.1054 (15)0.0333 (2)0.7999 (4)0.0167 (12)
H141.14800.07230.79880.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.023 (2)0.0189 (19)0.019 (2)0.0023 (16)0.0050 (18)0.0053 (15)
O20.025 (2)0.0122 (17)0.015 (2)0.0033 (16)0.0038 (18)0.0012 (15)
O30.032 (3)0.0111 (17)0.013 (2)0.0021 (16)0.0006 (18)0.0028 (14)
O40.027 (2)0.0147 (17)0.015 (2)0.0041 (17)0.0023 (17)0.0010 (15)
O50.023 (2)0.023 (2)0.015 (2)0.0024 (17)0.0034 (17)0.0012 (16)
O60.032 (3)0.0147 (18)0.011 (2)0.0003 (16)0.0070 (18)0.0039 (15)
O70.029 (3)0.0124 (16)0.0140 (18)0.0040 (16)0.0032 (17)0.0030 (15)
O80.023 (2)0.0163 (18)0.011 (2)0.0023 (16)0.0065 (17)0.0020 (14)
C10.017 (3)0.020 (3)0.017 (3)0.001 (2)0.005 (3)0.003 (2)
C20.010 (3)0.018 (2)0.014 (3)0.001 (2)0.000 (2)0.003 (2)
C30.007 (3)0.015 (2)0.022 (3)0.002 (2)0.002 (2)0.002 (2)
C40.016 (3)0.014 (2)0.015 (3)0.001 (2)0.002 (2)0.001 (2)
C50.011 (3)0.017 (3)0.019 (3)0.001 (2)0.003 (2)0.001 (2)
C60.014 (3)0.012 (2)0.025 (3)0.002 (2)0.000 (3)0.000 (2)
C70.021 (3)0.017 (3)0.017 (3)0.002 (2)0.001 (3)0.003 (2)
C80.014 (3)0.019 (3)0.022 (3)0.000 (2)0.002 (2)0.006 (2)
C90.012 (3)0.015 (2)0.016 (3)0.000 (2)0.001 (2)0.001 (2)
C100.011 (3)0.021 (3)0.014 (3)0.002 (2)0.000 (2)0.004 (2)
C110.013 (3)0.012 (2)0.017 (3)0.000 (2)0.001 (2)0.005 (2)
C120.009 (3)0.020 (2)0.014 (3)0.000 (2)0.000 (2)0.003 (2)
C130.013 (3)0.020 (3)0.014 (3)0.000 (2)0.002 (2)0.004 (2)
C140.012 (3)0.014 (3)0.024 (3)0.001 (2)0.001 (2)0.000 (2)
Geometric parameters (Å, º) top
O1—C11.253 (6)C9—C101.421 (7)
O2—C31.365 (6)C10—C111.382 (8)
O3—C41.372 (6)C11—C121.395 (7)
O4—C51.351 (6)C12—C131.394 (7)
O5—C81.248 (7)C13—C141.372 (7)
O6—C101.343 (6)O2—H20.84 (1)
O7—C111.364 (6)O3—H30.84 (1)
O8—C121.361 (6)O4—H40.84 (1)
C1—C21.426 (7)O6—H60.84 (1)
C2—C71.409 (7)O7—H70.84 (1)
C2—C31.416 (7)O8—H80.84 (1)
C3—C41.367 (7)C1—H10.9500
C4—C51.402 (7)C6—H6A0.9500
C5—C61.398 (7)C7—H7A0.9500
C6—C71.374 (7)C8—H8A0.9500
C8—C91.425 (8)C13—H130.9500
C9—C141.398 (7)C14—H140.9500
C3—O2—H2114 (4)C10—C9—C8121.1 (5)
C4—O3—H3110 (5)O6—C10—C11118.6 (4)
C5—O4—H4116 (5)O6—C10—C9121.9 (5)
C10—O6—H6104 (4)C11—C10—C9119.5 (5)
C11—O7—H7101 (4)O7—C11—C10118.7 (5)
C12—O8—H8108 (4)O7—C11—C12121.9 (5)
O1—C1—C2124.2 (5)C10—C11—C12119.4 (4)
C7—C2—C3118.4 (5)O8—C12—C13122.3 (5)
C7—C2—C1119.7 (5)O8—C12—C11115.9 (4)
C3—C2—C1121.9 (4)C13—C12—C11121.9 (5)
O2—C3—C4118.2 (5)C14—C13—C12118.6 (5)
O2—C3—C2120.4 (5)C13—C14—C9121.3 (5)
C4—C3—C2121.5 (4)O1—C1—H1117.9
C3—C4—O3123.1 (4)C2—C1—H1117.9
C3—C4—C5118.9 (5)C7—C6—H6A120.1
O3—C4—C5118.0 (5)C5—C6—H6A120.1
O4—C5—C6118.0 (5)C6—C7—H7A119.8
O4—C5—C4121.1 (5)C2—C7—H7A119.8
C6—C5—C4120.9 (5)O5—C8—H8A117.6
C7—C6—C5119.9 (5)C9—C8—H8A117.6
C6—C7—C2120.4 (5)C14—C13—H13120.7
O5—C8—C9124.7 (5)C12—C13—H13120.7
C14—C9—C10119.4 (5)C13—C14—H14119.3
C14—C9—C8119.5 (5)C9—C14—H14119.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.84 (1)1.99 (5)2.631 (5)133 (6)
O3—H3···O7i0.84 (1)2.04 (3)2.816 (5)153 (6)
O4—H4···O1ii0.84 (1)1.90 (3)2.701 (5)159 (6)
O6—H6···O50.84 (1)1.87 (3)2.653 (5)154 (6)
O7—H7···O20.84 (1)2.02 (3)2.772 (5)149 (6)
O8—H8···O5iii0.84 (1)1.86 (2)2.679 (5)162 (7)
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1/2; (iii) x1, y, z1/2.

Experimental details

Crystal data
Chemical formulaC7H6O4
Mr154.12
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)3.6222 (3), 24.006 (2), 14.8965 (9)
β (°) 93.524 (5)
V3)1292.9 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.30 × 0.03 × 0.03
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5464, 1491, 1087
Rint0.088
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.132, 1.01
No. of reflections1491
No. of parameters217
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.32
Absolute structureFriedel pairs were merged

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.84 (1)1.99 (5)2.631 (5)133 (6)
O3—H3···O7i0.84 (1)2.04 (3)2.816 (5)153 (6)
O4—H4···O1ii0.84 (1)1.90 (3)2.701 (5)159 (6)
O6—H6···O50.84 (1)1.87 (3)2.653 (5)154 (6)
O7—H7···O20.84 (1)2.02 (3)2.772 (5)149 (6)
O8—H8···O5iii0.84 (1)1.86 (2)2.679 (5)162 (7)
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1/2; (iii) x1, y, z1/2.
 

Acknowledgements

I thank the University of Malaya for supporting this study through the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKretz, T., Lerner, H.-W. & Bolte, M. (2007). Acta Cryst. E63, o4673.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNg, S. W. (2005). Acta Cryst. E61, o2301–o2302.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPetek, H., Albayrak, Ç., Ağar, E. & Kalkan, H. (2006). Acta Cryst. E62, o3685–o3687.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-F., Li, J.-K., Zheng, Z.-B. & Wu, R.-T. (2007). Acta Cryst. E63, o2522–o2523.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds