organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro­phenyl 4-methyl­benzoate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 15 July 2008; accepted 16 July 2008; online 19 July 2008)

The conformation of the C=O bond in the title compound, C14H11ClO2, is anti to the Cl atom, similar to what was observed in 2-methyl­phenyl 4-methyl­benzoate. The dihedral angle between the two aromatic rings is 59.36 (7)°.

Related literature

For related literature, see: Gowda et al. (2008a[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1390.],b[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1518.],c[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008c). Acta Cryst. E64. Submitted.]); Nayak & Gowda (2008[Nayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClO2

  • Mr = 246.68

  • Monoclinic, P 21

  • a = 4.0538 (8) Å

  • b = 13.661 (3) Å

  • c = 10.975 (2) Å

  • β = 91.70 (2)°

  • V = 607.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 299 (2) K

  • 0.48 × 0.24 × 0.16 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]) Tmin = 0.869, Tmax = 0.954

  • 4160 measured reflections

  • 2238 independent reflections

  • 1632 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.116

  • S = 1.15

  • 2238 reflections

  • 155 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 957 Friedel pairs

  • Flack parameter: −0.09 (9)

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the substituent effects on the crystal structures of aryl benzoates (Gowda et al., 2008a, 2008b, 2008c), in the present work, the structure of 2-chlorophenyl 4-methylbenzoate (2CP4MBA) has been determined. The conformation of the C=O bond in 2CP4MBA is anti to the ortho-chloro group in the phenolic benzene ring (Fig. 1), similar to what is observed in 2-methylphenyl 4-methylbenzoate (2MP4MBA) (Gowda et al., 2008c). The dihedral angle between the benzene and benzoyl rings in 2CP4MBA is 59.36 (7)°, compared with the values of 71.75 (7)° in 3CP4MBA (Gowda et al., 2008a), 63.89 (8)° in 4CP4MBA (Gowda et al., 2008b) and 73.04 (8)° in 2MP4MBA (Gowda et al., 2008c). Further, the bond parameters in 2CP4MBA are similar to those in 2MP4MBA and other aryl benzoates (Gowda et al., 2008a, b, c). The packing diagram is shown in Fig. 2.

Related literature top

For related literature, see: Gowda et al. (2008a,b,c); Nayak & Gowda (2008).

Experimental top

The title compound was prepared according to a method of Nayak & Gowda (2008). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2008). Single crystals used in X-ray diffraction studies were obtained by slow evaporation of ethanolic solution of the title compound.

Refinement top

The H atoms were positioned with idealized geometry and refined using a riding model with Caromatic—H = 0.93Å or Cmethyl—H = 0.96 Å and with isotropic displacement parameters set to 1.2 Ueq(C) or 1.5Ueq(Cmethyl). The methyl group was allowed to rotate but not to tip.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram of the title compound.
2-Chlorophenyl 4-methylbenzoate top
Crystal data top
C14H11ClO2F(000) = 256
Mr = 246.68Dx = 1.349 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1136 reflections
a = 4.0538 (8) Åθ = 2.4–27.8°
b = 13.661 (3) ŵ = 0.30 mm1
c = 10.975 (2) ÅT = 299 K
β = 91.70 (2)°Long needle, colourless
V = 607.5 (2) Å30.48 × 0.24 × 0.16 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2238 independent reflections
Radiation source: fine-focus sealed tube1632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 55
Tmin = 0.869, Tmax = 0.954k = 1715
4160 measured reflectionsl = 137
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0644P)2 + 0.0085P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.018
2238 reflectionsΔρmax = 0.36 e Å3
155 parametersΔρmin = 0.34 e Å3
1 restraintAbsolute structure: Flack (1983), 957 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (9)
Crystal data top
C14H11ClO2V = 607.5 (2) Å3
Mr = 246.68Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.0538 (8) ŵ = 0.30 mm1
b = 13.661 (3) ÅT = 299 K
c = 10.975 (2) Å0.48 × 0.24 × 0.16 mm
β = 91.70 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2238 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1632 reflections with I > 2σ(I)
Tmin = 0.869, Tmax = 0.954Rint = 0.012
4160 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.116Δρmax = 0.36 e Å3
S = 1.15Δρmin = 0.34 e Å3
2238 reflectionsAbsolute structure: Flack (1983), 957 Friedel pairs
155 parametersAbsolute structure parameter: 0.09 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7402 (8)0.6625 (2)0.2945 (2)0.0525 (7)
C20.5813 (7)0.6919 (2)0.3974 (2)0.0570 (8)
C30.5373 (9)0.7904 (3)0.4209 (3)0.0699 (10)
H30.43500.81040.49140.084*
C40.6454 (10)0.8581 (3)0.3396 (3)0.0801 (11)
H40.61070.92430.35440.096*
C50.8047 (9)0.8300 (3)0.2364 (4)0.0751 (10)
H50.87960.87650.18190.090*
C60.8512 (9)0.7319 (3)0.2154 (3)0.0677 (8)
H60.96000.71220.14610.081*
C70.6657 (7)0.5173 (2)0.1796 (2)0.0513 (7)
C80.7526 (7)0.4132 (2)0.1815 (2)0.0460 (6)
C90.9317 (7)0.3687 (2)0.2745 (2)0.0527 (7)
H91.00840.40570.34060.063*
C100.9986 (7)0.2701 (2)0.2709 (3)0.0579 (7)
H101.12160.24170.33450.069*
C110.8878 (7)0.2126 (2)0.1756 (3)0.0548 (7)
C120.7055 (7)0.2569 (2)0.0806 (2)0.0562 (8)
H120.62760.21920.01530.067*
C130.6405 (7)0.3554 (2)0.0827 (2)0.0552 (7)
H130.52160.38410.01840.066*
C140.9603 (8)0.1054 (3)0.1717 (3)0.0726 (8)
H14A1.10200.08800.23990.087*
H14B1.06770.09000.09730.087*
H14C0.75770.06930.17540.087*
O10.7986 (5)0.56428 (14)0.27927 (18)0.0615 (6)
O20.4938 (7)0.55841 (16)0.1064 (2)0.0776 (7)
Cl10.4406 (2)0.60598 (9)0.49831 (7)0.0834 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0659 (17)0.0460 (19)0.0452 (14)0.0061 (14)0.0050 (12)0.0011 (12)
C20.0682 (19)0.055 (2)0.0468 (15)0.0031 (15)0.0084 (13)0.0042 (13)
C30.088 (2)0.067 (3)0.0541 (17)0.0134 (19)0.0046 (16)0.0151 (16)
C40.103 (3)0.047 (2)0.089 (2)0.008 (2)0.022 (2)0.008 (2)
C50.092 (3)0.050 (2)0.082 (2)0.0120 (19)0.0133 (19)0.0066 (17)
C60.083 (2)0.061 (2)0.0597 (16)0.0017 (17)0.0004 (15)0.0015 (15)
C70.0616 (17)0.0522 (19)0.0397 (12)0.0047 (14)0.0037 (12)0.0034 (13)
C80.0517 (15)0.0460 (18)0.0405 (12)0.0052 (12)0.0039 (11)0.0023 (11)
C90.0592 (18)0.054 (2)0.0442 (12)0.0002 (14)0.0031 (12)0.0047 (12)
C100.0649 (18)0.055 (2)0.0529 (15)0.0061 (15)0.0060 (13)0.0039 (13)
C110.0583 (15)0.046 (2)0.0602 (16)0.0030 (14)0.0119 (13)0.0024 (12)
C120.0686 (18)0.057 (2)0.0431 (14)0.0091 (15)0.0048 (13)0.0107 (13)
C130.0638 (18)0.0587 (19)0.0427 (12)0.0029 (16)0.0052 (12)0.0060 (14)
C140.080 (2)0.054 (2)0.084 (2)0.000 (2)0.0041 (16)0.0060 (19)
O10.0858 (15)0.0461 (12)0.0514 (11)0.0094 (10)0.0167 (10)0.0022 (8)
O20.1052 (17)0.0570 (14)0.0686 (13)0.0119 (13)0.0286 (13)0.0011 (11)
Cl10.1042 (7)0.0856 (6)0.0608 (4)0.0113 (6)0.0082 (4)0.0093 (4)
Geometric parameters (Å, º) top
C1—C61.370 (5)C8—C91.376 (4)
C1—O11.374 (3)C8—C131.406 (4)
C1—C21.376 (4)C9—C101.375 (4)
C2—C31.382 (4)C9—H90.9300
C2—Cl11.723 (3)C10—C111.373 (4)
C3—C41.366 (5)C10—H100.9300
C3—H30.9300C11—C121.398 (4)
C4—C51.375 (6)C11—C141.495 (5)
C4—H40.9300C12—C131.372 (4)
C5—C61.373 (5)C12—H120.9300
C5—H50.9300C13—H130.9300
C6—H60.9300C14—H14A0.9600
C7—O21.188 (3)C14—H14B0.9600
C7—O11.365 (3)C14—H14C0.9600
C7—C81.465 (4)
C6—C1—O1122.5 (3)C13—C8—C7117.5 (2)
C6—C1—C2119.3 (3)C10—C9—C8120.8 (3)
O1—C1—C2118.1 (3)C10—C9—H9119.6
C1—C2—C3120.2 (3)C8—C9—H9119.6
C1—C2—Cl1120.1 (2)C11—C10—C9121.5 (3)
C3—C2—Cl1119.7 (2)C11—C10—H10119.3
C4—C3—C2119.4 (3)C9—C10—H10119.3
C4—C3—H3120.3C10—C11—C12118.3 (3)
C2—C3—H3120.3C10—C11—C14121.5 (3)
C3—C4—C5121.1 (4)C12—C11—C14120.2 (3)
C3—C4—H4119.5C13—C12—C11120.6 (2)
C5—C4—H4119.5C13—C12—H12119.7
C6—C5—C4118.8 (4)C11—C12—H12119.7
C6—C5—H5120.6C12—C13—C8120.4 (2)
C4—C5—H5120.6C12—C13—H13119.8
C1—C6—C5121.3 (3)C8—C13—H13119.8
C1—C6—H6119.4C11—C14—H14A109.5
C5—C6—H6119.4C11—C14—H14B109.5
O2—C7—O1121.9 (3)H14A—C14—H14B109.5
O2—C7—C8127.2 (2)C11—C14—H14C109.5
O1—C7—C8110.8 (2)H14A—C14—H14C109.5
C9—C8—C13118.3 (3)H14B—C14—H14C109.5
C9—C8—C7124.1 (2)C7—O1—C1119.4 (2)
C6—C1—C2—C30.6 (4)C13—C8—C9—C100.2 (4)
O1—C1—C2—C3175.5 (3)C7—C8—C9—C10178.8 (3)
C6—C1—C2—Cl1179.8 (2)C8—C9—C10—C110.5 (4)
O1—C1—C2—Cl13.7 (4)C9—C10—C11—C120.5 (4)
C1—C2—C3—C41.7 (5)C9—C10—C11—C14180.0 (3)
Cl1—C2—C3—C4179.1 (3)C10—C11—C12—C130.2 (4)
C2—C3—C4—C51.7 (5)C14—C11—C12—C13179.3 (3)
C3—C4—C5—C60.6 (5)C11—C12—C13—C80.9 (4)
O1—C1—C6—C5176.4 (3)C9—C8—C13—C120.9 (4)
C2—C1—C6—C50.4 (5)C7—C8—C13—C12178.2 (3)
C4—C5—C6—C10.4 (5)O2—C7—O1—C11.7 (4)
O2—C7—C8—C9174.5 (3)C8—C7—O1—C1179.1 (3)
O1—C7—C8—C92.7 (4)C6—C1—O1—C764.4 (4)
O2—C7—C8—C134.5 (5)C2—C1—O1—C7119.6 (3)
O1—C7—C8—C13178.3 (2)

Experimental details

Crystal data
Chemical formulaC14H11ClO2
Mr246.68
Crystal system, space groupMonoclinic, P21
Temperature (K)299
a, b, c (Å)4.0538 (8), 13.661 (3), 10.975 (2)
β (°) 91.70 (2)
V3)607.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.48 × 0.24 × 0.16
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.869, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
4160, 2238, 1632
Rint0.012
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.116, 1.15
No. of reflections2238
No. of parameters155
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.34
Absolute structureFlack (1983), 957 Friedel pairs
Absolute structure parameter0.09 (9)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1390.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008c). Acta Cryst. E64. Submitted.  CrossRef IUCr Journals Google Scholar
First citationNayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63. In the press.  Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds