organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Bromo­phenyl­sulfon­yl)-2,2,2-tri­methyl­acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 24 June 2008; accepted 25 June 2008; online 5 July 2008)

The conformations of the N—H and C=O bonds in the SO2—NH—CO—C group of the title compound (N4BPSTMAA), C11H14BrNO3S, are trans to each other, similar to what is observed in N-(4-chloro­phenyl­sulfon­yl)-2,2,2-trimethyl­acet­amide (N4CPSTMAA) and 2,2,2-trimethyl-N-(4-methyl­phenyl­­sulfon­yl)acetamide (N4MPSTMAA). The bond para­meters in N4BPSTMAA are similar to those in N4CPSTMAA, N4MPSTMAA, N-aryl-2,2,2-trimethyl­acet­amides and 4-bromo­benzene­sulfonamide. The benzene ring and the SO2—NH—CO—C group in N4BPSTMAA form a dihedral angle of 82.8 (1)°, comparable with the values of 82.2 (1)° in N4CPSTMAA and 71.2 (1)° in N4MPSTMAA. N—H⋯O hydrogen bonds form a centrosymmetric ring characterized by an R22(8) motif.

Related literature

For related literature, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656-660.], 2007[Gowda, B. T., Svoboda, I., Paulus, H. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 331-337.], 2008[Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008). Acta Cryst. E64, o1279.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14BrNO3S

  • Mr = 320.20

  • Triclinic, [P \overline 1]

  • a = 6.066 (1) Å

  • b = 10.858 (1) Å

  • c = 11.092 (2) Å

  • α = 68.19 (1)°

  • β = 78.66 (2)°

  • γ = 88.10 (2)°

  • V = 664.40 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.25 mm−1

  • T = 299 (2) K

  • 0.20 × 0.08 × 0.04 mm

Data collection
  • Oxford Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.563, Tmax = 0.881

  • 6843 measured reflections

  • 2692 independent reflections

  • 1551 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.101

  • S = 0.97

  • 2692 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 2.23 2.982 (3) 146
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, as part of a study of the substituent effects on the solid state geometries of N-(aryl)-sulfonamides and substituted amides, the structure of N-(4-bromophenylsulfonyl)-2,2,2-trimethylacetamide (N4BPSTMAA) has been determined (Gowda et al., 2003, 2007, 2008). The conformations of the N—H and CO bonds of the SO2—NH—CO—C group in N4CPSTMAA are anti to each other (Fig. 1), similar to that observed in N-(4-chlorophenylsulfonyl)-2,2,2-trimethylacetamide (N4CPSTMAA) and (4-methylphenylsulfonyl)-2,2,2-trimethylacetamide (N4MPSTMAA) (Gowda et al., 2008). The bond parameters in N4BPSTMAA are similar to those in N4CPSTMAA, N4MPSTMAA (Gowda et al., 2008), N-(aryl)-2,2,2-trimethylacetamides (Gowda et al., 2007) and 4-bromobenzenesulfonamide (Gowda et al., 2003). The N—H···O hydrogen bonds form a centrosymmetric macro-ring characterized by R22(8) motif (Bernstein et al., 1995) ( Table 1, Fig. 2).

Related literature top

For related literature, see: Gowda et al. (2003, 2007, 2008); Bernstein et al. (1995).

Experimental top

The title compound was prepared by refluxing 4-bromobenzenesulfonamide (0.10 mole) with an excess pivalyl chloride (0.20 mole) for about an hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution. The title compound was precipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound used for X-ray diffraction studies were obtained from a slow evaporation of an ethanolic solution.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å, N—H = 0.86 Å, and were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction , 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(4-Bromophenylsulfonyl)-2,2,2-trimethylacetamide top
Crystal data top
C11H14BrNO3SZ = 2
Mr = 320.20F(000) = 324
Triclinic, P1Dx = 1.601 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.066 (1) ÅCell parameters from 2537 reflections
b = 10.858 (1) Åθ = 2.3–28.0°
c = 11.092 (2) ŵ = 3.25 mm1
α = 68.19 (1)°T = 299 K
β = 78.66 (2)°Needle, colourless
γ = 88.10 (2)°0.20 × 0.08 × 0.04 mm
V = 664.40 (17) Å3
Data collection top
Oxford Xcalibur
diffractometer with Sapphire CCD detector
2692 independent reflections
Radiation source: fine-focus sealed tube1551 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007) (Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm)
h = 77
Tmin = 0.563, Tmax = 0.881k = 1313
6843 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0526P)2]
where P = (Fo2 + 2Fc2)/3
2692 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C11H14BrNO3Sγ = 88.10 (2)°
Mr = 320.20V = 664.40 (17) Å3
Triclinic, P1Z = 2
a = 6.066 (1) ÅMo Kα radiation
b = 10.858 (1) ŵ = 3.25 mm1
c = 11.092 (2) ÅT = 299 K
α = 68.19 (1)°0.20 × 0.08 × 0.04 mm
β = 78.66 (2)°
Data collection top
Oxford Xcalibur
diffractometer with Sapphire CCD detector
2692 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007) (Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm)
1551 reflections with I > 2σ(I)
Tmin = 0.563, Tmax = 0.881Rint = 0.033
6843 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 0.97Δρmax = 0.37 e Å3
2692 reflectionsΔρmin = 0.29 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.10728 (8)0.00925 (4)0.21716 (5)0.0810 (2)
S10.28409 (14)0.35519 (8)0.47093 (8)0.0451 (2)
O10.4965 (4)0.3098 (2)0.5007 (2)0.0548 (6)
O20.1120 (4)0.3668 (2)0.5741 (2)0.0580 (6)
O30.5763 (4)0.4572 (2)0.2073 (2)0.0615 (7)
N10.3085 (4)0.5038 (2)0.3551 (3)0.0449 (7)
H1N0.23090.56530.37200.054*
C10.1807 (5)0.2548 (3)0.3993 (3)0.0399 (8)
C20.2864 (6)0.1387 (3)0.4005 (3)0.0478 (8)
H20.41340.11450.43780.057*
C30.2013 (6)0.0601 (3)0.3458 (3)0.0513 (9)
H30.27030.01760.34560.062*
C40.0124 (6)0.0983 (3)0.2914 (3)0.0487 (9)
C50.0926 (6)0.2124 (3)0.2896 (4)0.0521 (9)
H50.21930.23640.25200.062*
C60.0080 (5)0.2915 (3)0.3443 (4)0.0506 (9)
H60.07780.36910.34400.061*
C70.4476 (6)0.5366 (3)0.2305 (3)0.0428 (8)
C80.4154 (5)0.6724 (3)0.1284 (3)0.0451 (8)
C90.1793 (6)0.6700 (4)0.0986 (4)0.0740 (12)
H9A0.16650.60080.06570.089*
H9B0.15520.75400.03310.089*
H9C0.06860.65360.17820.089*
C100.4365 (8)0.7799 (4)0.1826 (4)0.0856 (14)
H10A0.32320.76390.26110.103*
H10B0.41690.86490.11720.103*
H10C0.58280.77880.20370.103*
C110.5872 (7)0.6969 (4)0.0018 (4)0.0759 (12)
H11A0.73600.69510.01970.091*
H11B0.56600.78210.06280.091*
H11C0.56840.62900.03180.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1133 (4)0.0498 (3)0.0888 (4)0.0078 (2)0.0360 (3)0.0269 (2)
S10.0570 (6)0.0369 (5)0.0389 (5)0.0063 (4)0.0065 (4)0.0130 (4)
O10.0597 (15)0.0513 (14)0.0543 (15)0.0087 (12)0.0183 (13)0.0177 (12)
O20.0759 (16)0.0479 (14)0.0402 (14)0.0118 (12)0.0055 (13)0.0145 (11)
O30.0650 (16)0.0606 (16)0.0540 (16)0.0187 (14)0.0034 (13)0.0213 (13)
N10.0600 (17)0.0323 (14)0.0429 (17)0.0063 (13)0.0063 (14)0.0169 (13)
C10.0397 (18)0.0325 (17)0.0390 (18)0.0038 (14)0.0030 (15)0.0084 (14)
C20.051 (2)0.0410 (19)0.051 (2)0.0136 (16)0.0139 (17)0.0153 (16)
C30.065 (2)0.0285 (17)0.054 (2)0.0035 (16)0.0028 (19)0.0118 (16)
C40.060 (2)0.0319 (17)0.052 (2)0.0014 (16)0.0134 (19)0.0121 (16)
C50.0446 (19)0.042 (2)0.059 (2)0.0033 (16)0.0081 (17)0.0081 (17)
C60.048 (2)0.0362 (18)0.065 (2)0.0086 (16)0.0116 (19)0.0167 (17)
C70.045 (2)0.049 (2)0.0371 (19)0.0025 (17)0.0069 (16)0.0188 (16)
C80.048 (2)0.0432 (19)0.0356 (19)0.0061 (15)0.0020 (16)0.0076 (15)
C90.063 (3)0.076 (3)0.065 (3)0.001 (2)0.021 (2)0.002 (2)
C100.144 (4)0.041 (2)0.070 (3)0.005 (2)0.029 (3)0.016 (2)
C110.071 (3)0.077 (3)0.057 (3)0.001 (2)0.001 (2)0.006 (2)
Geometric parameters (Å, º) top
Br1—C41.891 (3)C5—H50.9300
S1—O11.420 (2)C6—H60.9300
S1—O21.430 (2)C7—C81.524 (5)
S1—N11.636 (3)C8—C111.514 (5)
S1—C11.760 (3)C8—C101.517 (5)
O3—C71.208 (4)C8—C91.535 (5)
N1—C71.394 (4)C9—H9A0.9600
N1—H1N0.8600C9—H9B0.9600
C1—C61.380 (4)C9—H9C0.9600
C1—C21.392 (4)C10—H10A0.9600
C2—C31.378 (4)C10—H10B0.9600
C2—H20.9300C10—H10C0.9600
C3—C41.380 (5)C11—H11A0.9600
C3—H30.9300C11—H11B0.9600
C4—C51.369 (4)C11—H11C0.9600
C5—C61.381 (4)
O1—S1—O2118.80 (15)O3—C7—N1120.2 (3)
O1—S1—N1111.33 (14)O3—C7—C8124.0 (3)
O2—S1—N1103.71 (14)N1—C7—C8115.7 (3)
O1—S1—C1108.67 (15)C11—C8—C10110.9 (3)
O2—S1—C1109.40 (15)C11—C8—C7109.5 (3)
N1—S1—C1103.87 (14)C10—C8—C7110.3 (3)
C7—N1—S1123.8 (2)C11—C8—C9108.6 (3)
C7—N1—H1N118.1C10—C8—C9110.0 (3)
S1—N1—H1N118.1C7—C8—C9107.6 (3)
C6—C1—C2120.7 (3)C8—C9—H9A109.5
C6—C1—S1119.2 (2)C8—C9—H9B109.5
C2—C1—S1120.1 (2)H9A—C9—H9B109.5
C3—C2—C1119.4 (3)C8—C9—H9C109.5
C3—C2—H2120.3H9A—C9—H9C109.5
C1—C2—H2120.3H9B—C9—H9C109.5
C2—C3—C4119.1 (3)C8—C10—H10A109.5
C2—C3—H3120.5C8—C10—H10B109.5
C4—C3—H3120.5H10A—C10—H10B109.5
C5—C4—C3122.0 (3)C8—C10—H10C109.5
C5—C4—Br1118.6 (3)H10A—C10—H10C109.5
C3—C4—Br1119.5 (2)H10B—C10—H10C109.5
C4—C5—C6119.2 (3)C8—C11—H11A109.5
C4—C5—H5120.4C8—C11—H11B109.5
C6—C5—H5120.4H11A—C11—H11B109.5
C1—C6—C5119.7 (3)C8—C11—H11C109.5
C1—C6—H6120.1H11A—C11—H11C109.5
C5—C6—H6120.1H11B—C11—H11C109.5
O1—S1—N1—C755.9 (3)C3—C4—C5—C60.3 (5)
O2—S1—N1—C7175.2 (2)Br1—C4—C5—C6179.6 (3)
C1—S1—N1—C760.9 (3)C2—C1—C6—C50.1 (5)
O1—S1—C1—C6170.6 (3)S1—C1—C6—C5179.0 (3)
O2—S1—C1—C658.2 (3)C4—C5—C6—C10.2 (5)
N1—S1—C1—C652.0 (3)S1—N1—C7—O37.6 (4)
O1—S1—C1—C210.5 (3)S1—N1—C7—C8169.3 (2)
O2—S1—C1—C2120.7 (3)O3—C7—C8—C116.7 (4)
N1—S1—C1—C2129.1 (3)N1—C7—C8—C11176.5 (3)
C6—C1—C2—C30.1 (5)O3—C7—C8—C10129.0 (4)
S1—C1—C2—C3179.0 (3)N1—C7—C8—C1054.2 (4)
C1—C2—C3—C40.2 (5)O3—C7—C8—C9111.0 (4)
C2—C3—C4—C50.3 (5)N1—C7—C8—C965.7 (4)
C2—C3—C4—Br1179.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.232.982 (3)146
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H14BrNO3S
Mr320.20
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)6.066 (1), 10.858 (1), 11.092 (2)
α, β, γ (°)68.19 (1), 78.66 (2), 88.10 (2)
V3)664.40 (17)
Z2
Radiation typeMo Kα
µ (mm1)3.25
Crystal size (mm)0.20 × 0.08 × 0.04
Data collection
DiffractometerOxford Xcalibur
diffractometer with Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007) (Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm)
Tmin, Tmax0.563, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
6843, 2692, 1551
Rint0.033
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.101, 0.97
No. of reflections2692
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.29

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction , 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.232.982 (3)146.2
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008). Acta Cryst. E64, o1279.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656–660.  CAS Google Scholar
First citationGowda, B. T., Svoboda, I., Paulus, H. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 331–337.  CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds