organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Diazo­niabi­cyclo­[2.2.2]octane bis­­(2-chloro­benzoate)

aDepartment of Physics and Chemistry, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
*Correspondence e-mail: adb@chem.sdu.dk

(Received 25 June 2008; accepted 1 July 2008; online 5 July 2008)

The title compound, C6H14N22+·2C7H4ClO2, contains trimeric units linked by N—H⋯O hydrogen bonds. The carboxyl­ate groups of the 2-chloro­benzoate anions form dihedral angles of 66.1 (1) and 76.1 (1)° with the respective chloro­benzene rings to which they are bound. The hydrogen-bonded trimers are arranged in layers in the (200) planes and the chloro­benzoate anions form edge-to-face inter­actions between layers, with dihedral angles of 61.9 (1) and 49.8 (1)° and centroid–centroid distances of 4.85 (1) and 4.65 (1) Å, respectively, for two crystallographically distinct inter­actions.

Related literature

For other co-crystals of 1,4-diazo­niabicyclo­[2.2.2]octane and carboxylic acids, see: Meehan et al. (1997[Meehan, P. R., Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1997). Acta Cryst. C53, 628-631.]); Burchell et al. (2000[Burchell, C. J., Ferguson, G., Lough, A. J. & Glidewell, C. (2000). Acta Cryst. C56, 1126-1128.]); Burchell, Glidewell et al. (2001[Burchell, C. J., Glidewell, C., Lough, A. J. & Ferguson, G. (2001). Acta Cryst. B57, 201-212.]); Burchell, Ferguson et al. (2001[Burchell, C. J., Ferguson, G., Lough, A. J., Gregson, R. M. & Glidewell, C. (2001). Acta Cryst. B57, 329-338.]). For the crystal structure of 2-chloro­benzoic acid, see: Ferguson & Sim (1961[Ferguson, G. & Sim, G. A. (1961). Acta Cryst. 14, 1262-1270.]).

[Scheme 1]

Experimental

Crystal data
  • C6H14N22+·2C7H4ClO2

  • Mr = 425.30

  • Orthorhombic, P c a 21

  • a = 19.7694 (12) Å

  • b = 11.3986 (6) Å

  • c = 8.9751 (5) Å

  • V = 2022.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker–Nonius X8 APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.844, Tmax = 0.966

  • 21779 measured reflections

  • 3538 independent reflections

  • 3251 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.090

  • S = 1.06

  • 3538 reflections

  • 253 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1629 Friedel pairs

  • Flack parameter: −0.02 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.91 1.65 2.556 (2) 170
N2—H2A⋯O3 0.91 1.69 2.587 (2) 169

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (C6H14N2)(C7H4ClO2)2, was obtained by co-crystallization of diazabicylo[2.2.2]octane and 2-chlorobenzoic acid in methanol solution. The crystal structure of 2-chlorobenzoic acid (Ferguson & Sim, 1961) contains dimers formed by hydrogen bonds between the carboxyl groups. The purpose of the co-crystallization was to insert DABCO into the hydrogen-bonded dimer, to examine the influence on the intermolecular interactions between the 2-chlorobenzoic acid molecules.

The co-crystal contains the anticipated trimeric hydrogen-bond motif, with the trimers lying in layers parallel to the bc planes (Figs. 2 & 3). The Cl-substituents of the chlorobenzoate anions point into the centres of the layers, and the interlayer interactions comprise edge-to-face interactions involving H4A and H5A and their counterparts H11A and H12A, with dihedral angles 61.9 (1) and 49.8 (1)° and centroid-centroid distances 4.85 (1) and 4.65 (1) Å, for the two interactions respectively. The interactions are significantly different from the interlayer interactions in 2-chlorobenzoic acid itself, where adjacent rings form a dihedral angle of 49.3 (1)°, but the Cl-substituent points towards the adjacent ring centroid.

Related literature top

For other co-crystals of DABCO and carboxylic acids, see: Meehan et al. (1997); Burchell et al. (2000); Burchell, Glidewell et al. (2001); Burchell, Ferguson et al. (2001). For the crystal structure of 2-chlorobenzoic acid, see: Ferguson & Sim (1961).

Experimental top

Separate saturated solutions of 2-chlorobenzoic acid (0.391 g, 0.0025 mmol) and diazabicyclo[2.2.2]octane (0.135 g, 0.0012 mmol) in warm methanol were combined and refluxed with stirring for 1 h. The solution was cooled slowly, giving colourless crystals of the title compound after ca 1 h.

Refinement top

H atoms bound to C atoms were placed geometrically and allowed to ride during refinement with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C). The H atoms bound to N1 and N2 were visible in a difference Fourier map, but were placed geometrically (N—H = 0.91 Å) and allowed to ride with Uiso(H) = 1.2Ueq(N). The assignment as a salt is consistent with expectations from pKa values.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing displacement ellipsoids at the 50% probability level for non-H atoms. The dashed lines denote N+—H···O- hydrogen bonds.
[Figure 2] Fig. 2. View along the c axis, showing the layered arrangement of hydrogen-bonded trimers. The light blue lines denote N+—H···O- hydrogen bonds.
[Figure 3] Fig. 3. View along the b axis. The light blue lines denote N+—H···O- hydrogen bonds.
1,4-Diazoniabicyclo[2.2.2]octane bis(2-chlorobenzoate) top
Crystal data top
C6H14N22+·2C7H4ClO2F(000) = 888
Mr = 425.30Dx = 1.397 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 9140 reflections
a = 19.7694 (12) Åθ = 3.1–24.3°
b = 11.3986 (6) ŵ = 0.35 mm1
c = 8.9751 (5) ÅT = 298 K
V = 2022.5 (2) Å3Block, colourless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Bruker–Nonius X8 APEXII CCD
diffractometer
3538 independent reflections
Radiation source: fine-focus sealed tube3251 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Thin–slice ω and ϕ scansθmax = 25.0°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2323
Tmin = 0.844, Tmax = 0.966k = 1312
21779 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.354P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3538 reflectionsΔρmax = 0.26 e Å3
253 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: Flack (1983), 1629 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (5)
Crystal data top
C6H14N22+·2C7H4ClO2V = 2022.5 (2) Å3
Mr = 425.30Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 19.7694 (12) ŵ = 0.35 mm1
b = 11.3986 (6) ÅT = 298 K
c = 8.9751 (5) Å0.30 × 0.20 × 0.10 mm
Data collection top
Bruker–Nonius X8 APEXII CCD
diffractometer
3538 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3251 reflections with I > 2σ(I)
Tmin = 0.844, Tmax = 0.966Rint = 0.023
21779 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.090Δρmax = 0.26 e Å3
S = 1.07Δρmin = 0.19 e Å3
3538 reflectionsAbsolute structure: Flack (1983), 1629 Friedel pairs
253 parametersAbsolute structure parameter: 0.02 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.58385 (3)1.34004 (5)0.57363 (7)0.05244 (17)
Cl20.41713 (4)0.14065 (6)0.64801 (8)0.0658 (2)
O10.58704 (9)1.03874 (14)0.7359 (2)0.0556 (5)
O20.61776 (12)1.05458 (17)0.5009 (2)0.0716 (6)
O30.43357 (9)0.45727 (15)0.4822 (2)0.0542 (4)
O40.40470 (10)0.42055 (18)0.7161 (2)0.0653 (5)
N10.53241 (8)0.84726 (14)0.6495 (2)0.0351 (4)
H1A0.54740.91920.67830.042*
N20.49115 (9)0.64905 (14)0.5697 (2)0.0383 (4)
H2A0.47600.57710.54100.046*
C10.67102 (10)1.17744 (18)0.6779 (2)0.0357 (4)
C20.66021 (10)1.29512 (17)0.6508 (2)0.0353 (4)
C30.70790 (11)1.3795 (2)0.6867 (3)0.0459 (5)
H3A0.69961.45820.66660.055*
C40.76781 (12)1.3457 (2)0.7524 (3)0.0574 (7)
H4A0.80031.40190.77560.069*
C50.77993 (13)1.2290 (3)0.7838 (3)0.0590 (7)
H5A0.82001.20610.82990.071*
C60.73135 (12)1.1464 (2)0.7456 (3)0.0503 (6)
H6A0.73961.06770.76620.060*
C70.62150 (12)1.08377 (18)0.6306 (3)0.0402 (5)
C80.34750 (10)0.31988 (18)0.5241 (2)0.0349 (4)
C90.34941 (10)0.20060 (18)0.5500 (2)0.0389 (5)
C100.30020 (12)0.1256 (2)0.4960 (3)0.0506 (6)
H10A0.30330.04530.51320.061*
C110.24651 (13)0.1707 (2)0.4167 (3)0.0581 (7)
H11A0.21300.12090.38080.070*
C120.24255 (13)0.2890 (3)0.3909 (3)0.0582 (6)
H12A0.20610.31970.33810.070*
C130.29285 (12)0.3629 (2)0.4434 (3)0.0480 (6)
H13A0.29000.44290.42430.058*
C140.39949 (10)0.40479 (18)0.5813 (3)0.0390 (5)
C150.49080 (17)0.8594 (2)0.5144 (3)0.0643 (7)
H15A0.51580.90180.43870.077*
H15B0.45010.90330.53720.077*
C160.47206 (16)0.7375 (2)0.4566 (3)0.0635 (8)
H16A0.42380.73350.43750.076*
H16B0.49570.72190.36400.076*
C170.49289 (16)0.7947 (2)0.7703 (3)0.0612 (7)
H17A0.45710.84790.80030.073*
H17B0.52180.78070.85570.073*
C180.46232 (14)0.6791 (2)0.7171 (3)0.0584 (7)
H18A0.47240.61730.78810.070*
H18B0.41360.68650.70950.070*
C190.59035 (12)0.7722 (2)0.6143 (4)0.0605 (7)
H19A0.62170.77170.69740.073*
H19B0.61390.80280.52780.073*
C200.56618 (12)0.6470 (2)0.5826 (4)0.0594 (7)
H20A0.58610.61850.49060.071*
H20B0.57980.59510.66280.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0553 (3)0.0404 (3)0.0615 (4)0.0067 (2)0.0201 (3)0.0033 (3)
Cl20.0831 (5)0.0419 (3)0.0725 (5)0.0129 (3)0.0271 (4)0.0006 (3)
O10.0751 (11)0.0435 (10)0.0480 (10)0.0240 (8)0.0158 (8)0.0078 (8)
O20.1056 (15)0.0635 (12)0.0456 (10)0.0416 (11)0.0024 (10)0.0066 (9)
O30.0660 (10)0.0450 (10)0.0518 (10)0.0245 (8)0.0108 (8)0.0083 (8)
O40.0916 (14)0.0583 (12)0.0459 (10)0.0319 (10)0.0071 (10)0.0053 (9)
N10.0452 (10)0.0237 (9)0.0365 (9)0.0071 (6)0.0028 (8)0.0031 (8)
N20.0507 (10)0.0275 (9)0.0367 (9)0.0115 (7)0.0034 (9)0.0037 (8)
C10.0422 (11)0.0312 (10)0.0339 (10)0.0038 (8)0.0013 (8)0.0011 (9)
C20.0407 (11)0.0314 (11)0.0339 (10)0.0006 (8)0.0050 (9)0.0029 (9)
C30.0535 (13)0.0293 (11)0.0548 (14)0.0077 (9)0.0042 (11)0.0029 (10)
C40.0486 (14)0.0515 (16)0.0722 (18)0.0153 (11)0.0054 (13)0.0106 (13)
C50.0471 (13)0.0652 (18)0.0646 (16)0.0005 (12)0.0138 (12)0.0029 (14)
C60.0558 (14)0.0389 (13)0.0563 (15)0.0030 (10)0.0084 (12)0.0079 (11)
C70.0549 (12)0.0247 (11)0.0410 (12)0.0012 (9)0.0017 (10)0.0003 (9)
C80.0369 (10)0.0334 (11)0.0344 (10)0.0019 (8)0.0037 (8)0.0010 (9)
C90.0423 (11)0.0347 (11)0.0397 (12)0.0015 (9)0.0020 (9)0.0046 (10)
C100.0596 (15)0.0373 (12)0.0549 (14)0.0141 (11)0.0100 (12)0.0085 (11)
C110.0412 (12)0.0677 (17)0.0655 (16)0.0144 (14)0.0008 (12)0.0238 (14)
C120.0422 (12)0.0730 (18)0.0593 (14)0.0050 (14)0.0099 (11)0.0093 (15)
C130.0540 (13)0.0431 (14)0.0468 (13)0.0025 (11)0.0040 (11)0.0005 (10)
C140.0458 (11)0.0274 (11)0.0438 (12)0.0015 (9)0.0034 (11)0.0028 (10)
C150.101 (2)0.0358 (14)0.0562 (15)0.0020 (14)0.0241 (15)0.0025 (12)
C160.091 (2)0.0486 (16)0.0506 (13)0.0154 (14)0.0283 (14)0.0028 (12)
C170.0835 (18)0.0515 (15)0.0488 (13)0.0258 (14)0.0192 (13)0.0146 (12)
C180.0752 (18)0.0469 (15)0.0530 (14)0.0230 (13)0.0240 (13)0.0150 (12)
C190.0451 (13)0.0421 (14)0.094 (2)0.0066 (10)0.0046 (12)0.0102 (14)
C200.0556 (14)0.0427 (14)0.0798 (17)0.0033 (11)0.0064 (15)0.0115 (14)
Geometric parameters (Å, º) top
Cl1—C21.738 (2)C8—C131.390 (3)
Cl2—C91.742 (2)C8—C141.502 (3)
O1—C71.273 (3)C9—C101.383 (3)
O2—C71.213 (3)C10—C111.378 (4)
O3—C141.266 (3)C10—H10A0.930
O4—C141.228 (3)C11—C121.370 (4)
N1—C171.464 (3)C11—H11A0.930
N1—C191.465 (3)C12—C131.386 (4)
N1—C151.472 (3)C12—H12A0.930
N1—H1A0.910C13—H13A0.930
N2—C161.480 (3)C15—C161.529 (4)
N2—C181.480 (3)C15—H15A0.970
N2—C201.488 (3)C15—H15B0.970
N2—H2A0.910C16—H16A0.970
C1—C21.380 (3)C16—H16B0.970
C1—C61.385 (3)C17—C181.526 (3)
C1—C71.509 (3)C17—H17A0.970
C2—C31.385 (3)C17—H17B0.970
C3—C41.378 (4)C18—H18A0.970
C3—H3A0.930C18—H18B0.970
C4—C51.381 (4)C19—C201.531 (3)
C4—H4A0.930C19—H19A0.970
C5—C61.388 (4)C19—H19B0.970
C5—H5A0.930C20—H20A0.970
C6—H6A0.930C20—H20B0.970
C8—C91.380 (3)
C17—N1—C19109.7 (2)C11—C12—C13119.9 (2)
C17—N1—C15110.5 (2)C11—C12—H12A120.0
C19—N1—C15108.3 (2)C13—C12—H12A120.0
C17—N1—H1A109.4C12—C13—C8121.4 (2)
C19—N1—H1A109.4C12—C13—H13A119.3
C15—N1—H1A109.4C8—C13—H13A119.3
C16—N2—C18110.9 (2)O4—C14—O3125.4 (2)
C16—N2—C20108.5 (2)O4—C14—C8119.2 (2)
C18—N2—C20108.6 (2)O3—C14—C8115.4 (2)
C16—N2—H2A109.6N1—C15—C16109.28 (19)
C18—N2—H2A109.6N1—C15—H15A109.8
C20—N2—H2A109.6C16—C15—H15A109.8
C2—C1—C6117.32 (19)N1—C15—H15B109.8
C2—C1—C7122.53 (19)C16—C15—H15B109.8
C6—C1—C7120.10 (19)H15A—C15—H15B108.3
C1—C2—C3121.9 (2)N2—C16—C15108.9 (2)
C1—C2—Cl1119.41 (15)N2—C16—H16A109.9
C3—C2—Cl1118.65 (16)C15—C16—H16A109.9
C4—C3—C2119.4 (2)N2—C16—H16B109.9
C4—C3—H3A120.3C15—C16—H16B109.9
C2—C3—H3A120.3H16A—C16—H16B108.3
C3—C4—C5120.4 (2)N1—C17—C18109.5 (2)
C3—C4—H4A119.8N1—C17—H17A109.8
C5—C4—H4A119.8C18—C17—H17A109.8
C4—C5—C6118.9 (2)N1—C17—H17B109.8
C4—C5—H5A120.6C18—C17—H17B109.8
C6—C5—H5A120.6H17A—C17—H17B108.2
C1—C6—C5122.1 (2)N2—C18—C17109.06 (19)
C1—C6—H6A119.0N2—C18—H18A109.9
C5—C6—H6A119.0C17—C18—H18A109.9
O2—C7—O1124.7 (2)N2—C18—H18B109.9
O2—C7—C1120.2 (2)C17—C18—H18B109.9
O1—C7—C1115.07 (19)H18A—C18—H18B108.3
C9—C8—C13117.1 (2)N1—C19—C20109.92 (18)
C9—C8—C14123.97 (19)N1—C19—H19A109.7
C13—C8—C14118.9 (2)C20—C19—H19A109.7
C8—C9—C10122.1 (2)N1—C19—H19B109.7
C8—C9—Cl2119.51 (16)C20—C19—H19B109.7
C10—C9—Cl2118.36 (18)H19A—C19—H19B108.2
C11—C10—C9119.5 (2)N2—C20—C19108.11 (18)
C11—C10—H10A120.3N2—C20—H20A110.1
C9—C10—H10A120.3C19—C20—H20A110.1
C12—C11—C10119.9 (2)N2—C20—H20B110.1
C12—C11—H11A120.0C19—C20—H20B110.1
C10—C11—H11A120.0H20A—C20—H20B108.4
C6—C1—C2—C31.3 (3)C11—C12—C13—C80.7 (4)
C7—C1—C2—C3176.0 (2)C9—C8—C13—C120.2 (3)
C6—C1—C2—Cl1177.17 (17)C14—C8—C13—C12178.5 (2)
C7—C1—C2—Cl15.6 (3)C9—C8—C14—O465.8 (3)
C1—C2—C3—C40.5 (3)C13—C8—C14—O4112.4 (3)
Cl1—C2—C3—C4177.9 (2)C9—C8—C14—O3116.1 (2)
C2—C3—C4—C50.8 (4)C13—C8—C14—O365.7 (3)
C3—C4—C5—C61.2 (4)C17—N1—C15—C1665.6 (3)
C2—C1—C6—C50.8 (4)C19—N1—C15—C1654.6 (3)
C7—C1—C6—C5176.6 (2)C18—N2—C16—C1552.6 (3)
C4—C5—C6—C10.4 (4)C20—N2—C16—C1566.6 (3)
C2—C1—C7—O275.5 (3)N1—C15—C16—N210.2 (3)
C6—C1—C7—O2101.7 (3)C19—N1—C17—C1865.0 (3)
C2—C1—C7—O1106.1 (2)C15—N1—C17—C1854.4 (3)
C6—C1—C7—O176.7 (3)C16—N2—C18—C1763.8 (3)
C13—C8—C9—C101.3 (3)C20—N2—C18—C1755.4 (3)
C14—C8—C9—C10179.6 (2)N1—C17—C18—N28.7 (3)
C13—C8—C9—Cl2179.07 (17)C17—N1—C19—C2053.6 (3)
C14—C8—C9—Cl22.7 (3)C15—N1—C19—C2067.1 (3)
C8—C9—C10—C111.5 (4)C16—N2—C20—C1954.3 (3)
Cl2—C9—C10—C11179.29 (19)C18—N2—C20—C1966.4 (3)
C9—C10—C11—C120.5 (4)N1—C19—C20—N210.7 (3)
C10—C11—C12—C130.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.911.652.556 (2)170
N2—H2A···O30.911.692.587 (2)169

Experimental details

Crystal data
Chemical formulaC6H14N22+·2C7H4ClO2
Mr425.30
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)298
a, b, c (Å)19.7694 (12), 11.3986 (6), 8.9751 (5)
V3)2022.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker–Nonius X8 APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.844, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
21779, 3538, 3251
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.090, 1.07
No. of reflections3538
No. of parameters253
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.19
Absolute structureFlack (1983), 1629 Friedel pairs
Absolute structure parameter0.02 (5)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.911.652.556 (2)170.4
N2—H2A···O30.911.692.587 (2)168.9
 

Acknowledgements

We are grateful to the Danish Natural Science Research Council and the Carlsberg Foundation for provision of the X-ray equipment.

References

First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationBurchell, C. J., Ferguson, G., Lough, A. J. & Glidewell, C. (2000). Acta Cryst. C56, 1126–1128.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBurchell, C. J., Ferguson, G., Lough, A. J., Gregson, R. M. & Glidewell, C. (2001). Acta Cryst. B57, 329–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBurchell, C. J., Glidewell, C., Lough, A. J. & Ferguson, G. (2001). Acta Cryst. B57, 201–212.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. & Sim, G. A. (1961). Acta Cryst. 14, 1262–1270.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMeehan, P. R., Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1997). Acta Cryst. C53, 628–631.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds