organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-(2,6-di­chloro­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 27 June 2008; accepted 8 July 2008; online 16 July 2008)

In the structure of the title compound (N26DCP2CBA), C13H8Cl3NO, the conformations of N—H and C=O bonds in the amide group are trans to each other, similar to that observed in N-(2,6-dichloro­phen­yl)benzamide, 2-chloro-N-phenyl­benzamide, 2-chloro-N-(2-chloro­phen­yl)benzamide and 2-chloro-N-(2,3-dichloro­phen­yl)benzamide with similar bond parameters. Furthermore, the position of the amide O atom is syn to the ortho-chloro group in the benzoyl ring. The amide group makes a dihedral angle of 59.8 (1)° with the benzoyl ring, while the benzoyl and aniline rings make a dihedral angle of 8.1 (2)°. The mol­ecules are linked by N—H⋯O hydrogen bonds into infinite chains running along the b axis.

Related literature

For related literature, see Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.], 2007[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2007). Acta Cryst. E63, o3789.], 2008a[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o1342.],b[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o540.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8Cl3NO

  • Mr = 300.55

  • Orthorhombic, P c a 21

  • a = 21.3949 (4) Å

  • b = 4.8159 (1) Å

  • c = 12.5036 (3) Å

  • V = 1288.32 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 295 (2) K

  • 0.42 × 0.16 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur System diffractometer

  • Absorption correction: analytical [CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.] (based on Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.802, Tmax = 0.951

  • 26609 measured reflections

  • 1306 independent reflections

  • 1216 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.073

  • S = 1.08

  • 1306 reflections

  • 163 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1167 Friedel pairs

  • Flack parameter: 0.14 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.02 2.840 (3) 158
Symmetry code: (i) x, y+1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the present work, the structure of 2-chloro-N-(2,6-dichlorophenyl)- benzamide (N26DCP2CBA) has been determined to explore the effect of substituents on the structures of benzanilides (Gowda et al., 2003; 2007; 2008a,b). The N—H and CO bonds in the amide group of N26DCP2CBA are trans to each other (Fig.1), similar to that observed in N-(2,6-dichlorophenyl)benzamide (Gowda et al., 2008b), 2-chloro-N-(phenyl)-benzamide (NP2CBA)(Gowda et al., 2003), 2-chloro-N-(2-chlorophenyl)-benzamide (Gowda et al., 2007), 2-chloro-N-(2,3-dichlorophenyl)benzamide (Gowda et al., 2008a), 2-chloro-N-(3,5-dichlorophenyl)-benzamide (N35DCP2CBA) (Gowda et al., 2008a) and other benzanilides. Further, the conformation of the amide oxygen in N26DCP2CBA is syn to the ortho-chloro group in the benzoyl ring, similar to that observed in NP2CBA. The amide group –NHCO– makes dihedral angle of 59.8 (1)° with the benzoyl ring, while the benzoyl and aniline rings make dihedral angle of 8.1 (2)°), compared to the corresponding dihedral angles of 63.1 (12)° and 32.1 (2)°) observed in N35DCP2CBA.

Part of the crystal structure of N26DCP2CBA with infinite molecular chains running along the b axis of the crystal is shown in Fig. 2. The chains are generated by N—H···O(i) hydrogen bonds (Table 1). Symmetry operation (i):x,y + 1,z.

Related literature top

For related literature, see Gowda et al. (2003, 2007, 2008a,b)..

Experimental top

The title compound was prepared according to the method of Gowda et al., (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of an ethanolic solution at room temperature.

Refinement top

All H atoms were placed in calculated positions and subsequently treated as riding with C–H distance of 0.93Å and N–H distance of 0.86 Å. The Uiso(H) values were set at 1.2 Ueq(C,N).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound with infinite molecular chains running along the b axis of the crystal. The chains are generated by N—H···O(i) hydrogen bonds. Symmetry operation (i):x,y + 1,z.
2-Chloro-N-(2,6-dichlorophenyl)benzamide top
Crystal data top
C13H8Cl3NOF(000) = 608
Mr = 300.55Dx = 1.55 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 13276 reflections
a = 21.3949 (4) Åθ = 3.3–29.5°
b = 4.8159 (1) ŵ = 0.70 mm1
c = 12.5036 (3) ÅT = 295 K
V = 1288.32 (5) Å3Rod, colourless
Z = 40.42 × 0.16 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur System
diffractometer
1306 independent reflections
Graphite monochromator1216 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.030
ω scans with κ offsetsθmax = 26.0°, θmin = 5.3°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007)
h = 2626
Tmin = 0.802, Tmax = 0.951k = 55
26609 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.044P)2 + 0.2234P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1306 reflectionsΔρmax = 0.21 e Å3
163 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), 1167 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.14 (8)
Crystal data top
C13H8Cl3NOV = 1288.32 (5) Å3
Mr = 300.55Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 21.3949 (4) ŵ = 0.70 mm1
b = 4.8159 (1) ÅT = 295 K
c = 12.5036 (3) Å0.42 × 0.16 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur System
diffractometer
1306 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007)
1216 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 0.951Rint = 0.030
26609 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.073Δρmax = 0.21 e Å3
S = 1.08Δρmin = 0.21 e Å3
1306 reflectionsAbsolute structure: Flack (1983), 1167 Friedel pairs
163 parametersAbsolute structure parameter: 0.14 (8)
1 restraint
Special details top

Experimental. CrysAlis RED, Oxford Diffraction (2007). Analytical absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.36930 (11)0.1547 (5)0.4253 (2)0.0334 (5)
C20.42847 (11)0.2602 (5)0.4746 (2)0.0357 (6)
C30.48616 (13)0.1593 (6)0.4430 (3)0.0429 (7)
C40.54063 (13)0.2457 (7)0.4927 (3)0.0579 (9)
H40.57910.17560.47090.069*
C50.53744 (18)0.4341 (8)0.5737 (4)0.0687 (12)
H50.57390.49150.60750.082*
C60.48090 (19)0.5403 (8)0.6060 (3)0.0634 (11)
H60.47920.66950.66120.076*
C70.42636 (16)0.4543 (6)0.5560 (3)0.0481 (8)
H70.38810.52750.57750.058*
C80.27485 (10)0.2660 (5)0.3315 (2)0.0334 (5)
C90.27249 (14)0.1003 (6)0.2411 (3)0.0470 (7)
C100.21674 (15)0.0145 (9)0.1969 (3)0.0609 (10)
H100.21640.09820.13650.073*
C110.16185 (15)0.0976 (7)0.2434 (3)0.0592 (9)
H110.1240.03880.21440.071*
C120.16174 (12)0.2649 (7)0.3313 (3)0.0491 (7)
H120.12420.3220.36180.059*
C130.21824 (12)0.3488 (6)0.3745 (3)0.0389 (6)
N10.33226 (9)0.3444 (4)0.37870 (19)0.0337 (5)
H1N0.34360.51570.37750.04*
O10.35555 (10)0.0906 (4)0.4302 (2)0.0510 (6)
Cl10.49200 (4)0.07634 (17)0.33767 (8)0.0588 (2)
Cl20.34152 (4)0.0008 (2)0.17928 (9)0.0734 (3)
Cl30.21723 (4)0.5602 (2)0.48512 (8)0.0670 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0284 (12)0.0289 (12)0.0429 (14)0.0002 (10)0.0006 (11)0.0002 (11)
C20.0316 (12)0.0281 (12)0.0473 (15)0.0025 (10)0.0049 (12)0.0079 (11)
C30.0363 (14)0.0375 (15)0.0547 (18)0.0027 (11)0.0038 (13)0.0107 (13)
C40.0299 (14)0.0577 (19)0.086 (2)0.0036 (13)0.0126 (16)0.018 (2)
C50.051 (2)0.060 (2)0.095 (3)0.0124 (17)0.039 (2)0.010 (2)
C60.073 (2)0.051 (2)0.067 (3)0.0040 (18)0.032 (2)0.0082 (17)
C70.0501 (18)0.0384 (15)0.0558 (19)0.0023 (13)0.0142 (15)0.0031 (14)
C80.0289 (11)0.0280 (11)0.0435 (14)0.0012 (9)0.0038 (11)0.0033 (12)
C90.0329 (14)0.0548 (17)0.0532 (18)0.0029 (12)0.0013 (12)0.0146 (15)
C100.0459 (18)0.073 (2)0.064 (2)0.0028 (15)0.0125 (17)0.0282 (19)
C110.0336 (16)0.067 (2)0.077 (2)0.0063 (14)0.0159 (15)0.0159 (19)
C120.0267 (12)0.0532 (17)0.068 (2)0.0012 (12)0.0004 (14)0.0072 (18)
C130.0347 (13)0.0348 (14)0.0471 (16)0.0002 (10)0.0009 (11)0.0076 (12)
N10.0284 (10)0.0227 (9)0.0498 (13)0.0009 (8)0.0055 (9)0.0042 (9)
O10.0432 (11)0.0228 (9)0.0870 (17)0.0051 (8)0.0100 (11)0.0027 (10)
Cl10.0449 (4)0.0632 (5)0.0683 (5)0.0093 (3)0.0088 (4)0.0048 (4)
Cl20.0437 (4)0.1065 (7)0.0700 (6)0.0068 (4)0.0051 (4)0.0439 (5)
Cl30.0447 (4)0.0801 (6)0.0762 (6)0.0001 (4)0.0058 (4)0.0413 (5)
Geometric parameters (Å, º) top
C1—O11.219 (3)C8—C131.384 (4)
C1—N11.343 (3)C8—C91.385 (4)
C1—C21.497 (3)C8—N11.414 (3)
C2—C71.383 (4)C9—C101.378 (4)
C2—C31.384 (4)C9—Cl21.734 (3)
C3—C41.385 (4)C10—C111.370 (5)
C3—Cl11.743 (4)C10—H100.93
C4—C51.361 (6)C11—C121.363 (5)
C4—H40.93C11—H110.93
C5—C61.374 (6)C12—C131.384 (4)
C5—H50.93C12—H120.93
C6—C71.387 (5)C13—Cl31.717 (3)
C6—H60.93N1—H1N0.86
C7—H70.93
O1—C1—N1122.6 (2)C13—C8—C9116.8 (2)
O1—C1—C2120.9 (2)C13—C8—N1121.4 (3)
N1—C1—C2116.5 (2)C9—C8—N1121.7 (2)
C7—C2—C3118.5 (3)C10—C9—C8122.1 (3)
C7—C2—C1120.3 (3)C10—C9—Cl2118.4 (3)
C3—C2—C1121.1 (3)C8—C9—Cl2119.5 (2)
C2—C3—C4121.1 (3)C11—C10—C9119.0 (3)
C2—C3—Cl1120.6 (2)C11—C10—H10120.5
C4—C3—Cl1118.3 (3)C9—C10—H10120.5
C5—C4—C3119.5 (3)C12—C11—C10121.1 (3)
C5—C4—H4120.3C12—C11—H11119.5
C3—C4—H4120.3C10—C11—H11119.5
C4—C5—C6120.7 (3)C11—C12—C13119.1 (3)
C4—C5—H5119.6C11—C12—H12120.5
C6—C5—H5119.6C13—C12—H12120.5
C5—C6—C7119.8 (3)C8—C13—C12121.9 (3)
C5—C6—H6120.1C8—C13—Cl3119.6 (2)
C7—C6—H6120.1C12—C13—Cl3118.5 (2)
C2—C7—C6120.4 (3)C1—N1—C8120.8 (2)
C2—C7—H7119.8C1—N1—H1N119.6
C6—C7—H7119.8C8—N1—H1N119.6
O1—C1—C2—C7118.3 (3)C13—C8—C9—Cl2177.2 (2)
N1—C1—C2—C760.1 (3)N1—C8—C9—Cl23.5 (4)
O1—C1—C2—C359.2 (4)C8—C9—C10—C110.6 (6)
N1—C1—C2—C3122.4 (3)Cl2—C9—C10—C11178.3 (3)
C7—C2—C3—C41.2 (4)C9—C10—C11—C120.7 (7)
C1—C2—C3—C4176.4 (3)C10—C11—C12—C130.7 (6)
C7—C2—C3—Cl1177.7 (2)C9—C8—C13—C121.7 (5)
C1—C2—C3—Cl14.7 (4)N1—C8—C13—C12177.6 (3)
C2—C3—C4—C50.3 (5)C9—C8—C13—Cl3178.7 (2)
Cl1—C3—C4—C5178.6 (3)N1—C8—C13—Cl32.0 (4)
C3—C4—C5—C60.4 (6)C11—C12—C13—C80.5 (5)
C4—C5—C6—C70.3 (6)C11—C12—C13—Cl3179.9 (3)
C3—C2—C7—C61.3 (4)O1—C1—N1—C80.5 (4)
C1—C2—C7—C6176.2 (3)C2—C1—N1—C8178.9 (3)
C5—C6—C7—C20.6 (5)C13—C8—N1—C1112.2 (3)
C13—C8—C9—C101.7 (5)C9—C8—N1—C167.0 (4)
N1—C8—C9—C10177.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.022.840 (3)158
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H8Cl3NO
Mr300.55
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)295
a, b, c (Å)21.3949 (4), 4.8159 (1), 12.5036 (3)
V3)1288.32 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.42 × 0.16 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur System
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.802, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
26609, 1306, 1216
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.08
No. of reflections1306
No. of parameters163
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.21
Absolute structureFlack (1983), 1167 Friedel pairs
Absolute structure parameter0.14 (8)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.022.840 (3)158.3
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (grant No. VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support in the purchase of the diffractometer.

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2007). Acta Cryst. E63, o3789.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o1342.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o540.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds