organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­chloro­phenyl 4-methyl­benzoate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 9 July 2008; accepted 16 July 2008; online 19 July 2008)

The structure of the title compound, C14H10Cl2O2, resembles those of 3-chloro­phenyl 4-methyl­benzoate, 2,6-dichloro­phenyl 4-methyl­benzoate and 2,4-dichloro­phenyl 4-methyl­benzoate, with similar bond parameters. The dihedral angle between the benzene and benzoyl rings is 48.81 (6)°.

Related literature

For related literature, see: Gowda et al. (2007[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o3877.], 2008a[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o843.],b[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1390.]); Nayak & Gowda (2008[Nayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10Cl2O2

  • Mr = 281.12

  • Monoclinic, P 21 /n

  • a = 3.9273 (6) Å

  • b = 28.412 (4) Å

  • c = 11.705 (1) Å

  • β = 94.06 (1)°

  • V = 1302.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 299 (2) K

  • 0.48 × 0.40 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]) Tmin = 0.800, Tmax = 0.962

  • 7613 measured reflections

  • 2621 independent reflections

  • 1755 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.139

  • S = 1.11

  • 2621 reflections

  • 184 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, as part of a study of the substituent effects on the structures of chemically and industrially significant compounds (Gowda et al., 2007, 2008a, b), the structure of 3,5-dichlorophenyl 4-methylbenzoate (35DCP4MeBA) has been determined. The structure of 35DCP4MeBA (Fig. 1) resembles those of 3-chlorophenyl 4-methylbenzoate (3CP4MeBA)(Gowda et al., 2008b), 2,6-dichlorophenyl 4-methylbenzoate (26DCP4MeBA)(Gowda et al., 2008a), 2,4-dichlorophenyl 4-methyl benzoate (24DCP4MeBA) and other aryl benzoates (Gowda et al., 2007). The bond parameters in 35DCP4MeBA are similar to those in 3CP4MeBA, 26DCP4MeBA, 24DCP4MeBA and other benzoates. The dihedral angle between the benzene and benzoyl rings in 35DCP4MeBA is 48.81 (6)°, compared to the values of 71.75 (7)° in 3CP4MeBA (Gowda et al., 2008b), 77.97 (9)° in 26DCP4MeBA (Gowda et al., 2008a) and 48.13 (5)° in 24DCP4MeBA) (Gowda et al., 2007). The molecular packing in the crystal structure of 35DCP4MeBA is shown in Fig. 2.

Related literature top

For related literature, see: Gowda et al. (2007, 2008a, 2008b); Nayak & Gowda (2008).

Experimental top

The title compound was prepared according to a literature method of Nayak & Gowda (2008). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2008). Single crystals of the title compound used for X-ray diffraction studies were obtained by a slow evaporation of an ethanolic solution at room temperature.

Refinement top

The H atoms of the methyl group were positioned with idealized geometry using a riding model with C—H = 0.96 Å. The other H atoms were located in difference map, and its positional parameters were refined freely [C—H = 0.89 (3)–1.02 (3) Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. The Displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound.
3,5-Dichlorophenyl 4-methylbenzoate top
Crystal data top
C14H10Cl2O2F(000) = 576
Mr = 281.12Dx = 1.433 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3406 reflections
a = 3.9273 (6) Åθ = 2.3–27.9°
b = 28.412 (4) ŵ = 0.49 mm1
c = 11.705 (1) ÅT = 299 K
β = 94.06 (1)°Plate, colourless
V = 1302.8 (3) Å30.48 × 0.40 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2621 independent reflections
Radiation source: fine-focus sealed tube1755 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 44
Tmin = 0.800, Tmax = 0.962k = 3534
7613 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0783P)2]
where P = (Fo2 + 2Fc2)/3
2621 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H10Cl2O2V = 1302.8 (3) Å3
Mr = 281.12Z = 4
Monoclinic, P21/nMo Kα radiation
a = 3.9273 (6) ŵ = 0.49 mm1
b = 28.412 (4) ÅT = 299 K
c = 11.705 (1) Å0.48 × 0.40 × 0.08 mm
β = 94.06 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2621 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1755 reflections with I > 2σ(I)
Tmin = 0.800, Tmax = 0.962Rint = 0.025
7613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.32 e Å3
2621 reflectionsΔρmin = 0.24 e Å3
184 parameters
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., 2007 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4042 (6)0.15541 (8)0.1194 (2)0.0418 (6)
C20.2829 (6)0.13459 (9)0.0235 (2)0.0444 (6)
H20.200 (6)0.1519 (9)0.035 (2)0.053*
C30.2772 (6)0.08640 (9)0.01881 (19)0.0419 (6)
C40.3809 (6)0.05839 (9)0.1061 (2)0.0442 (6)
H40.373 (5)0.0228 (10)0.0960 (19)0.053*
C50.4990 (6)0.08058 (9)0.20047 (19)0.0413 (6)
C60.5140 (6)0.12902 (9)0.2088 (2)0.0432 (6)
H60.583 (6)0.1444 (9)0.270 (2)0.052*
C70.5453 (6)0.23217 (9)0.0486 (2)0.0450 (6)
C80.4837 (6)0.28221 (8)0.0721 (2)0.0405 (6)
C90.3278 (7)0.29931 (10)0.1734 (2)0.0492 (7)
H90.260 (7)0.2789 (10)0.231 (2)0.059*
C100.2734 (7)0.34658 (10)0.1884 (2)0.0506 (7)
H100.164 (6)0.3558 (9)0.263 (2)0.061*
C110.3722 (6)0.37871 (9)0.1031 (2)0.0437 (6)
C120.5333 (7)0.36165 (10)0.0028 (2)0.0477 (7)
H120.607 (6)0.3843 (9)0.049 (2)0.057*
C130.5880 (7)0.31429 (9)0.0140 (2)0.0464 (7)
H130.689 (6)0.3038 (9)0.079 (2)0.056*
C140.3049 (8)0.43029 (10)0.1188 (3)0.0598 (8)
H14A0.51790.44680.11970.072*
H14B0.18080.44170.05670.072*
H14C0.17290.43540.18990.072*
O10.3978 (5)0.20416 (6)0.13445 (15)0.0544 (5)
O20.7075 (5)0.21609 (6)0.03319 (17)0.0650 (6)
Cl10.13414 (18)0.05912 (3)0.10169 (6)0.0602 (3)
Cl20.6296 (2)0.04648 (2)0.31227 (6)0.0605 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0491 (15)0.0345 (15)0.0402 (13)0.0037 (11)0.0078 (11)0.0019 (10)
C20.0466 (15)0.0452 (16)0.0408 (14)0.0089 (12)0.0020 (11)0.0037 (11)
C30.0391 (13)0.0472 (16)0.0389 (13)0.0018 (11)0.0000 (10)0.0042 (11)
C40.0464 (15)0.0382 (15)0.0473 (15)0.0007 (11)0.0014 (11)0.0021 (11)
C50.0436 (14)0.0397 (14)0.0402 (13)0.0001 (11)0.0003 (10)0.0035 (11)
C60.0460 (14)0.0445 (16)0.0384 (13)0.0056 (12)0.0014 (11)0.0015 (11)
C70.0496 (15)0.0404 (15)0.0443 (14)0.0022 (12)0.0024 (12)0.0045 (11)
C80.0396 (13)0.0399 (15)0.0414 (13)0.0021 (11)0.0000 (10)0.0020 (11)
C90.0616 (17)0.0426 (16)0.0425 (15)0.0007 (13)0.0017 (12)0.0020 (12)
C100.0597 (17)0.0440 (17)0.0468 (15)0.0019 (12)0.0043 (13)0.0081 (12)
C110.0448 (14)0.0384 (15)0.0493 (15)0.0026 (11)0.0122 (11)0.0029 (11)
C120.0562 (16)0.0397 (16)0.0470 (15)0.0010 (12)0.0016 (12)0.0072 (12)
C130.0540 (16)0.0407 (16)0.0433 (15)0.0034 (12)0.0059 (12)0.0013 (12)
C140.0715 (19)0.0452 (18)0.0641 (19)0.0082 (14)0.0148 (14)0.0106 (13)
O10.0802 (13)0.0341 (11)0.0465 (10)0.0014 (9)0.0120 (9)0.0001 (8)
O20.0828 (14)0.0442 (11)0.0635 (12)0.0109 (10)0.0274 (11)0.0019 (9)
Cl10.0681 (5)0.0635 (5)0.0504 (4)0.0026 (3)0.0136 (3)0.0100 (3)
Cl20.0806 (5)0.0503 (5)0.0521 (4)0.0015 (4)0.0149 (3)0.0108 (3)
Geometric parameters (Å, º) top
C1—C61.382 (3)C8—C91.383 (4)
C1—C21.382 (3)C8—C131.398 (3)
C1—O11.396 (3)C9—C101.369 (4)
C2—C31.371 (3)C9—H90.91 (3)
C2—H20.92 (3)C10—C111.387 (4)
C3—C41.379 (3)C10—H100.98 (3)
C3—Cl11.737 (2)C11—C121.382 (3)
C4—C51.381 (3)C11—C141.498 (3)
C4—H41.02 (3)C12—C131.375 (4)
C5—C61.382 (3)C12—H120.91 (3)
C5—Cl21.735 (2)C13—H130.89 (3)
C6—H60.89 (3)C14—H14A0.9600
C7—O21.202 (3)C14—H14B0.9600
C7—O11.377 (3)C14—H14C0.9600
C7—C81.465 (3)
C6—C1—C2121.8 (2)C13—C8—C7117.5 (2)
C6—C1—O1116.5 (2)C10—C9—C8120.7 (2)
C2—C1—O1121.5 (2)C10—C9—H9119.5 (18)
C3—C2—C1117.9 (2)C8—C9—H9119.9 (18)
C3—C2—H2119.8 (16)C9—C10—C11121.3 (3)
C1—C2—H2122.3 (16)C9—C10—H10115.5 (16)
C2—C3—C4122.7 (2)C11—C10—H10123.2 (16)
C2—C3—Cl1119.06 (19)C12—C11—C10117.9 (2)
C4—C3—Cl1118.25 (19)C12—C11—C14120.9 (2)
C3—C4—C5117.6 (2)C10—C11—C14121.2 (2)
C3—C4—H4118.3 (13)C13—C12—C11121.5 (3)
C5—C4—H4124.1 (13)C13—C12—H12123.8 (17)
C4—C5—C6122.0 (2)C11—C12—H12114.7 (17)
C4—C5—Cl2118.88 (19)C12—C13—C8120.0 (2)
C6—C5—Cl2119.10 (18)C12—C13—H13120.5 (17)
C5—C6—C1118.0 (2)C8—C13—H13119.5 (17)
C5—C6—H6124.0 (17)C11—C14—H14A109.5
C1—C6—H6117.9 (17)C11—C14—H14B109.5
O2—C7—O1122.2 (2)H14A—C14—H14B109.5
O2—C7—C8126.1 (2)C11—C14—H14C109.5
O1—C7—C8111.6 (2)H14A—C14—H14C109.5
C9—C8—C13118.6 (2)H14B—C14—H14C109.5
C9—C8—C7124.0 (2)C7—O1—C1118.56 (18)
C6—C1—C2—C30.6 (4)O1—C7—C8—C13173.3 (2)
O1—C1—C2—C3175.7 (2)C13—C8—C9—C100.8 (4)
C1—C2—C3—C41.2 (4)C7—C8—C9—C10178.9 (2)
C1—C2—C3—Cl1178.75 (18)C8—C9—C10—C110.0 (4)
C2—C3—C4—C50.9 (4)C9—C10—C11—C121.1 (4)
Cl1—C3—C4—C5179.01 (18)C9—C10—C11—C14178.5 (2)
C3—C4—C5—C60.1 (4)C10—C11—C12—C131.5 (4)
C3—C4—C5—Cl2179.67 (18)C14—C11—C12—C13178.1 (2)
C4—C5—C6—C10.4 (4)C11—C12—C13—C80.8 (4)
Cl2—C5—C6—C1179.14 (18)C9—C8—C13—C120.3 (4)
C2—C1—C6—C50.2 (4)C7—C8—C13—C12179.3 (2)
O1—C1—C6—C5175.2 (2)O2—C7—O1—C17.5 (4)
O2—C7—C8—C9172.5 (3)C8—C7—O1—C1173.6 (2)
O1—C7—C8—C96.3 (4)C6—C1—O1—C7131.0 (2)
O2—C7—C8—C137.9 (4)C2—C1—O1—C753.6 (3)

Experimental details

Crystal data
Chemical formulaC14H10Cl2O2
Mr281.12
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)3.9273 (6), 28.412 (4), 11.705 (1)
β (°) 94.06 (1)
V3)1302.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.48 × 0.40 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.800, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
7613, 2621, 1755
Rint0.025
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.139, 1.11
No. of reflections2621
No. of parameters184
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.24

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o3877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o843.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1390.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63. In the press.  Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds