metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: Bis(pentane-2,4-dionato-κ2O,O′)bis­­[4,4,5,5-tetra­methyl-2-(4-pyridyl)­imidazoline-1-oxyl 3-oxide-κN2]manganese(II)

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: yllctu@yahoo.com.cn

(Received 10 July 2008; accepted 21 July 2008; online 26 July 2008)

The title compound, [Mn(C5H7O2)2(C12H16N3O2)2], is isostructural with its NiII-containing analogue [Hao, Mu & Kong (2008[Hao, L., Mu, C. & Kong, B. (2008). Acta Cryst. E64, m957.]). Acta Cryst. E64, m957]. The asymmetric unit comprises one-half of the mol­ecule and the MnII ion is located on an inversion centre. The coordination geometry around the MnII ion is slightly distorted octa­hedral, comprised of four O and two N atoms, in which the four O atoms in the equatorial plane come from two pentane-2,4-dionate ligands and the two N atoms in the axial coordination sites from 4,4,5,5-tetra­methyl-2-(4-pyrid­yl)imidazoline-1-oxyl 3-oxide.

Related literature

For related literature, see: Eddaoudi et al. (2000[Eddaoudi, M., Li, H. & Yaghi, O. M. (2000). J. Am. Chem. Soc. 122, 1391-1397.]); Hye & Myunghyun (1998[Hye, J. C. & Myunghyun, P. S. (1998). J. Am. Chem. Soc. 120, 10622-10628.]); Li et al. (1999[Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276-279.]); Tabares et al. (2001[Tabares, L. C., Navarro, J. A. R. & Salas, J. M. (2001). J. Am. Chem. Soc. 123, 383-387.]). For the isostructural NiII-containing compound, see: Hao et al. (2008[Hao, L., Mu, C. & Kong, B. (2008). Acta Cryst. E64, m957.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C5H7O2)2(C12H16N3O2)2]

  • Mr = 721.71

  • Triclinic, [P \overline 1]

  • a = 7.107 (2) Å

  • b = 10.018 (2) Å

  • c = 12.786 (2) Å

  • α = 98.16 (3)°

  • β = 103.20 (3)°

  • γ = 92.76 (3)°

  • V = 874.3 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 298 (2) K

  • 0.39 × 0.28 × 0.17 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.848, Tmax = 0.929

  • 6447 measured reflections

  • 3371 independent reflections

  • 2590 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 1.00

  • 3371 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O2 2.0151 (17)
Mn1—O1 2.0386 (17)
Mn1—N3 2.178 (2)
O2i—Mn1—O2 180
O2i—Mn1—O1 90.98 (7)
O2—Mn1—O1 89.02 (7)
O1i—Mn1—O1 180
O2—Mn1—N3i 91.00 (7)
O1—Mn1—N3i 91.90 (7)
O2—Mn1—N3 89.00 (7)
O1—Mn1—N3 88.10 (7)
N3i—Mn1—N3 180
Symmetry code: (i) -x, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Due to the interesting structures from supramolecular assemblies as well as potential applications on smart optoelectronic, magnetic and porous materials, the design and synthesis of metal–organic coordination polymers have attracted considerable attention (Eddaoudi et al., 2000; Hye & Myunghyun, 1998; Li et al., 1999; Tabares et al., 2001). In this paper, we report the structure of the title compound, (I).

As shown in Fig. 1, the asymmetric unit comprises a half of the molecule and MnII ion locates on an inversion centre. The coordination geometry around MnII is slightly distorted octahedral, comprised of four O and two N atoms. In which, the four oxygen atoms in the equatorial plane come from two pentane-2,4-dionate and the two nitrogen atoms in the axial coordination sites from 2-(4-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. The Mn—N and Mn—O bond lengths are in the range of 2.178 (2)–2.178 (2) and 2.0151 (17)–2.0386 (17) Å, respectively.

Related literature top

For related_literature, see: Eddaoudi et al. (2000); Hye & Myunghyun (1998); Li et al. (1999); Tabares et al. (2001). For the isostructural NiII-containing compound, see: Hao et al. (2008).

Experimental top

A mixture of Manganese(II) acetylacetonate (0.5 mmol) and 2-(4-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (1 mmol) in 20 ml methanol was refluxed for one day. The resulted solution was filtered. The filtrate was kept in the open flask and evaporated naturally at room temperature. Several days later, pink blocks of (I) were obtained with a high yield of ca 67% based on MnII. Anal. Calc. for C34H46MnN6O8: C 56.53, H 6.37, N 11.64%; Found: C 56.45, H 6.29, N 11.58%.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93 Å and C—H = 0.96 distances and refined as riding with Uiso(H) = 1.2 and 1.5 Ueq(carrier).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) around MnII, drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms.
Bis(pentane-2,4-dionato-κ2O,O')bis[4,4,5,5-tetramethyl-2-(4- pyridyl)imidazoline-1-oxyl 3-oxide-κN2]manganese(II) top
Crystal data top
[Mn(C5H7O2)2(C12H16N3O2)2]Z = 1
Mr = 721.71F(000) = 381
Triclinic, P1Dx = 1.371 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.107 (2) ÅCell parameters from 3371 reflections
b = 10.018 (2) Åθ = 3.0–26.1°
c = 12.786 (2) ŵ = 0.44 mm1
α = 98.16 (3)°T = 298 K
β = 103.20 (3)°Block, pink
γ = 92.76 (3)°0.39 × 0.28 × 0.17 mm
V = 874.3 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3371 independent reflections
Radiation source: fine-focus sealed tube2590 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 26.1°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 68
Tmin = 0.848, Tmax = 0.930k = 1212
6447 measured reflectionsl = 1115
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.066P)2]
where P = (Fo2 + 2Fc2)/3
3371 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Mn(C5H7O2)2(C12H16N3O2)2]γ = 92.76 (3)°
Mr = 721.71V = 874.3 (3) Å3
Triclinic, P1Z = 1
a = 7.107 (2) ÅMo Kα radiation
b = 10.018 (2) ŵ = 0.44 mm1
c = 12.786 (2) ÅT = 298 K
α = 98.16 (3)°0.39 × 0.28 × 0.17 mm
β = 103.20 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3371 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2590 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 0.930Rint = 0.033
6447 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.00Δρmax = 0.56 e Å3
3371 reflectionsΔρmin = 0.50 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.00000.00000.0281 (7)
C10.1322 (4)0.3856 (3)0.1293 (2)0.0310 (6)
H1A0.26960.38350.10060.046*
H1B0.07310.47420.13050.046*
H1C0.10690.36440.20190.046*
C20.0486 (3)0.2828 (2)0.05829 (19)0.0231 (5)
C30.1138 (4)0.3209 (3)0.0230 (2)0.0257 (6)
H30.16650.41000.04560.031*
C40.2049 (3)0.2369 (2)0.0433 (2)0.0241 (6)
C50.3726 (4)0.2934 (3)0.0814 (2)0.0327 (6)
H5A0.48790.25280.05070.049*
H5B0.39140.38960.05850.049*
H5C0.34580.27400.15930.049*
C60.1702 (3)0.1166 (2)0.23876 (19)0.0219 (5)
H60.03860.12390.23390.026*
C70.2971 (3)0.1613 (2)0.3372 (2)0.0220 (5)
H70.25200.19800.39690.026*
C80.5527 (4)0.0957 (3)0.2535 (2)0.0243 (6)
H80.68330.08700.25600.029*
C90.4137 (3)0.0539 (2)0.1579 (2)0.0229 (5)
H90.45440.01770.09640.027*
C100.4945 (3)0.1510 (2)0.3462 (2)0.0214 (5)
C110.6317 (3)0.1984 (3)0.45046 (19)0.0220 (5)
C120.7429 (3)0.2985 (3)0.63433 (19)0.0228 (5)
C130.9183 (3)0.2690 (2)0.58648 (18)0.0206 (5)
C141.0771 (3)0.3830 (3)0.6102 (2)0.0254 (6)
H14A1.17180.35890.56960.038*
H14B1.13800.39850.68660.038*
H14C1.02210.46380.58960.038*
C151.0021 (4)0.1370 (3)0.6128 (2)0.0248 (6)
H15A0.89950.06570.59550.037*
H15B1.06440.14740.68880.037*
H15C1.09520.11460.57060.037*
C160.7505 (4)0.2552 (3)0.7443 (2)0.0304 (6)
H16A0.63370.27610.76670.046*
H16B0.86030.30250.79700.046*
H16C0.76220.15950.73880.046*
C170.6888 (4)0.4436 (3)0.6351 (2)0.0320 (6)
H17A0.68730.46980.56560.048*
H17B0.78230.50250.69070.048*
H17C0.56260.45020.64960.048*
N10.5857 (3)0.2135 (2)0.54865 (16)0.0248 (5)
N20.8187 (3)0.2418 (2)0.46656 (16)0.0217 (5)
N30.2243 (3)0.06280 (19)0.14902 (16)0.0206 (4)
O10.1568 (2)0.11188 (17)0.07682 (13)0.0249 (4)
O20.1367 (2)0.16521 (17)0.03802 (13)0.0245 (4)
O30.4265 (2)0.1723 (2)0.56890 (14)0.0353 (5)
O40.9121 (2)0.25076 (18)0.39302 (14)0.0274 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0255 (17)0.0255 (17)0.0309 (19)0.0021 (13)0.0044 (15)0.0037 (14)
C10.0354 (15)0.0245 (14)0.0295 (15)0.0070 (11)0.0010 (12)0.0017 (11)
C20.0253 (13)0.0220 (13)0.0173 (13)0.0039 (10)0.0057 (10)0.0043 (10)
C30.0297 (14)0.0208 (13)0.0232 (14)0.0009 (10)0.0009 (11)0.0043 (10)
C40.0228 (13)0.0245 (13)0.0215 (14)0.0001 (10)0.0047 (10)0.0090 (10)
C50.0275 (14)0.0306 (14)0.0399 (17)0.0000 (11)0.0039 (12)0.0122 (12)
C60.0186 (12)0.0260 (13)0.0220 (14)0.0034 (10)0.0049 (10)0.0061 (10)
C70.0218 (13)0.0276 (13)0.0171 (13)0.0031 (10)0.0051 (10)0.0035 (10)
C80.0196 (13)0.0308 (14)0.0223 (14)0.0033 (10)0.0045 (11)0.0037 (11)
C90.0229 (13)0.0268 (13)0.0192 (13)0.0041 (10)0.0046 (10)0.0044 (10)
C100.0213 (13)0.0240 (12)0.0184 (13)0.0009 (10)0.0033 (10)0.0042 (10)
C110.0210 (13)0.0293 (13)0.0155 (13)0.0018 (10)0.0046 (10)0.0025 (10)
C120.0204 (13)0.0301 (14)0.0162 (13)0.0044 (10)0.0004 (10)0.0032 (10)
C130.0190 (12)0.0291 (13)0.0119 (12)0.0009 (10)0.0007 (10)0.0023 (10)
C140.0231 (13)0.0284 (14)0.0233 (14)0.0013 (10)0.0030 (11)0.0033 (11)
C150.0209 (13)0.0279 (13)0.0253 (14)0.0037 (10)0.0037 (11)0.0057 (11)
C160.0259 (14)0.0444 (17)0.0200 (14)0.0032 (12)0.0030 (11)0.0062 (12)
C170.0271 (14)0.0388 (16)0.0284 (16)0.0112 (12)0.0039 (12)0.0015 (12)
N10.0158 (11)0.0388 (13)0.0188 (12)0.0004 (9)0.0032 (9)0.0036 (9)
N20.0179 (11)0.0298 (11)0.0171 (11)0.0011 (8)0.0038 (9)0.0039 (9)
N30.0222 (11)0.0214 (10)0.0184 (11)0.0028 (8)0.0049 (9)0.0036 (8)
O10.0256 (9)0.0244 (9)0.0219 (10)0.0001 (7)0.0009 (7)0.0030 (7)
O20.0238 (9)0.0245 (9)0.0230 (10)0.0043 (7)0.0005 (7)0.0037 (7)
O30.0183 (10)0.0617 (14)0.0272 (11)0.0016 (9)0.0067 (8)0.0113 (10)
O40.0218 (9)0.0406 (11)0.0204 (10)0.0010 (8)0.0078 (8)0.0032 (8)
Geometric parameters (Å, º) top
Mn1—O2i2.0151 (17)C9—N31.333 (3)
Mn1—O22.0151 (17)C9—H90.9300
Mn1—O1i2.0386 (17)C10—C111.461 (3)
Mn1—O12.0386 (17)C11—N21.339 (3)
Mn1—N3i2.178 (2)C11—N11.358 (3)
Mn1—N32.178 (2)C12—N11.503 (3)
C1—C21.509 (3)C12—C161.520 (3)
C1—H1A0.9600C12—C171.520 (3)
C1—H1B0.9600C12—C131.533 (3)
C1—H1C0.9600C13—N21.514 (3)
C2—O21.271 (3)C13—C141.513 (3)
C2—C31.388 (4)C13—C151.526 (3)
C3—C41.395 (4)C14—H14A0.9600
C3—H30.9300C14—H14B0.9600
C4—O11.268 (3)C14—H14C0.9600
C4—C51.502 (3)C15—H15A0.9600
C5—H5A0.9600C15—H15B0.9600
C5—H5B0.9600C15—H15C0.9600
C5—H5C0.9600C16—H16A0.9600
C6—N31.342 (3)C16—H16B0.9600
C6—C71.372 (3)C16—H16C0.9600
C6—H60.9300C17—H17A0.9600
C7—C101.391 (3)C17—H17B0.9600
C7—H70.9300C17—H17C0.9600
C8—C91.382 (3)N1—O31.279 (3)
C8—C101.394 (3)N2—O41.279 (2)
C8—H80.9300
O2i—Mn1—O2180.00 (10)N2—C11—N1108.0 (2)
O2i—Mn1—O1i89.02 (7)N2—C11—C10127.1 (2)
O2—Mn1—O1i90.98 (7)N1—C11—C10124.8 (2)
O2i—Mn1—O190.98 (7)N1—C12—C16109.9 (2)
O2—Mn1—O189.02 (7)N1—C12—C17105.8 (2)
O1i—Mn1—O1180.00 (9)C16—C12—C17110.7 (2)
O2i—Mn1—N3i89.00 (7)N1—C12—C1399.99 (19)
O2—Mn1—N3i91.00 (7)C16—C12—C13115.7 (2)
O1i—Mn1—N3i88.10 (7)C17—C12—C13113.8 (2)
O1—Mn1—N3i91.90 (7)N2—C13—C14110.88 (19)
O2i—Mn1—N391.00 (7)N2—C13—C15105.76 (19)
O2—Mn1—N389.00 (7)C14—C13—C15110.9 (2)
O1i—Mn1—N391.90 (7)N2—C13—C1299.71 (17)
O1—Mn1—N388.10 (7)C14—C13—C12115.9 (2)
N3i—Mn1—N3180.00 (8)C15—C13—C12112.7 (2)
C2—C1—H1A109.5C13—C14—H14A109.5
C2—C1—H1B109.5C13—C14—H14B109.5
H1A—C1—H1B109.5H14A—C14—H14B109.5
C2—C1—H1C109.5C13—C14—H14C109.5
H1A—C1—H1C109.5H14A—C14—H14C109.5
H1B—C1—H1C109.5H14B—C14—H14C109.5
O2—C2—C3126.0 (2)C13—C15—H15A109.5
O2—C2—C1114.5 (2)C13—C15—H15B109.5
C3—C2—C1119.5 (2)H15A—C15—H15B109.5
C4—C3—C2125.6 (2)C13—C15—H15C109.5
C4—C3—H3117.2H15A—C15—H15C109.5
C2—C3—H3117.2H15B—C15—H15C109.5
O1—C4—C3125.0 (2)C12—C16—H16A109.5
O1—C4—C5114.8 (2)C12—C16—H16B109.5
C3—C4—C5120.1 (2)H16A—C16—H16B109.5
C4—C5—H5A109.5C12—C16—H16C109.5
C4—C5—H5B109.5H16A—C16—H16C109.5
H5A—C5—H5B109.5H16B—C16—H16C109.5
C4—C5—H5C109.5C12—C17—H17A109.5
H5A—C5—H5C109.5C12—C17—H17B109.5
H5B—C5—H5C109.5H17A—C17—H17B109.5
N3—C6—C7124.0 (2)C12—C17—H17C109.5
N3—C6—H6118.0H17A—C17—H17C109.5
C7—C6—H6118.0H17B—C17—H17C109.5
C6—C7—C10118.9 (2)O3—N1—C11127.0 (2)
C6—C7—H7120.5O3—N1—C12121.8 (2)
C10—C7—H7120.5C11—N1—C12111.0 (2)
C9—C8—C10119.1 (2)O4—N2—C11126.4 (2)
C9—C8—H8120.5O4—N2—C13121.89 (18)
C10—C8—H8120.5C11—N2—C13111.45 (18)
N3—C9—C8123.4 (2)C9—N3—C6116.9 (2)
N3—C9—H9118.3C9—N3—Mn1124.82 (16)
C8—C9—H9118.3C6—N3—Mn1118.27 (16)
C7—C10—C8117.7 (2)C4—O1—Mn1121.54 (16)
C7—C10—C11119.6 (2)C2—O2—Mn1121.01 (16)
C8—C10—C11122.7 (2)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C5H7O2)2(C12H16N3O2)2]
Mr721.71
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.107 (2), 10.018 (2), 12.786 (2)
α, β, γ (°)98.16 (3), 103.20 (3), 92.76 (3)
V3)874.3 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.39 × 0.28 × 0.17
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.848, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
6447, 3371, 2590
Rint0.033
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.00
No. of reflections3371
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.50

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Mn1—O2i2.0151 (17)Mn1—N3i2.178 (2)
Mn1—O1i2.0386 (17)Mn1—N32.178 (2)
Mn1—O12.0386 (17)
O2i—Mn1—O2180.00 (10)O1i—Mn1—N3i88.10 (7)
O2i—Mn1—O1i89.02 (7)O1—Mn1—N3i91.90 (7)
O2—Mn1—O1i90.98 (7)O2i—Mn1—N391.00 (7)
O2i—Mn1—O190.98 (7)O2—Mn1—N389.00 (7)
O2—Mn1—O189.02 (7)O1i—Mn1—N391.90 (7)
O1i—Mn1—O1180.00 (9)O1—Mn1—N388.10 (7)
O2i—Mn1—N3i89.00 (7)N3i—Mn1—N3180.00 (8)
O2—Mn1—N3i91.00 (7)
Symmetry code: (i) x, y, z.
 

Acknowledgements

The authors thank the Natural Science Foundation of China (grant No. 20501011) and Liaocheng University (grant No. X071011) for financial support.

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEddaoudi, M., Li, H. & Yaghi, O. M. (2000). J. Am. Chem. Soc. 122, 1391–1397.  Web of Science CrossRef CAS Google Scholar
First citationHao, L., Mu, C. & Kong, B. (2008). Acta Cryst. E64, m957.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHye, J. C. & Myunghyun, P. S. (1998). J. Am. Chem. Soc. 120, 10622–10628.  Google Scholar
First citationLi, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276–279.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabares, L. C., Navarro, J. A. R. & Salas, J. M. (2001). J. Am. Chem. Soc. 123, 383–387.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds