organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Bis(2-chloro­phen­yl)-3-aza­bi­cyclo­[3.3.1]nonan-9-one

aDivision of Image Science and Information Engineering, Pukyong National University, Busan 608 739, Republic of Korea, and bDepartment of Chemistry, IIT Madras, Chennai, Tamilnadu, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 14 July 2008; accepted 19 July 2008; online 26 July 2008)

The mol­ecular structure of the title compound, C20H19Cl2NO, reveals chair conformations for both six-membered rings of the bicyclic system. Both 2-chloro­phenyl groups adopt equatorial dispositions with the chloro substituents oriented towards the carbonyl group; the aryl groups are orientated at an angle of 28.64 (3)° with respect to each other.

Related literature

For related literature, see: Buxton et al. (1996[Buxton, S. R. & Roberts, S. M. (1996). Guide to Organic Stereochemistry. London: Longman.]); Jeyaraman et al. (1981[Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.]); Zefirov et al. (1990[Zefirov, N. S. & Palyulin, V. A. (1990). Top. Stereochem. 20, 171-230.]); Vijayalakshmi et al. (2000[Vijayalakshmi, L., Parthasarathi, V., Venkatraj, M. & Jeyaraman, R. (2000). Acta Cryst. C56, 1240-1241.]); Web et al. (1967[Web, N. C. & Becker, M. R. (1967). J. Chem. Soc. B, pp. 1317-1321.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19Cl2NO

  • Mr = 360.26

  • Triclinic, [P \overline 1]

  • a = 7.7070 (15) Å

  • b = 10.680 (2) Å

  • c = 11.000 (2) Å

  • α = 101.78 (3)°

  • β = 92.82 (3)°

  • γ = 98.13 (3)°

  • V = 874.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 298 (2) K

  • 0.32 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.889, Tmax = 0.928

  • 9470 measured reflections

  • 2949 independent reflections

  • 2478 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.087

  • wR(F2) = 0.309

  • S = 1.19

  • 2949 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker–Nonius, 2004[Bruker-Nonius (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker–Nonius, 2004[Bruker-Nonius (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Since the biological activities mainly depend on the stereochemistry (Jeyaraman & Avila, 1981; Buxton & Roberts, 1996) it is worthwhile to study the stereochemistry and conformation of the organic molecules. Generally, these classes of bicyclic system prefer chair-chair conformation (Zefirov & Palyulin, 1990; Vijayalakshmi et al., 2000) among the three possible chair-chair, chair-boat and boat-boat conformations. However, NMR studies of this compound shows ambiguity over the conformation, due to the presence of electron withdrawing chloro substituents on ortho position of the either phenyl rings. Hence, we have carried out this X-ray analysis to establish the three dimensional structure.

The title compound C20H19Cl2NO, exists in chair-chair conformation with equatorial orientations of the ortho phenyl groups on both side of the secondary amino group with the torsion angles C8—C6—C7—C15 and C8—C2—C1—C9 are 178.41 (6) ° and 179.12 (6) ° respectively.

In both aryl groups, the chloro substituents point upwards i.e., towards the carbonyl group and the aryl groups are orientated at an angle of 28.64 (3) ° to each other. A study of torsion angles, asymmetry parameters and least-squares plane calculation shows that the piperidine ring adopts near ideal chair conformation with a deviation of the ring atoms N1 and C8 from the C1/C2/C6/C7 plane by -0.630 (3) Å and 0.708 (3)Å respectively, QT = 0.593 (8)Å (D.Cremer & Pople, (1975)) whereas the cyclohexane ring atoms C4 and C8 deviate from the C2/C3/C5/C6 plane by -0.530 (4) Å and 0.730 (3) Å respectively (QT = 0.565 (8) Å.). Thus, indicating a deviation from the ideal chair conformation of the cyclohexane part in the title compound (Web & Becker, 1967).

Related literature top

For related literature, see: Buxton et al. (1996); Jeyaraman et al. (1981); Zefirov et al. (1990); Vijayalakshmi et al. (2000); Web et al. (1967); Cremer & Pople (1975).

Experimental top

A mixture of cyclohexanone (0.05 mol) and ortho chlorobenzaldehyde (0.1 mol) was added to a warm solution of ammonium acetate (0.75 mol) in 50 ml of absolute ethanol. The mixture was gently warmed on a hot plate till the yellow color formed during the mixing of the reactants and allowed to stir till the formation of the product. At the end, the pale yellow color azabicyclic ketone was separated by filtration and washed with 1:5 ethanol-ether mixture till the solid become colourless. Recrystallization of the compound from isopropyl alcohol (IPA) gave colourless crystals of 2,4-bis(2-chlorophenyl)-3-azabicyclo[3.3.1]nonan-9-one.

1H NMR (400 MHz, CDCl3, p.p.m.): 8.05 (dd, J = 8.0, 1.2 Hz), 7.39 (dt, J = 7.0, 1.6 Hz), 7.27 (dt, J = 7.6, 1.8 Hz), 4.85 (d, H-2a, H-4a, J = 2.4 Hz), 2.88 (m, H-7a), 2.77 (s, H-1, 5), 1.90 (d, H-8 e, J = 4.8 Hz), 1.87 (dd, H-6 e, J = 4.8, 1.6 Hz), 1.81–1.71 (m, H-8a, H-6a), 1.66 (bs, N—H), 1.41 (quintet, H-7 e).

Refinement top

Nitrogen H atoms were located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms,with aromatic C—H =0.93 Å, aliphatic C—H = 0.98Å and methylen C—H = 0.97 Å. The displacement parameters were set for phenyl,methylen and aliphatic H atoms at Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker–Nonius, 2004); cell refinement: APEX2 (Bruker–Nonius, 2004); data reduction: SAINT-Plus (Bruker–Nonius, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title molecule with atoms represented as 30% probability ellipsoids.
2,4-Bis(2-chlorophenyl)-3-azabicyclo[3.3.1]nonan-9-one top
Crystal data top
C20H19Cl2NOZ = 2
Mr = 360.26F(000) = 376
Triclinic, P1Dx = 1.368 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7070 (15) ÅCell parameters from 5271 reflections
b = 10.680 (2) Åθ = 2.4–28.3°
c = 11.000 (2) ŵ = 0.38 mm1
α = 101.78 (3)°T = 298 K
β = 92.82 (3)°Rectangular, colourless
γ = 98.13 (3)°0.32 × 0.25 × 0.20 mm
V = 874.6 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2949 independent reflections
Radiation source: fine-focus sealed tube2478 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 89
Tmin = 0.889, Tmax = 0.928k = 1212
9470 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.088Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.309H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.0815P)2 + 8.5055P]
where P = (Fo2 + 2Fc2)/3
2949 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C20H19Cl2NOγ = 98.13 (3)°
Mr = 360.26V = 874.6 (3) Å3
Triclinic, P1Z = 2
a = 7.7070 (15) ÅMo Kα radiation
b = 10.680 (2) ŵ = 0.38 mm1
c = 11.000 (2) ÅT = 298 K
α = 101.78 (3)°0.32 × 0.25 × 0.20 mm
β = 92.82 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2949 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2478 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.928Rint = 0.026
9470 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0880 restraints
wR(F2) = 0.309H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 0.70 e Å3
2949 reflectionsΔρmin = 0.41 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2417 (9)0.0189 (6)0.1674 (6)0.0272 (15)
H10.31490.02730.09820.033*
C20.3606 (9)0.0002 (7)0.2788 (7)0.0324 (16)
H20.41710.07620.25120.039*
C30.2618 (10)0.0165 (8)0.3956 (7)0.0377 (18)
H3A0.16190.08480.37020.045*
H3B0.33980.04450.45310.045*
C40.1957 (11)0.1052 (8)0.4652 (7)0.0425 (19)
H4A0.16880.09400.54790.051*
H4B0.08790.11530.42150.051*
C50.3321 (11)0.2301 (8)0.4770 (7)0.0433 (19)
H5A0.27340.30470.50190.052*
H5B0.42220.23250.54250.052*
C60.4220 (9)0.2412 (7)0.3553 (7)0.0339 (17)
H60.51710.31530.37380.041*
C70.2987 (9)0.2553 (6)0.2452 (7)0.0291 (15)
H70.37030.26500.17560.035*
C80.5010 (9)0.1176 (7)0.3144 (7)0.0329 (16)
C90.0965 (9)0.0967 (6)0.1234 (6)0.0256 (14)
C100.0743 (10)0.0946 (8)0.1630 (7)0.0360 (17)
H100.09970.01980.21420.043*
C110.2061 (10)0.2016 (8)0.1276 (8)0.0430 (19)
H110.31830.19710.15390.052*
C120.1697 (11)0.3152 (8)0.0528 (8)0.045 (2)
H120.25700.38730.03120.054*
C130.0067 (11)0.3211 (7)0.0112 (7)0.0391 (18)
H130.01620.39600.04130.047*
C140.1257 (9)0.2140 (7)0.0478 (6)0.0297 (15)
C150.2078 (9)0.3750 (7)0.2778 (7)0.0292 (15)
C160.2911 (10)0.4984 (7)0.2705 (7)0.0335 (16)
C170.2106 (12)0.6063 (8)0.2961 (8)0.047 (2)
H170.26950.68650.28930.057*
C180.0388 (12)0.5946 (8)0.3328 (9)0.049 (2)
H180.01720.66700.35120.058*
C190.0466 (11)0.4748 (8)0.3413 (8)0.046 (2)
H190.16080.46660.36560.055*
C200.0360 (10)0.3662 (7)0.3141 (7)0.0347 (17)
H200.02410.28610.32020.042*
Cl10.3337 (3)0.2278 (2)0.0080 (2)0.0567 (7)
Cl20.5064 (3)0.5208 (2)0.2224 (2)0.0501 (7)
N10.1657 (8)0.1389 (5)0.2038 (6)0.0290 (13)
O10.6563 (7)0.1143 (6)0.3131 (6)0.0523 (16)
H1A0.096 (12)0.146 (8)0.149 (9)0.05 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.023 (3)0.028 (3)0.030 (4)0.006 (3)0.003 (3)0.001 (3)
C20.027 (4)0.031 (4)0.038 (4)0.008 (3)0.004 (3)0.005 (3)
C30.036 (4)0.041 (4)0.039 (4)0.005 (3)0.004 (3)0.017 (3)
C40.045 (5)0.053 (5)0.032 (4)0.010 (4)0.008 (4)0.011 (4)
C50.050 (5)0.043 (5)0.033 (4)0.010 (4)0.004 (4)0.001 (3)
C60.025 (4)0.029 (4)0.043 (4)0.002 (3)0.007 (3)0.002 (3)
C70.025 (4)0.028 (3)0.035 (4)0.004 (3)0.004 (3)0.008 (3)
C80.028 (4)0.036 (4)0.035 (4)0.006 (3)0.000 (3)0.008 (3)
C90.024 (3)0.030 (3)0.023 (3)0.004 (3)0.001 (3)0.006 (3)
C100.029 (4)0.039 (4)0.038 (4)0.010 (3)0.005 (3)0.000 (3)
C110.027 (4)0.056 (5)0.045 (5)0.000 (4)0.005 (3)0.013 (4)
C120.048 (5)0.039 (4)0.042 (5)0.011 (4)0.007 (4)0.011 (4)
C130.057 (5)0.027 (4)0.030 (4)0.003 (3)0.003 (4)0.002 (3)
C140.030 (4)0.034 (4)0.026 (3)0.011 (3)0.002 (3)0.004 (3)
C150.028 (4)0.029 (4)0.031 (4)0.005 (3)0.000 (3)0.006 (3)
C160.032 (4)0.029 (4)0.038 (4)0.002 (3)0.001 (3)0.005 (3)
C170.056 (5)0.030 (4)0.057 (5)0.008 (4)0.005 (4)0.012 (4)
C180.052 (5)0.040 (5)0.057 (5)0.024 (4)0.007 (4)0.005 (4)
C190.042 (5)0.051 (5)0.047 (5)0.019 (4)0.011 (4)0.008 (4)
C200.032 (4)0.033 (4)0.040 (4)0.008 (3)0.004 (3)0.009 (3)
Cl10.0469 (13)0.0574 (14)0.0617 (14)0.0199 (10)0.0162 (11)0.0077 (11)
Cl20.0386 (12)0.0390 (11)0.0702 (15)0.0042 (8)0.0115 (10)0.0113 (10)
N10.025 (3)0.025 (3)0.035 (3)0.005 (2)0.005 (3)0.004 (3)
O10.023 (3)0.058 (4)0.076 (4)0.010 (3)0.005 (3)0.014 (3)
Geometric parameters (Å, º) top
C1—N11.473 (9)C9—C141.408 (10)
C1—C91.524 (9)C9—C101.408 (10)
C1—C21.556 (10)C10—C111.393 (11)
C1—H10.9800C10—H100.9300
C2—C81.507 (10)C11—C121.392 (12)
C2—C31.554 (11)C11—H110.9300
C2—H20.9800C12—C131.364 (12)
C3—C41.534 (11)C12—H120.9300
C3—H3A0.9700C13—C141.398 (10)
C3—H3B0.9700C13—H130.9300
C4—C51.555 (11)C14—Cl11.759 (7)
C4—H4A0.9700C15—C201.398 (10)
C4—H4B0.9700C15—C161.401 (10)
C5—C61.555 (11)C16—C171.372 (11)
C5—H5A0.9700C16—Cl21.766 (8)
C5—H5B0.9700C17—C181.399 (12)
C6—C81.525 (10)C17—H170.9300
C6—C71.547 (10)C18—C191.377 (12)
C6—H60.9800C18—H180.9300
C7—N11.472 (9)C19—C201.387 (11)
C7—C151.531 (10)C19—H190.9300
C7—H70.9800C20—H200.9300
C8—O11.203 (9)N1—H1A0.81 (9)
N1—C1—C9110.5 (5)O1—C8—C2124.3 (7)
N1—C1—C2109.7 (6)O1—C8—C6124.1 (7)
C9—C1—C2111.4 (6)C2—C8—C6111.6 (6)
N1—C1—H1108.4C14—C9—C10115.8 (6)
C9—C1—H1108.4C14—C9—C1122.9 (6)
C2—C1—H1108.4C10—C9—C1121.2 (6)
C8—C2—C3108.7 (6)C11—C10—C9121.7 (7)
C8—C2—C1107.6 (6)C11—C10—H10119.1
C3—C2—C1114.4 (6)C9—C10—H10119.1
C8—C2—H2108.7C12—C11—C10120.0 (7)
C3—C2—H2108.7C12—C11—H11120.0
C1—C2—H2108.7C10—C11—H11120.0
C4—C3—C2115.2 (6)C13—C12—C11120.3 (7)
C4—C3—H3A108.5C13—C12—H12119.9
C2—C3—H3A108.5C11—C12—H12119.9
C4—C3—H3B108.5C12—C13—C14119.5 (7)
C2—C3—H3B108.5C12—C13—H13120.2
H3A—C3—H3B107.5C14—C13—H13120.2
C3—C4—C5112.7 (7)C13—C14—C9122.6 (7)
C3—C4—H4A109.0C13—C14—Cl1117.5 (6)
C5—C4—H4A109.0C9—C14—Cl1119.9 (5)
C3—C4—H4B109.0C20—C15—C16116.6 (7)
C5—C4—H4B109.0C20—C15—C7121.6 (6)
H4A—C4—H4B107.8C16—C15—C7121.8 (6)
C6—C5—C4114.2 (6)C17—C16—C15122.8 (7)
C6—C5—H5A108.7C17—C16—Cl2116.5 (6)
C4—C5—H5A108.7C15—C16—Cl2120.7 (6)
C6—C5—H5B108.7C16—C17—C18119.3 (8)
C4—C5—H5B108.7C16—C17—H17120.4
H5A—C5—H5B107.6C18—C17—H17120.4
C8—C6—C7107.8 (6)C19—C18—C17119.4 (7)
C8—C6—C5107.0 (6)C19—C18—H18120.3
C7—C6—C5115.4 (6)C17—C18—H18120.3
C8—C6—H6108.9C18—C19—C20120.7 (8)
C7—C6—H6108.9C18—C19—H19119.7
C5—C6—H6108.9C20—C19—H19119.7
N1—C7—C15109.7 (5)C19—C20—C15121.2 (7)
N1—C7—C6111.0 (6)C19—C20—H20119.4
C15—C7—C6112.1 (6)C15—C20—H20119.4
N1—C7—H7107.9C7—N1—C1113.5 (5)
C15—C7—H7107.9C7—N1—H1A113 (6)
C6—C7—H7107.9C1—N1—H1A110 (6)
N1—C1—C2—C858.3 (7)C9—C10—C11—C121.1 (12)
C9—C1—C2—C8179.2 (6)C10—C11—C12—C131.8 (12)
N1—C1—C2—C362.6 (8)C11—C12—C13—C142.4 (12)
C9—C1—C2—C360.0 (8)C12—C13—C14—C92.4 (11)
C8—C2—C3—C450.7 (8)C12—C13—C14—Cl1179.6 (6)
C1—C2—C3—C469.5 (8)C10—C9—C14—C131.7 (10)
C2—C3—C4—C541.8 (9)C1—C9—C14—C13177.8 (7)
C3—C4—C5—C644.1 (9)C10—C9—C14—Cl1179.6 (5)
C4—C5—C6—C854.4 (8)C1—C9—C14—Cl14.2 (9)
C4—C5—C6—C765.4 (9)N1—C7—C15—C2025.3 (9)
C8—C6—C7—N155.2 (8)C6—C7—C15—C2098.5 (8)
C5—C6—C7—N164.2 (8)N1—C7—C15—C16153.5 (7)
C8—C6—C7—C15178.4 (6)C6—C7—C15—C1682.6 (8)
C5—C6—C7—C1559.0 (8)C20—C15—C16—C170.6 (11)
C3—C2—C8—O1115.3 (8)C7—C15—C16—C17178.3 (7)
C1—C2—C8—O1120.3 (8)C20—C15—C16—Cl2178.7 (6)
C3—C2—C8—C663.3 (8)C7—C15—C16—Cl20.2 (10)
C1—C2—C8—C661.1 (8)C15—C16—C17—C180.8 (13)
C7—C6—C8—O1121.9 (8)Cl2—C16—C17—C18179.0 (7)
C5—C6—C8—O1113.5 (8)C16—C17—C18—C190.6 (13)
C7—C6—C8—C259.5 (8)C17—C18—C19—C200.1 (13)
C5—C6—C8—C265.1 (7)C18—C19—C20—C150.2 (13)
N1—C1—C9—C14159.5 (6)C16—C15—C20—C190.0 (11)
C2—C1—C9—C1478.4 (8)C7—C15—C20—C19178.8 (7)
N1—C1—C9—C1024.5 (9)C15—C7—N1—C1178.5 (6)
C2—C1—C9—C1097.6 (8)C6—C7—N1—C156.9 (8)
C14—C9—C10—C111.0 (11)C9—C1—N1—C7178.9 (6)
C1—C9—C10—C11177.3 (7)C2—C1—N1—C758.0 (8)

Experimental details

Crystal data
Chemical formulaC20H19Cl2NO
Mr360.26
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.7070 (15), 10.680 (2), 11.000 (2)
α, β, γ (°)101.78 (3), 92.82 (3), 98.13 (3)
V3)874.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.32 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.889, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
9470, 2949, 2478
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.088, 0.309, 1.19
No. of reflections2949
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.70, 0.41

Computer programs: APEX2 (Bruker–Nonius, 2004), SAINT-Plus (Bruker–Nonius, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

This research was supported by the second stage of the BK 21 program and Pukyong National University under the 2008 Postdoc program. The authors acknowledge the Department of Chemistry, IIT, Madras, for the X-ray data collection.

References

First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker–Nonius (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuxton, S. R. & Roberts, S. M. (1996). Guide to Organic Stereochemistry. London: Longman.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijayalakshmi, L., Parthasarathi, V., Venkatraj, M. & Jeyaraman, R. (2000). Acta Cryst. C56, 1240–1241.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWeb, N. C. & Becker, M. R. (1967). J. Chem. Soc. B, pp. 1317–1321.  Google Scholar
First citationZefirov, N. S. & Palyulin, V. A. (1990). Top. Stereochem. 20, 171–230.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds