organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

r-2,c-6-Bis(3-meth­oxy­phen­yl)-t-3,t-5-di­methyl­piperidin-4-one

aDivision of Image Science and Information Engineering, Pukyong National University, Busan 608 739, Republic of Korea, and bDepartment of Chemistry, IIT Madras, Chennai, Tamilnadu, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 22 July 2008; accepted 25 July 2008; online 31 July 2008)

In the title compound, C21H25NO3, the piperidinone ring adopts a chair conformation with an equatorial orientation of all substituents; the 3-methoxy­phenyl groups make a dihedral angle of 60.26 (15)°. The carbonyl group O atom is disordered over two positions in a 0.643 (3):0.357 (3) ratio. The crystal structure is stabilized by N—H⋯O and C—H⋯O hydrogen bonding.

Related literature

For related literature, see: Angle et al. (1995[Angle, S. R. & Breitenbucher, J. G. (1995). In Studies in Natural Products Chemistry; Stereoselective Synthesis, Vol. 16, Part J, pp. 453-502. New York: Elsevier.]); Balamurugan et al. (2008[Balamurugan, S., Thiruvalluvar, A., Butcher, R. J., Manimekalai, A. & Jayabharathi, J. (2008). Acta Cryst. E64, o59.]); Gayathri et al. (2008[Gayathri, D., Velmurugan, D., Kumar, R. R., Perumal, S. & Ravikumar, K. (2008). Acta Cryst. E64, o520.]); Katritzky et al. (1990[Katritzky, A. R. & Fan, W. Q. (1990). J. Org. Chem. 55, 3205-3209.]); Ramachandran et al. (2007[Ramachandran, R., Parthiban, P., Doddi, A., Ramkumar, V. & Kabilan, S. (2007). Acta Cryst. E63, o4559.]); Thiruvalluvar et al. (2007[Thiruvalluvar, A., Balamurugan, S., Butcher, R. J., Manimekalai, A. & Jayabharathi, J. (2007). Acta Cryst. E63, o4533.]; Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Noller & Baliah (1948[Noller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853-3855.]).

[Scheme 1]

Experimental

Crystal data
  • C21H25NO3

  • Mr = 339.42

  • Monoclinic, C 2/c

  • a = 20.9885 (6) Å

  • b = 9.7699 (2) Å

  • c = 19.8153 (5) Å

  • β = 109.459 (2)°

  • V = 3831.14 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.25 × 0.23 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.931, Tmax = 0.983

  • 23076 measured reflections

  • 4624 independent reflections

  • 2715 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.163

  • S = 0.92

  • 4624 reflections

  • 239 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.881 (18) 2.414 (19) 3.2784 (18) 167.1 (15)
C2—H2⋯O3i 0.98 2.47 3.335 (2) 146
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker–Nonius, 2004[Bruker-Nonius (2004). APEX2 and SAINT-Plus . Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker–Nonius, 2004[Bruker-Nonius (2004). APEX2 and SAINT-Plus . Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Substituted piperidin-4-ones are very important class of compounds due to their presence in a wide variety of naturally occurring alkaloids, active pharmaceutical ingredients and intermediates and as building blocks of many drugs. (Angle & Breitenbucher, 1995; Katritzky & Fan, 1990). The piperidone heterocycle predominantly adopts the chair conformation (Ramachandran et al., 2007; Balamurugan et al., 2008) whereas depending upon the substitution, the configuration and conformation can be different (Thiruvalluvar et al., 2007; Gayathri et al., 2008). Hence, the present single-crystal XRD studies on the title compound have been carried out to find out the impact on the configuration and conformation of the piperidone ring due to the presence of methyl group on both sides of the carbonyl and methoxy group on the meta position of the phenyl rings.

In the title compound C21H25NO3, as shown in figure, the piperidone heterocycle adopts a chair conformation with equatorial disposition of all the substituents. The equatorial orientations of the methyl and phenyl groups are confirmed by their torsion angles. The aryl groups attached to to the piperidone ring on both sides of the secondary amino group make a dihedral angle of 60.26 (15)°.

The analysis of torsion angles, asymmetry parameters and least-squares plane calculation shows that the piperidone ring adopts chair conformation with deviation of ring atoms N1 and C3 from the C1/C2/C4/C5 plane by -0.677 and 0.563 Å;, respectively. The ring puckering parameters for N1/C1/C2/C3/C4/C5 atoms are q2 = 0.0851 (17), q3 = 0.5515, QT = 0.5580 (16) Å and θ = 8.77 (17)° (Cremer & Pople, 1975).

Related literature top

For related literature, see: Angle et al. (1995); Balamurugan et al. (2008); Gayathri et al. (2008); Katritzky et al. (1990); Ramachandran et al. (2007); Thiruvalluvar et al. (2007; Cremer & Pople (1975); Noller & Baliah (1948).

Experimental top

The title compound was synthesized by the one pot condensation of 2-pentanone, meta methoxybenzaldehyde and ammonium acetate in 1:2:1 ratio, using ethanol as a solvent by adopting the literature procedure of modified Mannich reaction, reported by Noller & Baliah (1948) for similar type compounds. The mixture was warmed and kept aside overnight. The formed 2,6-bis(3-methoxyphenyl)-3, 5-dimethylpiperidin-4-one was filtered off and washed with 1:5 ethanol, ether mixture. Thus, the obtained crude product was purified by recrystallization with ethanol to afford the colorless crystals with diffraction quality.

Refinement top

The structure was solved in the space group C2/c. The oxygen atom attached to the piperidine ring is disordered over two orientation in a 0.643 (3):0.357 (3) ratio. Nitrogen H atom was located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms,with aromatic C—H =0.93 Å, aliphatic C—H = 0.98Å and methyl C—H = 0.96 Å. The displacement parameters were set for phenyl and aliphatic H atoms at Uiso(H) = 1.2Ueq(C) and for methyl H atoms at Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker–Nonius, 2004); cell refinement: APEX2 (Bruker–Nonius, 2004); data reduction: SAINT-Plus (Bruker–Nonius, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP of the molecule with atoms represented as 30% probability ellipsoids.
[Figure 2] Fig. 2. Packing of molecules along the b axis.
r-2,c-6-Bis(3-methoxyphenyl)-t-3,t-5-dimethylpiperidin-4-one top
Crystal data top
C21H25NO3F(000) = 1456
Mr = 339.42Dx = 1.177 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5862 reflections
a = 20.9885 (6) Åθ = 2.4–22.6°
b = 9.7699 (2) ŵ = 0.08 mm1
c = 19.8153 (5) ÅT = 298 K
β = 109.459 (2)°Block, colourless
V = 3831.14 (17) Å30.25 × 0.23 × 0.22 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4624 independent reflections
Radiation source: fine-focus sealed tube2715 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2727
Tmin = 0.931, Tmax = 0.983k = 1312
23076 measured reflectionsl = 2623
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.1P)2 + 0.5P]
where P = (Fo2 + 2Fc2)/3
4624 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.12 e Å3
1 restraintΔρmin = 0.14 e Å3
Crystal data top
C21H25NO3V = 3831.14 (17) Å3
Mr = 339.42Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.9885 (6) ŵ = 0.08 mm1
b = 9.7699 (2) ÅT = 298 K
c = 19.8153 (5) Å0.25 × 0.23 × 0.22 mm
β = 109.459 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4624 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2715 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.983Rint = 0.031
23076 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.12 e Å3
4624 reflectionsΔρmin = 0.14 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.34428 (7)0.63001 (15)0.18001 (8)0.0440 (4)
H10.30330.66270.18810.053*
C20.32387 (8)0.52388 (16)0.11928 (8)0.0477 (4)
H20.36510.49560.11010.057*
C30.29531 (8)0.39913 (18)0.14380 (9)0.0548 (4)
C40.33555 (7)0.33955 (15)0.21586 (8)0.0461 (4)
H40.37760.30200.21220.055*
C50.35427 (7)0.45552 (15)0.27161 (8)0.0425 (4)
H50.31270.49220.27670.051*
C60.38064 (8)0.75142 (15)0.16328 (8)0.0456 (4)
C70.44600 (8)0.73763 (15)0.16225 (8)0.0445 (4)
H70.46680.65230.17030.053*
C80.48077 (8)0.84985 (17)0.14930 (8)0.0499 (4)
C90.44996 (11)0.97624 (18)0.13621 (11)0.0715 (6)
H90.47301.05190.12760.086*
C100.38482 (12)0.9890 (2)0.13608 (13)0.0872 (7)
H100.36371.07400.12660.105*
C110.35003 (10)0.87908 (19)0.14962 (11)0.0712 (6)
H110.30600.89020.14960.085*
C120.27530 (10)0.5817 (2)0.04956 (10)0.0764 (6)
H12A0.26580.51300.01290.115*
H12B0.29550.65970.03530.115*
H12C0.23400.60890.05660.115*
C130.29752 (10)0.22367 (18)0.23642 (11)0.0678 (5)
H13A0.25630.25820.24080.102*
H13B0.32490.18530.28130.102*
H13C0.28730.15410.20010.102*
C140.39959 (8)0.40590 (15)0.34391 (8)0.0461 (4)
C150.37474 (10)0.3865 (2)0.39968 (10)0.0731 (6)
H150.32980.40610.39340.088*
C160.41662 (12)0.3379 (3)0.46462 (11)0.0924 (8)
H160.39910.32360.50140.111*
C170.48319 (11)0.3104 (2)0.47607 (10)0.0742 (6)
H170.51090.27840.52030.089*
C180.50881 (8)0.33063 (16)0.42127 (8)0.0516 (4)
C190.46682 (7)0.37783 (15)0.35542 (8)0.0453 (4)
H190.48430.39080.31850.054*
C200.58679 (12)0.9383 (3)0.14770 (15)0.0956 (7)
H20A0.56790.98470.10270.143*
H20B0.63150.90690.15270.143*
H20C0.58891.00000.18600.143*
C210.62095 (10)0.2629 (2)0.49353 (11)0.0866 (7)
H21A0.62010.32580.53050.130*
H21B0.66570.25950.49070.130*
H21C0.60820.17340.50450.130*
H1A0.4028 (8)0.6278 (19)0.2787 (10)0.056 (5)*
N10.38767 (6)0.56426 (13)0.24572 (7)0.0424 (3)
O10.54531 (6)0.82403 (13)0.15007 (6)0.0624 (4)
O2A0.2376 (3)0.3574 (6)0.1104 (2)0.0878 (14)0.760 (15)
O2B0.2601 (7)0.3246 (17)0.1015 (7)0.0878 (14)0.241 (15)
O30.57452 (6)0.30761 (13)0.42644 (6)0.0666 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0379 (8)0.0520 (8)0.0419 (9)0.0083 (6)0.0128 (7)0.0066 (7)
C20.0397 (8)0.0609 (10)0.0385 (8)0.0020 (7)0.0078 (7)0.0035 (7)
C30.0445 (9)0.0689 (11)0.0451 (10)0.0112 (8)0.0068 (8)0.0042 (8)
C40.0391 (8)0.0486 (8)0.0500 (9)0.0030 (6)0.0141 (7)0.0003 (7)
C50.0369 (8)0.0504 (8)0.0408 (8)0.0042 (6)0.0135 (7)0.0057 (7)
C60.0491 (9)0.0479 (9)0.0378 (8)0.0066 (7)0.0118 (7)0.0070 (7)
C70.0465 (9)0.0443 (8)0.0388 (8)0.0021 (6)0.0090 (7)0.0038 (6)
C80.0545 (10)0.0541 (9)0.0385 (9)0.0053 (7)0.0121 (7)0.0006 (7)
C90.0908 (15)0.0483 (10)0.0834 (14)0.0055 (9)0.0396 (12)0.0099 (9)
C100.1054 (18)0.0477 (11)0.123 (2)0.0209 (11)0.0568 (16)0.0256 (11)
C110.0696 (12)0.0581 (11)0.0941 (15)0.0189 (9)0.0382 (11)0.0208 (10)
C120.0677 (12)0.0969 (15)0.0493 (11)0.0041 (11)0.0012 (10)0.0147 (10)
C130.0672 (12)0.0599 (11)0.0748 (13)0.0141 (9)0.0218 (10)0.0068 (9)
C140.0486 (9)0.0487 (8)0.0406 (9)0.0013 (7)0.0145 (7)0.0051 (7)
C150.0605 (11)0.1109 (16)0.0525 (11)0.0134 (11)0.0252 (10)0.0182 (10)
C160.0858 (16)0.148 (2)0.0511 (12)0.0181 (15)0.0330 (12)0.0295 (13)
C170.0761 (14)0.0975 (15)0.0408 (10)0.0060 (11)0.0085 (10)0.0208 (10)
C180.0518 (10)0.0504 (9)0.0447 (10)0.0002 (7)0.0052 (8)0.0068 (7)
C190.0481 (9)0.0474 (8)0.0384 (9)0.0018 (7)0.0119 (7)0.0058 (7)
C200.0824 (15)0.0931 (16)0.1168 (19)0.0398 (13)0.0406 (15)0.0121 (14)
C210.0678 (13)0.0993 (16)0.0654 (14)0.0113 (11)0.0141 (11)0.0136 (11)
N10.0438 (7)0.0441 (7)0.0345 (7)0.0023 (5)0.0066 (6)0.0032 (6)
O10.0527 (7)0.0679 (8)0.0662 (8)0.0140 (5)0.0191 (6)0.0032 (6)
O2A0.051 (2)0.120 (2)0.0707 (14)0.040 (2)0.0090 (14)0.0095 (14)
O2B0.051 (2)0.120 (2)0.0707 (14)0.040 (2)0.0090 (14)0.0095 (14)
O30.0498 (7)0.0787 (9)0.0574 (8)0.0069 (6)0.0005 (6)0.0176 (6)
Geometric parameters (Å, º) top
C1—N11.4654 (19)C12—H12A0.9600
C1—C61.506 (2)C12—H12B0.9600
C1—C21.537 (2)C12—H12C0.9600
C1—H10.9800C13—H13A0.9600
C2—C31.508 (2)C13—H13B0.9600
C2—C121.526 (2)C13—H13C0.9600
C2—H20.9800C14—C191.380 (2)
C3—O2B1.169 (13)C14—C151.383 (2)
C3—O2A1.240 (4)C15—C161.378 (3)
C3—C41.513 (2)C15—H150.9300
C4—C131.517 (2)C16—C171.366 (3)
C4—C51.539 (2)C16—H160.9300
C4—H40.9800C17—C181.377 (2)
C5—N11.4570 (18)C17—H170.9300
C5—C141.511 (2)C18—O31.3671 (19)
C5—H50.9800C18—C191.388 (2)
C6—C71.385 (2)C19—H190.9300
C6—C111.388 (2)C20—O11.426 (2)
C7—C81.387 (2)C20—H20A0.9600
C7—H70.9300C20—H20B0.9600
C8—O11.3730 (19)C20—H20C0.9600
C8—C91.378 (2)C21—O31.430 (2)
C9—C101.372 (3)C21—H21A0.9600
C9—H90.9300C21—H21B0.9600
C10—C111.374 (3)C21—H21C0.9600
C10—H100.9300N1—H1A0.881 (18)
C11—H110.9300
N1—C1—C6109.30 (12)C2—C12—H12A109.5
N1—C1—C2109.18 (12)C2—C12—H12B109.5
C6—C1—C2112.85 (12)H12A—C12—H12B109.5
N1—C1—H1108.5C2—C12—H12C109.5
C6—C1—H1108.5H12A—C12—H12C109.5
C2—C1—H1108.5H12B—C12—H12C109.5
C3—C2—C12111.93 (14)C4—C13—H13A109.5
C3—C2—C1109.26 (12)C4—C13—H13B109.5
C12—C2—C1112.75 (14)H13A—C13—H13B109.5
C3—C2—H2107.6C4—C13—H13C109.5
C12—C2—H2107.6H13A—C13—H13C109.5
C1—C2—H2107.6H13B—C13—H13C109.5
O2B—C3—O2A30.7 (7)C19—C14—C15118.53 (15)
O2B—C3—C2119.8 (7)C19—C14—C5120.44 (13)
O2A—C3—C2121.1 (2)C15—C14—C5121.03 (14)
O2B—C3—C4117.2 (7)C16—C15—C14120.02 (17)
O2A—C3—C4121.1 (2)C16—C15—H15120.0
C2—C3—C4117.27 (13)C14—C15—H15120.0
C3—C4—C13111.25 (13)C17—C16—C15121.45 (17)
C3—C4—C5108.85 (13)C17—C16—H16119.3
C13—C4—C5112.82 (13)C15—C16—H16119.3
C3—C4—H4107.9C16—C17—C18119.18 (17)
C13—C4—H4107.9C16—C17—H17120.4
C5—C4—H4107.9C18—C17—H17120.4
N1—C5—C14110.05 (12)O3—C18—C17124.51 (15)
N1—C5—C4108.76 (11)O3—C18—C19115.71 (14)
C14—C5—C4111.95 (12)C17—C18—C19119.78 (16)
N1—C5—H5108.7C14—C19—C18121.04 (14)
C14—C5—H5108.7C14—C19—H19119.5
C4—C5—H5108.7C18—C19—H19119.5
C7—C6—C11118.74 (15)O1—C20—H20A109.5
C7—C6—C1120.24 (13)O1—C20—H20B109.5
C11—C6—C1121.02 (14)H20A—C20—H20B109.5
C6—C7—C8120.69 (14)O1—C20—H20C109.5
C6—C7—H7119.7H20A—C20—H20C109.5
C8—C7—H7119.7H20B—C20—H20C109.5
O1—C8—C9124.48 (15)O3—C21—H21A109.5
O1—C8—C7115.50 (14)O3—C21—H21B109.5
C9—C8—C7120.02 (16)H21A—C21—H21B109.5
C10—C9—C8119.12 (16)O3—C21—H21C109.5
C10—C9—H9120.4H21A—C21—H21C109.5
C8—C9—H9120.4H21B—C21—H21C109.5
C9—C10—C11121.50 (17)C5—N1—C1113.77 (12)
C9—C10—H10119.3C5—N1—H1A110.5 (11)
C11—C10—H10119.3C1—N1—H1A108.3 (11)
C10—C11—C6119.93 (17)C8—O1—C20117.83 (15)
C10—C11—H11120.0C18—O3—C21118.55 (15)
C6—C11—H11120.0
N1—C1—C2—C351.68 (16)O1—C8—C9—C10179.28 (18)
C6—C1—C2—C3173.44 (13)C7—C8—C9—C100.1 (3)
N1—C1—C2—C12176.82 (13)C8—C9—C10—C110.9 (4)
C6—C1—C2—C1261.42 (17)C9—C10—C11—C60.5 (4)
C12—C2—C3—O2B32.9 (11)C7—C6—C11—C100.6 (3)
C1—C2—C3—O2B158.5 (11)C1—C6—C11—C10178.52 (18)
C12—C2—C3—O2A2.9 (5)N1—C5—C14—C1946.64 (19)
C1—C2—C3—O2A122.7 (5)C4—C5—C14—C1974.44 (17)
C12—C2—C3—C4174.39 (15)N1—C5—C14—C15133.92 (17)
C1—C2—C3—C448.78 (18)C4—C5—C14—C15105.00 (18)
O2B—C3—C4—C1332.1 (10)C19—C14—C15—C161.0 (3)
O2A—C3—C4—C133.0 (5)C5—C14—C15—C16178.4 (2)
C2—C3—C4—C13174.50 (15)C14—C15—C16—C171.2 (4)
O2B—C3—C4—C5157.0 (10)C15—C16—C17—C180.6 (4)
O2A—C3—C4—C5121.9 (5)C16—C17—C18—O3179.6 (2)
C2—C3—C4—C549.58 (18)C16—C17—C18—C190.3 (3)
C3—C4—C5—N153.41 (15)C15—C14—C19—C180.2 (2)
C13—C4—C5—N1177.41 (13)C5—C14—C19—C18179.21 (14)
C3—C4—C5—C14175.24 (12)O3—C18—C19—C14179.43 (14)
C13—C4—C5—C1460.77 (17)C17—C18—C19—C140.4 (3)
N1—C1—C6—C750.27 (18)C14—C5—N1—C1172.98 (12)
C2—C1—C6—C771.42 (18)C4—C5—N1—C164.05 (16)
N1—C1—C6—C11128.84 (17)C6—C1—N1—C5172.93 (12)
C2—C1—C6—C11109.47 (18)C2—C1—N1—C563.19 (15)
C11—C6—C7—C81.3 (2)C9—C8—O1—C209.7 (3)
C1—C6—C7—C8177.79 (14)C7—C8—O1—C20170.90 (17)
C6—C7—C8—O1179.56 (13)C17—C18—O3—C211.7 (3)
C6—C7—C8—C91.0 (2)C19—C18—O3—C21178.11 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.881 (18)2.414 (19)3.2784 (18)167.1 (15)
C2—H2···O3i0.982.473.335 (2)146
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H25NO3
Mr339.42
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)20.9885 (6), 9.7699 (2), 19.8153 (5)
β (°) 109.459 (2)
V3)3831.14 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.23 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.931, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
23076, 4624, 2715
Rint0.031
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.163, 0.92
No. of reflections4624
No. of parameters239
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.14

Computer programs: APEX2 (Bruker–Nonius, 2004), SAINT-Plus (Bruker–Nonius, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.881 (18)2.414 (19)3.2784 (18)167.1 (15)
C2—H2···O3i0.982.473.335 (2)146
Symmetry code: (i) x+1, y, z+1/2.
 

Acknowledgements

This research was supported by the second stage of BK 21 program and Pukyong National University under the 2008 Postdoc program. The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

References

First citationAngle, S. R. & Breitenbucher, J. G. (1995). In Studies in Natural Products Chemistry; Stereoselective Synthesis, Vol. 16, Part J, pp. 453–502. New York: Elsevier.  Google Scholar
First citationBalamurugan, S., Thiruvalluvar, A., Butcher, R. J., Manimekalai, A. & Jayabharathi, J. (2008). Acta Cryst. E64, o59.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker–Nonius (2004). APEX2 and SAINT-Plus . Bruker–Nonius AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGayathri, D., Velmurugan, D., Kumar, R. R., Perumal, S. & Ravikumar, K. (2008). Acta Cryst. E64, o520.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatritzky, A. R. & Fan, W. Q. (1990). J. Org. Chem. 55, 3205–3209.  CrossRef CAS Web of Science Google Scholar
First citationNoller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853–3855.  CrossRef PubMed CAS Web of Science Google Scholar
First citationRamachandran, R., Parthiban, P., Doddi, A., Ramkumar, V. & Kabilan, S. (2007). Acta Cryst. E63, o4559.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiruvalluvar, A., Balamurugan, S., Butcher, R. J., Manimekalai, A. & Jayabharathi, J. (2007). Acta Cryst. E63, o4533.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds