organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-O-tert-butyl­di­methyl­silyl-2,3-O-iso­propyl­­idene-5-[(2′S)-tetra­hydro­pyran-2-yl­­oxy]-D-glycero-α-D-manno-hepto­furonate

aDepartamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain, and bDepartamento de Química Inorgánica, Facultade de Química, Universidad de Vigo, 36310 Vigo, Pontevedra, Spain
*Correspondence e-mail: ramon.estevez@usc.es

(Received 29 May 2008; accepted 8 July 2008; online 12 July 2008)

The title compound {systematic name: (2S,3R)-ethyl 3-[(3aS,4R,6S,6aS)-6-tert-butyl­dimethyl­silyl­oxy-2,2-dimethyl­per­hydro­furo[3,4-d][1,3]dioxol-4-yl]-2-nitro-3-[(S)-tetra­hydro-2H-pyran-2-yl­oxy]propanoate}, C23H41NO10Si, is the product of the Henry reaction of 1-O-tert-butyl­dimethyl­silyl-2,3-O-isopropyl­idene-α-D-lyxo-penta­dialdo-1,4-furan­ose with ethyl nitro­acetate and the subsequent protection of its C-5 hydr­oxy group as tetra­hydro­pyranyl, in order to avoid the retro-Henry reaction. The tetra­hydro­pyranyl group adopts a chair conformation. The absolute configuration, assumed from the synthesis, was confirmed from the diffraction data.

Related literature

For the preparation of the aldehyde precursor of the title compound, see: Brewster et al. (1987[Brewster, K., Harrison, J. M., Inch, T. D. & Williams, N. (1987). J. Chem. Soc. Perkin Trans. 1, pp. 21-26.]). For the Henry reaction, see: Soengas et al. (2003a[Soengas, R. G., Estévez, J. C., Estévez, R. J. & Maestro, M. (2003a). Tetrahedron Asymmetry, 14, 1653-1658.]). For the protection as tetra­hydro­pyran, see: Soengas et al. (2003b[Soengas, R. G., Estévez, J. C., Estévez, R. J. & Maestro, M. (2003b). Tetrahedron Asymmetry, 14, 3955-3963.]). For other related literature, see: Gruner et al. (2002[Gruner, S. A. W., Locardi, E., Lohof, E. & Kessler, H. (2002). Chem. Rev. 102, 491-514.]); Lillelund et al. (2002[Lillelund, V. H., Jensen, H. H., Liang, X. & Bols, M. (2002). Chem. Rev. 102, 515-553.]); Ogawa et al. (2005[Ogawa, S. & Morikawa, T. (2005). Eur. J. Org. Chem. 19, 4065-4072.]); Chakraborty et al. (2002[Chakraborty, T. K., Ghosh, S. & Jayaprkas, S. (2002). Curr. Med. Chem. 9, 421-439.]).

[Scheme 1]

Experimental

Crystal data
  • C23H41NO10Si

  • Mr = 519.66

  • Orthorhombic, P 21 21 21

  • a = 15.593 (3) Å

  • b = 9.563 (4) Å

  • c = 19.690 (3) Å

  • V = 2935.9 (15) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.13 mm−1

  • T = 293 (2) K

  • 0.48 × 0.40 × 0.32 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.614, Tmax = 0.714

  • 6473 measured reflections

  • 5898 independent reflections

  • 3434 reflections with I > 2σ(I)

  • Rint = 0.037

  • 3 standard reflections every 167 reflections intensity decay: 4%

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.264

  • S = 1.11

  • 5898 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2569 Friedel pairs

  • Flack parameter: 0.04 (8)

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Nitro-sugars are very important as precursors of a wide range of natural and synthetic products with relevant properties (Gruner et al., 2002), as aminopoliols (Lillelund et al.., 2002; Ogawa et al., 2005), polyhydroxylated amino acids (Chakraborty et al.., 2002), etc. The title nitro-sugar compound (3), C23H41NO10Si, is the product of the Henry reaction (Soengas et al., 2003a) of 1-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-a-D-lyxo-pentadialdo-1,4-furanose (1) (Brewster et al., 1987) with ethyl nitroacetate to give ethyl 1-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-D-glycero-a-D-manno-heptofuronate (2) and the subsequent protection of its C5 hydroxy group as tetrahydropyranyl (Soengas et al., 2003b), in order to avoid the retro Henry reaction. The molecular structure is represented in Fig. 1. Bond lengths and angles are within the expected values. The tetrahydropyranyl group adopts a chair conformation. The absolute configuration was assumed from the synthesis and confirmed by the X-ray crystal structure determination.

Related literature top

For the preparation of the aldehyde precursor of the title compound, see: Brewster et al. (1987). For the Henry reaction, see: Soengas et al. (2003a). For the protection as tetrahydropyran, see: Soengas et al. (2003b). For other related literature, see: Gruner et al. (2002); Lillelund et al. (2002); Ogawa et al. (2005); Chakraborty et al. (2002).

Experimental top

Ethyl nitroacetate (0.26 ml, 2.36 mmol) and sodium methoxide (1.12 g, 2.28 mmol) were added to a solution of 1-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-α-D-lyxo-pentadialdo-1,4-furanose (1) (0.62 g, 2.1 mmol) in dry methanol (6 ml), cooled at 273 K under argon. The reaction mixture was stirred at room temperature for 5 h and then neutralized with DOWEX 50W resin, filtered, evaporated in vacuo, and the resulting residue submitted to flash column chromatography (ethyl acetate/hexane 1:6) to give the epimeric mixture of ethyl 1-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-D-glycero-a-D-manno-heptofuronate (2) (0.63 g, 70% yield) as an unstable gum.

Dry tetrahydropyran (0.39 ml, 4.32 mmol) and pyridinium p-toluenesulfonate (0.12 g, 0.43 mmol) were added to a solution of the above epimeric mixture (0.63 g, 1.45 mmol) in dry dichloromethane (12 ml). The solution was stirred at room temperature for 24 h, then diethyl ether (18 ml) was added and the mixture washed with brine (12 ml), dried with anhydrous sodium sulfate, filtered and evaporated in vacuo to give a residue that was purified by flash column chromatography (ethyl acetate/hexane 1:9) to give an oil; after crystallization from hexane this gave the title compound (3) (0.24 g, 32%) as a white crystalline solid. mp 369–370 K; [a]D20 +108.0° (c, 1 in CHCl3); IR (NaCl, cm-1) 1762 (C=O), 1569, 1373 (NO2); 1H NMR (300 MHz, CDCl3) δ 0.09, 0.13 (2 × s, 6H, SiMe2); 0.89 (s, 9H, SitBu); 1.30 (t, 3H, J = 7.2 Hz, –CH3); 1.32, 1.46 (2 × s, 6H, –CH3); 1.54–1.72 (m, 6H, OTHP); 3.56–3.69 (m, 1H, OTHP); 3.83–3.89 (m, 1H, OTHP); 4.15–4.36 (m, 2H); 4.55 (d, 1H, J3,4 = 5.5 Hz, H3); 4.66 (dd, 1H, J2,1 = 3.8 Hz, J3,2 = 9.5 Hz, H2); 4.74–4.79 (m, 2H); 4.96 (s, 1H), 5.23 (s, 1H), 5.81 (d, 1H, J1,2 = 3.8 Hz, H1). 13C NMR (75.4 MHz, CDCl3) δ -5.86, -4.60, 13.93, 17.88, 18.88, 25.06, 25.18, 25.15, 25.56, 26.15, 30.58, 62.44, 74.51,77.80, 79.85, 86.69, 89.78, 101.05, 101.44, 112.50, 162.32. MS(EI) (m/z,%) 504 (M+-15, 0.1), 436 (1), 190 (3), 129 (14), 85 (100); Found C 53.15, H 7.94, N 2.74 C23H41NO10Si requires C 53.16, H 7.95, N 2.70. The reaction scheme is shown in Fig. 2. Crystals for X-ray diffraction were obtained from ethanol.

Refinement top

H atoms were positioned geometrically with C—H = 0.96–0.98 Å and refined using a riding model, with Uiso(H) equal to 1.2 (or 1.5 for methyl H atoms) times Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (3), with atom labels and 50% probability displacement ellipsoids. H atoms have been omitted.
[Figure 2] Fig. 2. Chemical reaction scheme.
(2S,3R)-ethyl 3-[(3aS,4R,6S,6aS)-6-tert- butyldimethylsilyloxy-2,2-dimethylperhydrofuro[3,4-d][1,3]dioxol- 4-yl]-2-nitro-3-[(S)-tetrahydro-2H-pyran-2-yloxy]propanoate top
Crystal data top
C23H41NO10SiDx = 1.176 Mg m3
Mr = 519.66Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 18 reflections
a = 15.593 (3) Åθ = 17.6–42.2°
b = 9.563 (4) ŵ = 1.13 mm1
c = 19.690 (3) ÅT = 293 K
V = 2935.9 (15) Å3Prism, colourless
Z = 40.48 × 0.40 × 0.32 mm
F(000) = 1120
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
3434 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 73.4°, θmin = 3.6°
Non–profiled ω/2θ scansh = 190
Absorption correction: ψ scan
(North et al., 1968)
k = 110
Tmin = 0.614, Tmax = 0.714l = 2424
6473 measured reflections3 standard reflections every 167 reflections
5898 independent reflections intensity decay: 4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.264 w = 1/[σ2(Fo2) + (0.1249P)2 + 1.1254P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
5898 reflectionsΔρmax = 0.22 e Å3
325 parametersΔρmin = 0.27 e Å3
0 restraintsAbsolute structure: Flack (1983), 2569 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (8)
Crystal data top
C23H41NO10SiV = 2935.9 (15) Å3
Mr = 519.66Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 15.593 (3) ŵ = 1.13 mm1
b = 9.563 (4) ÅT = 293 K
c = 19.690 (3) Å0.48 × 0.40 × 0.32 mm
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
3434 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.037
Tmin = 0.614, Tmax = 0.7143 standard reflections every 167 reflections
6473 measured reflections intensity decay: 4%
5898 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.264Δρmax = 0.22 e Å3
S = 1.11Δρmin = 0.27 e Å3
5898 reflectionsAbsolute structure: Flack (1983), 2569 Friedel pairs
325 parametersAbsolute structure parameter: 0.04 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3708 (2)0.3276 (4)0.43815 (17)0.0688 (9)
C20.4611 (3)0.3178 (7)0.4327 (3)0.0722 (14)
H20.48950.37500.46730.087*
C30.4804 (3)0.1651 (6)0.4427 (3)0.0713 (13)
H30.52810.13380.41420.086*
C40.3965 (3)0.0870 (6)0.4260 (3)0.0696 (13)
H40.40410.01580.39080.084*
C50.3381 (3)0.2059 (6)0.4035 (2)0.0666 (13)
H50.34470.21940.35450.080*
O60.4953 (2)0.1368 (5)0.51299 (19)0.0879 (11)
C70.4381 (4)0.0343 (7)0.5360 (3)0.0780 (15)
O80.3698 (2)0.0295 (5)0.4890 (2)0.0854 (12)
C90.4844 (7)0.1044 (9)0.5337 (7)0.181 (6)
H9A0.44870.17550.55340.271*
H9B0.53690.09760.55890.271*
H9C0.49690.12820.48740.271*
C100.4081 (6)0.0680 (17)0.6031 (4)0.194 (7)
H10A0.37680.15450.60170.290*
H10B0.45620.07740.63310.290*
H10C0.37120.00520.61910.290*
O110.4874 (2)0.3565 (4)0.36718 (17)0.0756 (9)
Si120.50307 (12)0.51726 (18)0.33863 (9)0.0858 (5)
C130.4458 (7)0.6418 (10)0.3943 (6)0.166 (5)
H13A0.38860.60870.40230.249*
H13B0.44350.73180.37270.249*
H13C0.47570.64970.43680.249*
C140.4610 (7)0.5262 (12)0.2497 (5)0.148 (4)
H14A0.46640.43620.22860.222*
H14B0.49330.59390.22440.222*
H14C0.40170.55320.25060.222*
C150.6207 (5)0.5470 (9)0.3385 (4)0.107 (2)
C160.6623 (6)0.4457 (13)0.2889 (5)0.156 (4)
H16A0.71960.47650.27890.233*
H16B0.62940.44250.24780.233*
H16C0.66440.35410.30880.233*
C170.6555 (5)0.5320 (17)0.4098 (4)0.173 (6)
H17A0.65080.43630.42400.259*
H17B0.62310.59040.44000.259*
H17C0.71460.55990.41050.259*
C180.6407 (8)0.6965 (12)0.3132 (5)0.175 (5)
H18A0.70150.71150.31390.263*
H18B0.61320.76330.34240.263*
H18C0.61960.70750.26770.263*
C190.2448 (3)0.1860 (7)0.4193 (2)0.0733 (15)
H190.24020.14810.46540.088*
O200.2148 (2)0.0833 (5)0.37335 (18)0.0860 (12)
C210.1697 (4)0.0350 (9)0.4032 (3)0.099 (2)
H210.20240.06860.44240.118*
C220.1651 (6)0.1488 (9)0.3517 (4)0.117 (3)
H22A0.14700.23450.37380.141*
H22B0.22190.16440.33310.141*
C230.1036 (7)0.1158 (13)0.2942 (4)0.141 (4)
H23A0.12610.03960.26700.169*
H23B0.09710.19710.26520.169*
C240.0191 (6)0.0760 (14)0.3231 (5)0.153 (4)
H24A0.00550.15490.34710.184*
H24B0.01970.04960.28690.184*
C250.0308 (5)0.0476 (13)0.3724 (5)0.143 (4)
H25A0.05240.12800.34760.172*
H25B0.02420.07250.39190.172*
O260.0894 (3)0.0124 (7)0.4255 (2)0.1160 (17)
C270.1881 (4)0.3190 (8)0.4150 (3)0.0892 (19)
H270.12970.29060.42730.107*
N280.1840 (4)0.3743 (8)0.3432 (3)0.110 (2)
O290.2476 (3)0.3920 (8)0.3110 (3)0.135 (2)
O300.1129 (4)0.4028 (11)0.3218 (3)0.194 (4)
C310.2115 (5)0.4367 (11)0.4606 (4)0.104 (2)
O320.2205 (4)0.5543 (8)0.4431 (4)0.143 (2)
O330.2157 (3)0.3927 (6)0.5243 (2)0.1067 (15)
C340.2439 (11)0.4994 (13)0.5745 (5)0.188 (6)
H34A0.29570.54460.55820.225*
H34B0.19980.57020.57920.225*
C350.2591 (10)0.4413 (15)0.6345 (7)0.204 (6)
H35A0.20920.39090.64920.307*
H35B0.27240.51290.66700.307*
H35C0.30670.37810.63080.307*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0590 (17)0.083 (2)0.0645 (19)0.0041 (17)0.0043 (15)0.0023 (17)
C20.062 (3)0.092 (4)0.063 (3)0.001 (3)0.003 (2)0.002 (3)
C30.060 (3)0.088 (4)0.067 (3)0.002 (3)0.007 (2)0.015 (3)
C40.067 (3)0.082 (3)0.059 (3)0.001 (3)0.002 (2)0.001 (3)
C50.054 (2)0.093 (4)0.053 (2)0.000 (2)0.0011 (19)0.004 (2)
O60.0667 (19)0.122 (3)0.075 (2)0.020 (2)0.0152 (18)0.030 (2)
C70.072 (3)0.092 (4)0.070 (3)0.010 (3)0.014 (2)0.017 (3)
O80.070 (2)0.104 (3)0.082 (2)0.018 (2)0.0152 (18)0.032 (2)
C90.160 (9)0.090 (6)0.292 (15)0.005 (6)0.124 (10)0.046 (7)
C100.115 (6)0.37 (2)0.091 (5)0.079 (10)0.017 (5)0.051 (8)
O110.074 (2)0.084 (2)0.0693 (19)0.0028 (19)0.0122 (17)0.0124 (17)
Si120.0864 (10)0.0890 (11)0.0821 (9)0.0053 (10)0.0054 (8)0.0167 (9)
C130.180 (10)0.097 (6)0.221 (12)0.021 (6)0.074 (9)0.001 (7)
C140.161 (8)0.161 (9)0.123 (6)0.035 (7)0.053 (6)0.056 (7)
C150.107 (5)0.140 (6)0.075 (4)0.040 (5)0.012 (4)0.020 (4)
C160.123 (7)0.198 (11)0.146 (8)0.020 (7)0.051 (6)0.017 (8)
C170.105 (6)0.316 (17)0.097 (6)0.070 (8)0.027 (4)0.043 (8)
C180.204 (11)0.182 (10)0.140 (8)0.114 (9)0.012 (7)0.043 (7)
C190.055 (2)0.118 (5)0.046 (2)0.001 (3)0.0017 (19)0.005 (3)
O200.078 (2)0.127 (3)0.0523 (18)0.021 (2)0.0011 (17)0.010 (2)
C210.085 (4)0.145 (6)0.067 (3)0.019 (4)0.009 (3)0.013 (4)
C220.135 (6)0.116 (6)0.101 (5)0.029 (5)0.007 (5)0.016 (5)
C230.144 (8)0.188 (10)0.090 (5)0.059 (7)0.017 (5)0.007 (5)
C240.112 (7)0.228 (12)0.119 (7)0.055 (7)0.033 (5)0.017 (7)
C250.088 (5)0.213 (11)0.129 (7)0.014 (6)0.036 (5)0.006 (7)
O260.089 (3)0.181 (5)0.078 (3)0.028 (3)0.007 (2)0.010 (3)
C270.063 (3)0.141 (6)0.064 (3)0.015 (3)0.006 (2)0.015 (4)
N280.080 (3)0.169 (6)0.080 (3)0.041 (4)0.001 (3)0.033 (4)
O290.096 (3)0.208 (6)0.101 (3)0.043 (4)0.023 (3)0.067 (4)
O300.095 (4)0.361 (12)0.125 (5)0.065 (5)0.021 (3)0.084 (6)
C310.083 (4)0.132 (7)0.099 (5)0.043 (5)0.008 (4)0.005 (5)
O320.157 (5)0.122 (5)0.152 (6)0.039 (4)0.002 (4)0.018 (4)
O330.103 (3)0.138 (4)0.079 (3)0.026 (3)0.010 (2)0.013 (3)
C340.318 (17)0.149 (9)0.096 (7)0.064 (10)0.028 (9)0.043 (7)
C350.236 (14)0.219 (15)0.158 (11)0.051 (12)0.025 (10)0.081 (11)
Geometric parameters (Å, º) top
O1—C21.415 (6)C17—H17A0.960
O1—C51.442 (6)C17—H17B0.960
C2—O111.403 (6)C17—H17C0.960
C2—C31.504 (8)C18—H18A0.960
C2—H20.980C18—H18B0.960
C3—O61.428 (6)C18—H18C0.960
C3—C41.542 (7)C19—O201.414 (7)
C3—H30.980C19—C271.552 (9)
C4—O81.419 (6)C19—H190.980
C4—C51.523 (8)O20—C211.456 (8)
C4—H40.980C21—O261.403 (9)
C5—C191.499 (7)C21—C221.488 (11)
C5—H50.980C21—H210.980
O6—C71.401 (7)C22—C231.517 (11)
C7—O81.410 (6)C22—H22A0.970
C7—C101.438 (10)C22—H22B0.970
C7—C91.511 (11)C23—C241.485 (14)
C9—H9A0.960C23—H23A0.970
C9—H9B0.960C23—H23B0.970
C9—H9C0.960C24—C251.539 (15)
C10—H10A0.960C24—H24A0.970
C10—H10B0.960C24—H24B0.970
C10—H10C0.960C25—O261.429 (9)
O11—Si121.655 (4)C25—H25A0.970
Si12—C131.849 (9)C25—H25B0.970
Si12—C151.856 (7)C27—C311.486 (12)
Si12—C141.871 (8)C27—N281.510 (8)
C13—H13A0.960C27—H270.980
C13—H13B0.960N28—O291.188 (7)
C13—H13C0.960N28—O301.217 (7)
C14—H14A0.960C31—O321.184 (10)
C14—H14B0.960C31—O331.323 (9)
C14—H14C0.960O33—C341.487 (12)
C15—C171.511 (10)C34—C351.327 (15)
C15—C161.521 (13)C34—H34A0.970
C15—C181.545 (12)C34—H34B0.970
C16—H16A0.960C35—H35A0.960
C16—H16B0.960C35—H35B0.960
C16—H16C0.960C35—H35C0.960
C2—O1—C5105.2 (4)C15—C17—H17A109.5
O11—C2—O1110.1 (4)C15—C17—H17B109.5
O11—C2—C3108.6 (4)H17A—C17—H17B109.5
O1—C2—C3104.7 (4)C15—C17—H17C109.5
O11—C2—H2111.1H17A—C17—H17C109.5
O1—C2—H2111.1H17B—C17—H17C109.5
C3—C2—H2111.1C15—C18—H18A109.5
O6—C3—C2110.1 (5)C15—C18—H18B109.5
O6—C3—C4104.7 (4)H18A—C18—H18B109.5
C2—C3—C4105.8 (4)C15—C18—H18C109.5
O6—C3—H3111.9H18A—C18—H18C109.5
C2—C3—H3111.9H18B—C18—H18C109.5
C4—C3—H3111.9O20—C19—C5106.1 (4)
O8—C4—C5111.6 (4)O20—C19—C27110.2 (4)
O8—C4—C3104.5 (4)C5—C19—C27115.9 (5)
C5—C4—C3102.0 (4)O20—C19—H19108.1
O8—C4—H4112.7C5—C19—H19108.1
C5—C4—H4112.7C27—C19—H19108.1
C3—C4—H4112.7C19—O20—C21116.2 (4)
O1—C5—C19110.4 (4)O26—C21—O20107.8 (7)
O1—C5—C4104.7 (4)O26—C21—C22114.0 (6)
C19—C5—C4115.1 (5)O20—C21—C22108.5 (5)
O1—C5—H5108.8O26—C21—H21108.8
C19—C5—H5108.8O20—C21—H21108.8
C4—C5—H5108.8C22—C21—H21108.8
C7—O6—C3109.9 (4)C21—C22—C23112.8 (8)
O6—C7—O8107.0 (4)C21—C22—H22A109.0
O6—C7—C10110.3 (7)C23—C22—H22A109.0
O8—C7—C10111.3 (6)C21—C22—H22B109.0
O6—C7—C9107.5 (6)C23—C22—H22B109.0
O8—C7—C9108.2 (6)H22A—C22—H22B107.8
C10—C7—C9112.3 (9)C24—C23—C22109.1 (7)
C7—O8—C4109.8 (4)C24—C23—H23A109.9
C7—C9—H9A109.5C22—C23—H23A109.9
C7—C9—H9B109.5C24—C23—H23B109.9
H9A—C9—H9B109.5C22—C23—H23B109.9
C7—C9—H9C109.5H23A—C23—H23B108.3
H9A—C9—H9C109.5C23—C24—C25109.5 (7)
H9B—C9—H9C109.5C23—C24—H24A109.8
C7—C10—H10A109.5C25—C24—H24A109.8
C7—C10—H10B109.5C23—C24—H24B109.8
H10A—C10—H10B109.5C25—C24—H24B109.8
C7—C10—H10C109.5H24A—C24—H24B108.2
H10A—C10—H10C109.5O26—C25—C24110.9 (9)
H10B—C10—H10C109.5O26—C25—H25A109.5
C2—O11—Si12126.9 (4)C24—C25—H25A109.5
O11—Si12—C13109.0 (4)O26—C25—H25B109.5
O11—Si12—C15106.8 (3)C24—C25—H25B109.5
C13—Si12—C15112.3 (5)H25A—C25—H25B108.1
O11—Si12—C14108.0 (4)C21—O26—C25114.6 (6)
C13—Si12—C14110.9 (6)C31—C27—N28108.1 (7)
C15—Si12—C14109.8 (4)C31—C27—C19116.6 (5)
Si12—C13—H13A109.5N28—C27—C19111.2 (5)
Si12—C13—H13B109.5C31—C27—H27106.8
H13A—C13—H13B109.5N28—C27—H27106.8
Si12—C13—H13C109.5C19—C27—H27106.8
H13A—C13—H13C109.5O29—N28—O30122.9 (6)
H13B—C13—H13C109.5O29—N28—C27120.9 (5)
Si12—C14—H14A109.5O30—N28—C27116.2 (6)
Si12—C14—H14B109.5O32—C31—O33124.9 (9)
H14A—C14—H14B109.5O32—C31—C27124.9 (8)
Si12—C14—H14C109.5O33—C31—C27110.1 (8)
H14A—C14—H14C109.5C31—O33—C34115.2 (8)
H14B—C14—H14C109.5C35—C34—O33111.0 (12)
C17—C15—C16112.5 (9)C35—C34—H34A109.4
C17—C15—C18108.3 (8)O33—C34—H34A109.4
C16—C15—C18107.3 (8)C35—C34—H34B109.4
C17—C15—Si12109.8 (5)O33—C34—H34B109.4
C16—C15—Si12109.0 (6)H34A—C34—H34B108.0
C18—C15—Si12109.9 (7)C34—C35—H35A109.5
C15—C16—H16A109.5C34—C35—H35B109.5
C15—C16—H16B109.5H35A—C35—H35B109.5
H16A—C16—H16B109.5C34—C35—H35C109.5
C15—C16—H16C109.5H35A—C35—H35C109.5
H16A—C16—H16C109.5H35B—C35—H35C109.5
H16B—C16—H16C109.5
C5—O1—C2—O1176.7 (5)C14—Si12—C15—C1653.3 (8)
C5—O1—C2—C339.8 (5)O11—Si12—C15—C18179.2 (6)
O11—C2—C3—O6151.5 (4)C13—Si12—C15—C1859.8 (7)
O1—C2—C3—O690.9 (5)C14—Si12—C15—C1864.0 (8)
O11—C2—C3—C495.9 (5)O1—C5—C19—O20168.6 (4)
O1—C2—C3—C421.7 (5)C4—C5—C19—O2073.1 (5)
O6—C3—C4—O83.3 (6)O1—C5—C19—C2745.9 (6)
C2—C3—C4—O8113.0 (5)C4—C5—C19—C27164.2 (4)
O6—C3—C4—C5119.7 (4)C5—C19—O20—C21127.8 (5)
C2—C3—C4—C53.3 (5)C27—C19—O20—C21105.9 (6)
C2—O1—C5—C19166.9 (4)C19—O20—C21—O2671.9 (6)
C2—O1—C5—C442.4 (5)C19—O20—C21—C22164.1 (5)
O8—C4—C5—O184.2 (5)O26—C21—C22—C2348.8 (9)
C3—C4—C5—O126.8 (5)O20—C21—C22—C2371.3 (8)
O8—C4—C5—C1937.1 (6)C21—C22—C23—C2452.3 (11)
C3—C4—C5—C19148.2 (4)C22—C23—C24—C2556.2 (11)
C2—C3—O6—C7122.7 (5)C23—C24—C25—O2658.1 (11)
C4—C3—O6—C79.4 (6)O20—C21—O26—C2569.9 (8)
C3—O6—C7—O818.8 (6)C22—C21—O26—C2550.6 (10)
C3—O6—C7—C10140.0 (7)C24—C25—O26—C2154.9 (10)
C3—O6—C7—C997.3 (6)O20—C19—C27—C31179.8 (5)
O6—C7—O8—C421.1 (7)C5—C19—C27—C3159.7 (7)
C10—C7—O8—C4141.7 (8)O20—C19—C27—N2855.6 (6)
C9—C7—O8—C494.4 (7)C5—C19—C27—N2864.9 (7)
C5—C4—O8—C7124.3 (5)C31—C27—N28—O2979.4 (9)
C3—C4—O8—C714.8 (6)C19—C27—N28—O2949.8 (10)
O1—C2—O11—Si1282.7 (5)C31—C27—N28—O3098.5 (9)
C3—C2—O11—Si12163.2 (4)C19—C27—N28—O30132.2 (8)
C2—O11—Si12—C1319.6 (6)N28—C27—C31—O323.7 (10)
C2—O11—Si12—C15101.9 (5)C19—C27—C31—O32129.9 (8)
C2—O11—Si12—C14140.2 (5)N28—C27—C31—O33179.9 (5)
O11—Si12—C15—C1760.2 (9)C19—C27—C31—O3354.0 (7)
C13—Si12—C15—C1759.2 (9)O32—C31—O33—C347.5 (12)
C14—Si12—C15—C17177.0 (9)C27—C31—O33—C34176.4 (8)
O11—Si12—C15—C1663.5 (6)C31—O33—C34—C35170.2 (11)
C13—Si12—C15—C16177.1 (7)

Experimental details

Crystal data
Chemical formulaC23H41NO10Si
Mr519.66
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)15.593 (3), 9.563 (4), 19.690 (3)
V3)2935.9 (15)
Z4
Radiation typeCu Kα
µ (mm1)1.13
Crystal size (mm)0.48 × 0.40 × 0.32
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.614, 0.714
No. of measured, independent and
observed [I > 2σ(I)] reflections
6473, 5898, 3434
Rint0.037
(sin θ/λ)max1)0.621
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.264, 1.11
No. of reflections5898
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.27
Absolute structureFlack (1983), 2569 Friedel pairs
Absolute structure parameter0.04 (8)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

We gratefully acknowledge the Spanish Education Secretary and the Xunta de Galicia for financial support and the Spanish Education Secretary for a grant to RGS. Intensity measurements were performed at the Unidade de Raios X, RIAIDT, University of Santiago de Compostela.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrewster, K., Harrison, J. M., Inch, T. D. & Williams, N. (1987). J. Chem. Soc. Perkin Trans. 1, pp. 21–26.  CrossRef Web of Science Google Scholar
First citationChakraborty, T. K., Ghosh, S. & Jayaprkas, S. (2002). Curr. Med. Chem. 9, 421–439.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGruner, S. A. W., Locardi, E., Lohof, E. & Kessler, H. (2002). Chem. Rev. 102, 491–514.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLillelund, V. H., Jensen, H. H., Liang, X. & Bols, M. (2002). Chem. Rev. 102, 515–553.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOgawa, S. & Morikawa, T. (2005). Eur. J. Org. Chem. 19, 4065–4072.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoengas, R. G., Estévez, J. C., Estévez, R. J. & Maestro, M. (2003a). Tetrahedron Asymmetry, 14, 1653–1658.  Web of Science CSD CrossRef CAS Google Scholar
First citationSoengas, R. G., Estévez, J. C., Estévez, R. J. & Maestro, M. (2003b). Tetrahedron Asymmetry, 14, 3955–3963.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds