organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl N′-[(E)-4-hy­droxy­benzyl­­idene]hydrazine­carboxyl­ate at 123 K

aZhejiang Police College Experience Center, Zhejiang Police College, Hangzhou 310053, People's Republic of China
*Correspondence e-mail: zpccxw@126.com

(Received 19 June 2008; accepted 29 June 2008; online 5 July 2008)

The mol­ecule of the title compound, C10H12N2O3, adopts a trans configuration with respect to the C=N bond. The dihedral angle between the benzene ring and the hydrazinecarboxyl­ate plane is 14.6 (1)°. Mol­ecules are linked into a three-dimensional network by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, and by C—H⋯π inter­actions.

Related literature

For general background, see: Parashar et al. (1988[Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201-208.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.]); Borg et al. (1999[Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331-4342.]). For a related structure, see: Shang et al. (2007[Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2O3

  • Mr = 208.22

  • Orthorhombic, P b c a

  • a = 11.342 (3) Å

  • b = 7.6114 (17) Å

  • c = 24.986 (5) Å

  • V = 2157.0 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 123 (2) K

  • 0.26 × 0.25 × 0.23 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.968

  • 21084 measured reflections

  • 1900 independent reflections

  • 1521 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.125

  • S = 1.02

  • 1900 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.96 2.752 (2) 161
N2—H2A⋯O2ii 0.86 2.11 2.936 (2) 161
C9—H9B⋯O1iii 0.97 2.57 3.425 (3) 148
C2—H2⋯Cg1iv 0.93 2.97 3.636 (2) 130
C5—H5⋯Cg1v 0.93 2.77 3.613 (2) 151
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (iv) [-x-{\script{1\over 2}}, y-{\script{3\over 2}}, z]; (v) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzaldehydehydrazone derivatives have received considerable attention for a long time due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties (Hadjoudis et al., 1987). They are important intermidiates for 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many properties (Borg et al., 1999). As a further investigation of this type of derivatives, the crystal structure of the title compound is reported here.

The title molecule (Fig.1) adopts a trans configuration with respect to the CN bond. The hydrazine carboxylic acid ethyl ester group is slightly twisted away from the attached ring. The dihedral angle between the C1–C6 ring and the C7/C8/N1/N2/O2/O3 plane is 14.6 (1)°. The bond lengths and angles agree with those observed for N'-(4-methoxybenzylidene)methoxyformohydrazide (Shang et al., 2007).

In the crystal structure, O—H···O, N—H···O and C—H···O hydrogen bonds and C—H···π interactions (Table 1) link the molecules into a three-dimensional network (Fig.2).

Related literature top

For general background, see: Parashar et al. (1988); Hadjoudis et al. (1987); Borg et al. (1999). For a related structure, see: Shang et al. (2007). Cg1 is the centroid of the C1–C6 ring.

Experimental top

4-Hydroxybenzaldehyde (12.2 g, 0.1 mol) and ethyl hydrazinecarboxylate (10.4 g, 0.1 mol) were dissolved in methanol (50 ml) with stirring and left for 6 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 90% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 460–462 K).

Refinement top

H atoms were positioned geometrically (N—H = 0.86 Å, O—H = 0.82 Å and C—H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed approximately down the a axis. Dashed lines indicate intermolecular hydrogen bonds.
Ethyl N'-[(E)-4-hydroxybenzylidene]hydrazinecarboxylate top
Crystal data top
C10H12N2O3F(000) = 880
Mr = 208.22Dx = 1.282 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1900 reflections
a = 11.342 (3) Åθ = 1.6–25.0°
b = 7.6114 (17) ŵ = 0.10 mm1
c = 24.986 (5) ÅT = 123 K
V = 2157.0 (9) Å3Block, colourless
Z = 80.26 × 0.25 × 0.23 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1900 independent reflections
Radiation source: fine-focus sealed tube1521 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1313
Tmin = 0.965, Tmax = 0.968k = 89
21084 measured reflectionsl = 2829
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0722P)2 + 0.4536P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
1900 reflectionsΔρmax = 0.21 e Å3
137 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0110 (18)
Crystal data top
C10H12N2O3V = 2157.0 (9) Å3
Mr = 208.22Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.342 (3) ŵ = 0.10 mm1
b = 7.6114 (17) ÅT = 123 K
c = 24.986 (5) Å0.26 × 0.25 × 0.23 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1900 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1521 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.968Rint = 0.040
21084 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
1900 reflectionsΔρmin = 0.18 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.38975 (10)0.12445 (15)0.06297 (5)0.0550 (4)
O10.10016 (11)0.07264 (18)0.38449 (5)0.0662 (4)
H10.03960.11210.39780.099*
O30.31948 (13)0.34186 (17)0.01045 (5)0.0708 (4)
N10.23119 (12)0.22542 (18)0.13972 (5)0.0472 (4)
N20.23619 (13)0.29838 (19)0.08895 (5)0.0533 (4)
H2A0.18590.37690.07940.064*
C40.21890 (13)0.1206 (2)0.25066 (6)0.0451 (4)
H40.28500.08390.23170.054*
C60.13472 (13)0.2248 (2)0.22515 (6)0.0422 (4)
C10.10857 (14)0.1271 (2)0.33239 (6)0.0459 (4)
C30.02413 (14)0.2324 (2)0.30815 (7)0.0493 (4)
H30.04100.27070.32750.059*
C70.14800 (14)0.2813 (2)0.16958 (7)0.0471 (4)
H70.09400.36080.15550.056*
C20.20628 (14)0.0712 (2)0.30315 (6)0.0481 (4)
H20.26290.00040.31920.058*
C50.03729 (14)0.2800 (2)0.25500 (7)0.0491 (4)
H50.01970.35010.23890.059*
C80.32053 (15)0.2449 (2)0.05487 (6)0.0489 (4)
C90.3972 (3)0.2864 (3)0.03288 (9)0.1029 (9)
H9A0.47490.26010.01880.123*
H9B0.36630.18090.04950.123*
C100.4055 (3)0.4246 (4)0.07193 (10)0.1096 (10)
H10A0.45640.38800.10050.164*
H10B0.43720.52820.05540.164*
H10C0.32850.44970.08590.164*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0572 (7)0.0535 (7)0.0542 (7)0.0039 (6)0.0023 (5)0.0014 (5)
O10.0693 (8)0.0818 (9)0.0475 (8)0.0116 (7)0.0088 (6)0.0139 (6)
O30.1000 (10)0.0651 (8)0.0472 (7)0.0138 (7)0.0168 (7)0.0131 (6)
N10.0533 (8)0.0472 (8)0.0412 (8)0.0007 (6)0.0011 (6)0.0059 (6)
N20.0639 (9)0.0534 (8)0.0426 (8)0.0116 (7)0.0048 (7)0.0112 (6)
C40.0428 (8)0.0455 (9)0.0469 (9)0.0038 (7)0.0050 (7)0.0010 (7)
C60.0431 (8)0.0387 (8)0.0447 (9)0.0018 (6)0.0001 (6)0.0012 (6)
C10.0508 (9)0.0447 (9)0.0421 (9)0.0033 (7)0.0001 (7)0.0022 (7)
C30.0426 (8)0.0528 (10)0.0526 (10)0.0030 (7)0.0077 (7)0.0009 (8)
C70.0495 (9)0.0447 (9)0.0471 (10)0.0040 (7)0.0013 (7)0.0053 (7)
C20.0484 (8)0.0478 (9)0.0483 (10)0.0063 (7)0.0029 (7)0.0024 (7)
C50.0437 (8)0.0501 (9)0.0534 (10)0.0061 (7)0.0001 (7)0.0069 (7)
C80.0592 (10)0.0455 (9)0.0418 (9)0.0046 (8)0.0000 (7)0.0011 (7)
C90.155 (3)0.0936 (18)0.0598 (14)0.0209 (17)0.0467 (16)0.0063 (12)
C100.107 (2)0.155 (3)0.0666 (15)0.0021 (19)0.0209 (13)0.0293 (16)
Geometric parameters (Å, º) top
O2—C81.224 (2)C1—C31.388 (2)
O1—C11.3695 (19)C1—C21.394 (2)
O1—H10.82C3—C51.385 (2)
O3—C81.3329 (19)C3—H30.93
O3—C91.458 (3)C7—H70.93
N1—C71.276 (2)C2—H20.93
N1—N21.3860 (18)C5—H50.93
N2—C81.344 (2)C9—C101.437 (3)
N2—H2A0.86C9—H9A0.97
C4—C21.372 (2)C9—H9B0.97
C4—C61.395 (2)C10—H10A0.96
C4—H40.93C10—H10B0.96
C6—C51.398 (2)C10—H10C0.96
C6—C71.462 (2)
C1—O1—H1109.5C4—C2—C1120.03 (14)
C8—O3—C9116.92 (16)C4—C2—H2120.0
C7—N1—N2115.58 (13)C1—C2—H2120.0
C8—N2—N1119.19 (14)C3—C5—C6121.20 (15)
C8—N2—H2A120.4C3—C5—H5119.4
N1—N2—H2A120.4C6—C5—H5119.4
C2—C4—C6121.41 (14)O2—C8—O3123.93 (15)
C2—C4—H4119.3O2—C8—N2125.36 (15)
C6—C4—H4119.3O3—C8—N2110.71 (15)
C4—C6—C5117.91 (15)C10—C9—O3109.4 (2)
C4—C6—C7122.06 (14)C10—C9—H9A109.8
C5—C6—C7119.99 (14)O3—C9—H9A109.8
O1—C1—C3122.78 (14)C10—C9—H9B109.8
O1—C1—C2117.48 (14)O3—C9—H9B109.8
C3—C1—C2119.74 (15)H9A—C9—H9B108.2
C5—C3—C1119.70 (15)C9—C10—H10A109.5
C5—C3—H3120.1C9—C10—H10B109.5
C1—C3—H3120.1H10A—C10—H10B109.5
N1—C7—C6122.24 (15)C9—C10—H10C109.5
N1—C7—H7118.9H10A—C10—H10C109.5
C6—C7—H7118.9H10B—C10—H10C109.5
C7—N1—N2—C8179.28 (15)C3—C1—C2—C40.2 (2)
C2—C4—C6—C50.9 (2)C1—C3—C5—C60.3 (3)
C2—C4—C6—C7178.80 (15)C4—C6—C5—C30.3 (2)
O1—C1—C3—C5178.91 (15)C7—C6—C5—C3178.25 (15)
C2—C1—C3—C50.4 (2)C9—O3—C8—O27.1 (3)
N2—N1—C7—C6176.50 (13)C9—O3—C8—N2173.16 (19)
C4—C6—C7—N16.8 (3)N1—N2—C8—O26.4 (3)
C5—C6—C7—N1175.38 (15)N1—N2—C8—O3173.41 (14)
C6—C4—C2—C10.9 (2)C8—O3—C9—C10166.9 (2)
O1—C1—C2—C4179.54 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.962.752 (2)161
N2—H2A···O2ii0.862.112.936 (2)161
C9—H9B···O1iii0.972.573.425 (3)148
C2—H2···Cg1iv0.932.973.636 (2)130
C5—H5···Cg1v0.932.773.613 (2)151
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y, z1/2; (iv) x1/2, y3/2, z; (v) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H12N2O3
Mr208.22
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)123
a, b, c (Å)11.342 (3), 7.6114 (17), 24.986 (5)
V3)2157.0 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.26 × 0.25 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.965, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
21084, 1900, 1521
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.125, 1.02
No. of reflections1900
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.18

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.962.752 (2)161
N2—H2A···O2ii0.862.112.936 (2)161
C9—H9B···O1iii0.972.573.425 (3)148
C2—H2···Cg1iv0.932.973.636 (2)130
C5—H5···Cg1v0.932.773.613 (2)151
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y, z1/2; (iv) x1/2, y3/2, z; (v) x, y+1/2, z+1/2.
 

Acknowledgements

The author acknowledges financial support from Zhejiang Police College, China.

References

First citationBorg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331–4342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationParashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201–208.  CrossRef CAS Web of Science Google Scholar
First citationShang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds