organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Furo­yl)-3-(o-tol­yl)thio­urea

aGrupo de Cristalografía, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil, and bDepartment of Structure Analysis, Institute of Materials, University of Havana, Cuba
*Correspondence e-mail: osvaldo@imre.oc.uh.cu

(Received 27 June 2008; accepted 1 July 2008; online 5 July 2008)

The title compound, C13H12N2O2S, was synthesized from furoyl isothio­cyanate and o-toluidine in dry acetone. The thio­urea group is in the thio­amide form. The central thio­urea fragment makes dihedral angles of 2.6 (1) and 22.4 (1)° with the ketofuran group and the benzene ring, respectively. The mol­ecular structure is stabilized by N—H⋯O hydrogen bonds. In the crystal structure, centrosymmetrically related mol­ecules are linked by a pair of N—H⋯S hydrogen bonds to form a dimer with an R22(6) ring motif.

Related literature

For general background, see: Aly et al. (2007[Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73-93.]); Koch (2001[Koch, K. R. (2001). Coord. Chem. Rev. 216-217, 473-488.]); Estévez-Hernández et al. (2007[Estévez-Hernández, O., Naranjo-Rodríguez, I., Hidalgo-Hidalgo de Cisneros, J. L. & Reguera, E. (2007). Sens. Actuators B, 123, 488-494.]). For related structures, see: Theodoro et al. (2008[Theodoro, J. E., Mascarenhas, Y., Ellena, J., Estévez-Hernández, O. & Duque, J. (2008). Acta Cryst. E64, o1193.]); Duque et al. (2008[Duque, J., Estevez-Hernandez, O., Reguera, E., Corrêa, R. S. & Gutierrez Maria, P. (2008). Acta Cryst. E64, o1068.]). For the synthesis, see: Otazo-Sánchez et al. (2001[Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211-2218.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N2O2S

  • Mr = 260.31

  • Monoclinic, P 21 /c

  • a = 6.0976 (1) Å

  • b = 16.6689 (6) Å

  • c = 13.1462 (4) Å

  • β = 108.765 (2)°

  • V = 1265.16 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 294 K

  • 0.50 × 0.08 × 0.07 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: Gaussian (Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]) Tmin = 0.925, Tmax = 0.983

  • 8242 measured reflections

  • 2408 independent reflections

  • 1594 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.130

  • S = 1.02

  • 2408 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 2.26 2.682 (3) 110
N1—H1⋯S1i 0.86 2.80 3.639 (2) 165
N2—H2⋯O1 0.86 1.92 2.649 (2) 141
Symmetry code: (i) -x, -y, -z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Thiourea and its derivatives form a versatile family of ligands suitable to form complexes with ions of transition metals through the S atom (Aly et al., 2007). Of analytical interest is the potential application of these compounds as ionophores or chemical modifiers in potenciometric and amperometric sensors (Estévez-Hernández et al., 2007). The derived crystal structures help to understand the behaviour of these ligands as ionophores and also the complex formation with salts of the heavy metals. The title compound (Fig.1) is another example of our newly synthesized furoylthiourea derivatives.

The title compound crystallizes in the thioamide form. The bond lengths and angles are within the ranges observed for similar compounds (Koch, 2001). The C2—S1 [1.652 (2) Å] and C1—O1 [1.221 (2) Å] bonds both show the expected double-bond character. The short values of the C2—N1 [1.400 (3) Å], C2—N2 [1.330 (3) Å] and C1—N1 [1.377 (2) Å] bonds indicate partial double bond character. These results can be explained by the existence of resonance in this part of the molecule. The furan carbonyl group [O1/O2/C1/C3-C6] is nearly coplanar with the plane of the thiourea fragment [N1/N2/C2/S1, dihedral angle 2.6 (1)°], whereas the C7-C12 benzene ring is inclined by 22.4 (1)°. The trans-cis geometry in the thiourea group is stabilized by the N2—H2···O1 and N1—H1···O2 intramolecular hydrogen bonds (Fig.1 and Table 1). The crystal structure is stabilized by two intermolecular N1—H1···S1 hydrogen bonds (Fig.2 and Table 1) between centrosymmetrically related molecules forming dimers stacked along the [100] direction.

Related literature top

For general background, see: Aly et al. (2007); Koch (2001); Estévez-Hernández et al. (2007). For related structures, see: Theodoro et al. (2008); Duque et al. (2008). For the synthesis, see: Otazo-Sánchez et al. (2001).

Experimental top

The title compound was synthesized according to a previous report (Otazo-Sánchez et al., 2001), by converting furoyl chloride into furoyl isothiocyanate and then condensing with o-toluidine. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (m.p 387–388 K).

Refinement top

H atoms were placed in calculated positions with N-H = 0.86 Å and C-H = 0.93 Å (aromatic) or 0.96 Å (methyl), and refined in riding model, with Uiso(H) = 1.5Ueq(Cmethyl) and 1.2Ueq(N,Caromatic).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. View of the crystal packing of the title compound. Intermolecular Hydrogen bonds are shown as dashed lines.
1-(2-Furoyl)-3-(o-tolyl)thiourea top
Crystal data top
C13H12N2O2SF(000) = 544
Mr = 260.31Dx = 1.367 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20621 reflections
a = 6.0976 (1) Åθ = 2.9–25.7°
b = 16.6689 (6) ŵ = 0.25 mm1
c = 13.1462 (4) ÅT = 294 K
β = 108.765 (2)°Needle, colourless
V = 1265.16 (6) Å30.50 × 0.08 × 0.07 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1594 reflections with I > 2σ(I)
ω scansRint = 0.048
Absorption correction: gaussian
(Coppens et al., 1965)
θmax = 25.7°, θmin = 2.9°
Tmin = 0.925, Tmax = 0.983h = 67
8242 measured reflectionsk = 1920
2408 independent reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0702P)2 + 0.1015P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.130(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.26 e Å3
2408 reflectionsΔρmin = 0.30 e Å3
164 parameters
Crystal data top
C13H12N2O2SV = 1265.16 (6) Å3
Mr = 260.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.0976 (1) ŵ = 0.25 mm1
b = 16.6689 (6) ÅT = 294 K
c = 13.1462 (4) Å0.50 × 0.08 × 0.07 mm
β = 108.765 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2408 independent reflections
Absorption correction: gaussian
(Coppens et al., 1965)
1594 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.983Rint = 0.048
8242 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
2408 reflectionsΔρmin = 0.30 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22254 (12)0.09680 (4)0.04759 (5)0.0800 (3)
N20.4198 (3)0.09229 (10)0.26210 (13)0.0561 (4)
H20.4080.07120.31980.067*
O20.2979 (3)0.06394 (9)0.17467 (12)0.0679 (4)
O10.1899 (3)0.01628 (10)0.37313 (12)0.0757 (5)
N10.0880 (3)0.01904 (10)0.18967 (13)0.0578 (5)
H10.00830.00160.13280.069*
C70.6105 (3)0.14441 (12)0.27881 (15)0.0528 (5)
C20.2552 (4)0.07008 (12)0.17262 (17)0.0556 (5)
C10.0568 (4)0.00258 (13)0.28515 (17)0.0587 (5)
C120.7138 (4)0.16151 (13)0.20141 (17)0.0631 (6)
H120.65570.13890.13330.076*
C30.1472 (4)0.05056 (13)0.27543 (17)0.0594 (5)
C80.7009 (4)0.17683 (13)0.38190 (17)0.0609 (6)
C90.8905 (4)0.22716 (14)0.40236 (19)0.0728 (6)
H90.95240.24940.47050.087*
C40.2232 (5)0.08806 (15)0.3482 (2)0.0774 (7)
H40.15280.08810.42240.093*
C100.9905 (4)0.24531 (14)0.3252 (2)0.0737 (6)
H101.11660.27990.34090.088*
C110.9035 (4)0.21225 (14)0.2256 (2)0.0703 (6)
H110.97190.22380.17340.084*
C130.5994 (4)0.15856 (18)0.46916 (17)0.0835 (8)
H13A0.6710.19210.53030.125*
H13B0.62640.10320.48960.125*
H13C0.43570.16870.44350.125*
C60.4688 (4)0.11084 (14)0.1874 (2)0.0769 (7)
H60.59590.12910.13160.092*
C50.4295 (5)0.12709 (15)0.2904 (2)0.0831 (8)
H50.52140.15850.3190.1*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0983 (5)0.0930 (5)0.0458 (4)0.0272 (4)0.0189 (3)0.0060 (3)
N20.0625 (10)0.0623 (10)0.0453 (10)0.0051 (9)0.0199 (9)0.0046 (8)
O20.0709 (10)0.0737 (10)0.0649 (10)0.0096 (8)0.0302 (8)0.0045 (7)
O10.0788 (10)0.0981 (13)0.0498 (9)0.0183 (9)0.0201 (8)0.0072 (8)
N10.0627 (10)0.0649 (11)0.0469 (9)0.0066 (9)0.0192 (8)0.0012 (8)
C70.0572 (11)0.0511 (12)0.0512 (12)0.0023 (10)0.0190 (9)0.0062 (9)
C20.0664 (13)0.0525 (12)0.0508 (13)0.0005 (10)0.0231 (11)0.0011 (9)
C10.0652 (13)0.0602 (13)0.0542 (13)0.0000 (11)0.0240 (11)0.0040 (10)
C120.0688 (13)0.0661 (14)0.0583 (13)0.0001 (11)0.0262 (11)0.0032 (10)
C30.0642 (13)0.0624 (14)0.0553 (13)0.0021 (11)0.0245 (11)0.0016 (10)
C80.0639 (13)0.0641 (14)0.0541 (13)0.0005 (11)0.0184 (10)0.0032 (10)
C90.0739 (14)0.0746 (16)0.0652 (15)0.0132 (12)0.0158 (12)0.0037 (12)
C40.0832 (17)0.0879 (17)0.0700 (16)0.0091 (14)0.0370 (14)0.0092 (13)
C100.0684 (14)0.0705 (16)0.0810 (17)0.0085 (12)0.0223 (13)0.0066 (13)
C110.0675 (14)0.0750 (15)0.0765 (17)0.0015 (12)0.0343 (13)0.0164 (13)
C130.0874 (17)0.113 (2)0.0507 (13)0.0239 (15)0.0226 (12)0.0079 (13)
C60.0716 (15)0.0789 (17)0.0887 (19)0.0192 (13)0.0376 (14)0.0161 (14)
C50.0880 (18)0.0825 (18)0.094 (2)0.0170 (14)0.0506 (16)0.0027 (15)
Geometric parameters (Å, º) top
S1—C21.652 (2)C8—C91.383 (3)
N2—C21.330 (3)C8—C131.500 (3)
N2—C71.411 (2)C9—C101.375 (3)
N2—H20.86C9—H90.93
O2—C61.355 (3)C4—C51.403 (4)
O2—C31.366 (3)C4—H40.93
O1—C11.221 (2)C10—C111.361 (3)
N1—C11.377 (2)C10—H100.93
N1—C21.400 (3)C11—H110.93
N1—H10.86C13—H13A0.96
C7—C121.388 (3)C13—H13B0.96
C7—C81.397 (3)C13—H13C0.96
C1—C31.449 (3)C6—C51.325 (4)
C12—C111.385 (3)C6—H60.93
C12—H120.93C5—H50.93
C3—C41.344 (3)
C2—N2—C7131.21 (17)C10—C9—C8122.1 (2)
C2—N2—H2114.4C10—C9—H9118.9
C7—N2—H2114.4C8—C9—H9118.9
C6—O2—C3106.19 (18)C3—C4—C5106.5 (2)
C1—N1—C2128.76 (18)C3—C4—H4126.7
C1—N1—H1115.6C5—C4—H4126.7
C2—N1—H1115.6C11—C10—C9119.5 (2)
C12—C7—C8120.07 (19)C11—C10—H10120.2
C12—C7—N2123.93 (19)C9—C10—H10120.2
C8—C7—N2115.95 (17)C10—C11—C12120.4 (2)
N2—C2—N1114.13 (17)C10—C11—H11119.8
N2—C2—S1128.33 (16)C12—C11—H11119.8
N1—C2—S1117.52 (16)C8—C13—H13A109.5
O1—C1—N1123.5 (2)C8—C13—H13B109.5
O1—C1—C3121.03 (19)H13A—C13—H13B109.5
N1—C1—C3115.5 (2)C8—C13—H13C109.5
C11—C12—C7120.0 (2)H13A—C13—H13C109.5
C11—C12—H12120H13B—C13—H13C109.5
C7—C12—H12120C5—C6—O2110.5 (2)
C4—C3—O2109.6 (2)C5—C6—H6124.7
C4—C3—C1132.6 (2)O2—C6—H6124.7
O2—C3—C1117.80 (18)C6—C5—C4107.1 (2)
C9—C8—C7117.88 (19)C6—C5—H5126.4
C9—C8—C13120.0 (2)C4—C5—H5126.4
C7—C8—C13122.15 (19)
C2—N2—C7—C1224.6 (3)N1—C1—C3—O25.5 (3)
C2—N2—C7—C8158.1 (2)C12—C7—C8—C91.5 (3)
C7—N2—C2—N1177.53 (18)N2—C7—C8—C9178.90 (19)
C7—N2—C2—S10.8 (3)C12—C7—C8—C13178.4 (2)
C1—N1—C2—N28.7 (3)N2—C7—C8—C131.0 (3)
C1—N1—C2—S1169.87 (17)C7—C8—C9—C100.3 (3)
C2—N1—C1—O16.2 (4)C13—C8—C9—C10179.6 (2)
C2—N1—C1—C3174.14 (18)O2—C3—C4—C50.5 (3)
C8—C7—C12—C111.5 (3)C1—C3—C4—C5178.3 (2)
N2—C7—C12—C11178.73 (18)C8—C9—C10—C110.9 (4)
C6—O2—C3—C40.1 (2)C9—C10—C11—C120.9 (4)
C6—O2—C3—C1178.91 (18)C7—C12—C11—C100.3 (3)
O1—C1—C3—C46.4 (4)C3—O2—C6—C50.3 (3)
N1—C1—C3—C4173.3 (2)O2—C6—C5—C40.6 (3)
O1—C1—C3—O2174.84 (19)C3—C4—C5—C60.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.262.682 (3)110
N1—H1···S1i0.862.803.639 (2)165
N2—H2···O10.861.922.649 (2)141
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC13H12N2O2S
Mr260.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)6.0976 (1), 16.6689 (6), 13.1462 (4)
β (°) 108.765 (2)
V3)1265.16 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.50 × 0.08 × 0.07
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionGaussian
(Coppens et al., 1965)
Tmin, Tmax0.925, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
8242, 2408, 1594
Rint0.048
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.130, 1.03
No. of reflections2408
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.30

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.262.682 (3)110
N1—H1···S1i0.862.803.639 (2)165
N2—H2···O10.861.922.649 (2)141
Symmetry code: (i) x, y, z.
 

Acknowledgements

The authors thank the Crystallography Group, São Carlos Physics Institute, USP, and acknowledge financial support from Brazilian agency CNPq.

References

First citationAly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73–93.  CrossRef CAS Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDuque, J., Estevez-Hernandez, O., Reguera, E., Corrêa, R. S. & Gutierrez Maria, P. (2008). Acta Cryst. E64, o1068.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEstévez-Hernández, O., Naranjo-Rodríguez, I., Hidalgo-Hidalgo de Cisneros, J. L. & Reguera, E. (2007). Sens. Actuators B, 123, 488–494.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKoch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTheodoro, J. E., Mascarenhas, Y., Ellena, J., Estévez-Hernández, O. & Duque, J. (2008). Acta Cryst. E64, o1193.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds