organic compounds
1-(2-Furoyl)-3-(o-tolyl)thiourea
aGrupo de Cristalografía, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil, and bDepartment of Structure Analysis, Institute of Materials, University of Havana, Cuba
*Correspondence e-mail: osvaldo@imre.oc.uh.cu
The title compound, C13H12N2O2S, was synthesized from furoyl isothiocyanate and o-toluidine in dry acetone. The thiourea group is in the thioamide form. The central thiourea fragment makes dihedral angles of 2.6 (1) and 22.4 (1)° with the ketofuran group and the benzene ring, respectively. The molecular structure is stabilized by N—H⋯O hydrogen bonds. In the centrosymmetrically related molecules are linked by a pair of N—H⋯S hydrogen bonds to form a dimer with an R22(6) ring motif.
Related literature
For general background, see: Aly et al. (2007); Koch (2001); Estévez-Hernández et al. (2007). For related structures, see: Theodoro et al. (2008); Duque et al. (2008). For the synthesis, see: Otazo-Sánchez et al. (2001).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808020114/ci2623sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808020114/ci2623Isup2.hkl
The title compound was synthesized according to a previous report (Otazo-Sánchez et al., 2001), by converting furoyl chloride into furoyl isothiocyanate and then condensing with o-toluidine. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (m.p 387–388 K).
H atoms were placed in calculated positions with N-H = 0.86 Å and C-H = 0.93 Å (aromatic) or 0.96 Å (methyl), and refined in riding model, with Uiso(H) = 1.5Ueq(Cmethyl) and 1.2Ueq(N,Caromatic).
Data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C13H12N2O2S | F(000) = 544 |
Mr = 260.31 | Dx = 1.367 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 20621 reflections |
a = 6.0976 (1) Å | θ = 2.9–25.7° |
b = 16.6689 (6) Å | µ = 0.25 mm−1 |
c = 13.1462 (4) Å | T = 294 K |
β = 108.765 (2)° | Needle, colourless |
V = 1265.16 (6) Å3 | 0.50 × 0.08 × 0.07 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 1594 reflections with I > 2σ(I) |
ω scans | Rint = 0.048 |
Absorption correction: gaussian (Coppens et al., 1965) | θmax = 25.7°, θmin = 2.9° |
Tmin = 0.925, Tmax = 0.983 | h = −6→7 |
8242 measured reflections | k = −19→20 |
2408 independent reflections | l = −16→16 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.046 | w = 1/[σ2(Fo2) + (0.0702P)2 + 0.1015P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.130 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.26 e Å−3 |
2408 reflections | Δρmin = −0.30 e Å−3 |
164 parameters |
C13H12N2O2S | V = 1265.16 (6) Å3 |
Mr = 260.31 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.0976 (1) Å | µ = 0.25 mm−1 |
b = 16.6689 (6) Å | T = 294 K |
c = 13.1462 (4) Å | 0.50 × 0.08 × 0.07 mm |
β = 108.765 (2)° |
Nonius KappaCCD diffractometer | 2408 independent reflections |
Absorption correction: gaussian (Coppens et al., 1965) | 1594 reflections with I > 2σ(I) |
Tmin = 0.925, Tmax = 0.983 | Rint = 0.048 |
8242 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.26 e Å−3 |
2408 reflections | Δρmin = −0.30 e Å−3 |
164 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.22254 (12) | 0.09680 (4) | 0.04759 (5) | 0.0800 (3) | |
N2 | 0.4198 (3) | 0.09229 (10) | 0.26210 (13) | 0.0561 (4) | |
H2 | 0.408 | 0.0712 | 0.3198 | 0.067* | |
O2 | −0.2979 (3) | −0.06394 (9) | 0.17467 (12) | 0.0679 (4) | |
O1 | 0.1899 (3) | 0.01628 (10) | 0.37313 (12) | 0.0757 (5) | |
N1 | 0.0880 (3) | 0.01904 (10) | 0.18967 (13) | 0.0578 (5) | |
H1 | −0.0083 | −0.0016 | 0.1328 | 0.069* | |
C7 | 0.6105 (3) | 0.14441 (12) | 0.27881 (15) | 0.0528 (5) | |
C2 | 0.2552 (4) | 0.07008 (12) | 0.17262 (17) | 0.0556 (5) | |
C1 | 0.0568 (4) | −0.00258 (13) | 0.28515 (17) | 0.0587 (5) | |
C12 | 0.7138 (4) | 0.16151 (13) | 0.20141 (17) | 0.0631 (6) | |
H12 | 0.6557 | 0.1389 | 0.1333 | 0.076* | |
C3 | −0.1472 (4) | −0.05056 (13) | 0.27543 (17) | 0.0594 (5) | |
C8 | 0.7009 (4) | 0.17683 (13) | 0.38190 (17) | 0.0609 (6) | |
C9 | 0.8905 (4) | 0.22716 (14) | 0.40236 (19) | 0.0728 (6) | |
H9 | 0.9524 | 0.2494 | 0.4705 | 0.087* | |
C4 | −0.2232 (5) | −0.08806 (15) | 0.3482 (2) | 0.0774 (7) | |
H4 | −0.1528 | −0.0881 | 0.4224 | 0.093* | |
C10 | 0.9905 (4) | 0.24531 (14) | 0.3252 (2) | 0.0737 (6) | |
H10 | 1.1166 | 0.2799 | 0.3409 | 0.088* | |
C11 | 0.9035 (4) | 0.21225 (14) | 0.2256 (2) | 0.0703 (6) | |
H11 | 0.9719 | 0.2238 | 0.1734 | 0.084* | |
C13 | 0.5994 (4) | 0.15856 (18) | 0.46916 (17) | 0.0835 (8) | |
H13A | 0.671 | 0.1921 | 0.5303 | 0.125* | |
H13B | 0.6264 | 0.1032 | 0.4896 | 0.125* | |
H13C | 0.4357 | 0.1687 | 0.4435 | 0.125* | |
C6 | −0.4688 (4) | −0.11084 (14) | 0.1874 (2) | 0.0769 (7) | |
H6 | −0.5959 | −0.1291 | 0.1316 | 0.092* | |
C5 | −0.4295 (5) | −0.12709 (15) | 0.2904 (2) | 0.0831 (8) | |
H5 | −0.5214 | −0.1585 | 0.319 | 0.1* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0983 (5) | 0.0930 (5) | 0.0458 (4) | −0.0272 (4) | 0.0189 (3) | 0.0060 (3) |
N2 | 0.0625 (10) | 0.0623 (10) | 0.0453 (10) | −0.0051 (9) | 0.0199 (9) | 0.0046 (8) |
O2 | 0.0709 (10) | 0.0737 (10) | 0.0649 (10) | −0.0096 (8) | 0.0302 (8) | −0.0045 (7) |
O1 | 0.0788 (10) | 0.0981 (13) | 0.0498 (9) | −0.0183 (9) | 0.0201 (8) | 0.0072 (8) |
N1 | 0.0627 (10) | 0.0649 (11) | 0.0469 (9) | −0.0066 (9) | 0.0192 (8) | 0.0012 (8) |
C7 | 0.0572 (11) | 0.0511 (12) | 0.0512 (12) | 0.0023 (10) | 0.0190 (9) | 0.0062 (9) |
C2 | 0.0664 (13) | 0.0525 (12) | 0.0508 (13) | −0.0005 (10) | 0.0231 (11) | 0.0011 (9) |
C1 | 0.0652 (13) | 0.0602 (13) | 0.0542 (13) | 0.0000 (11) | 0.0240 (11) | 0.0040 (10) |
C12 | 0.0688 (13) | 0.0661 (14) | 0.0583 (13) | 0.0001 (11) | 0.0262 (11) | 0.0032 (10) |
C3 | 0.0642 (13) | 0.0624 (14) | 0.0553 (13) | 0.0021 (11) | 0.0245 (11) | 0.0016 (10) |
C8 | 0.0639 (13) | 0.0641 (14) | 0.0541 (13) | −0.0005 (11) | 0.0184 (10) | 0.0032 (10) |
C9 | 0.0739 (14) | 0.0746 (16) | 0.0652 (15) | −0.0132 (12) | 0.0158 (12) | −0.0037 (12) |
C4 | 0.0832 (17) | 0.0879 (17) | 0.0700 (16) | −0.0091 (14) | 0.0370 (14) | 0.0092 (13) |
C10 | 0.0684 (14) | 0.0705 (16) | 0.0810 (17) | −0.0085 (12) | 0.0223 (13) | 0.0066 (13) |
C11 | 0.0675 (14) | 0.0750 (15) | 0.0765 (17) | 0.0015 (12) | 0.0343 (13) | 0.0164 (13) |
C13 | 0.0874 (17) | 0.113 (2) | 0.0507 (13) | −0.0239 (15) | 0.0226 (12) | −0.0079 (13) |
C6 | 0.0716 (15) | 0.0789 (17) | 0.0887 (19) | −0.0192 (13) | 0.0376 (14) | −0.0161 (14) |
C5 | 0.0880 (18) | 0.0825 (18) | 0.094 (2) | −0.0170 (14) | 0.0506 (16) | 0.0027 (15) |
S1—C2 | 1.652 (2) | C8—C9 | 1.383 (3) |
N2—C2 | 1.330 (3) | C8—C13 | 1.500 (3) |
N2—C7 | 1.411 (2) | C9—C10 | 1.375 (3) |
N2—H2 | 0.86 | C9—H9 | 0.93 |
O2—C6 | 1.355 (3) | C4—C5 | 1.403 (4) |
O2—C3 | 1.366 (3) | C4—H4 | 0.93 |
O1—C1 | 1.221 (2) | C10—C11 | 1.361 (3) |
N1—C1 | 1.377 (2) | C10—H10 | 0.93 |
N1—C2 | 1.400 (3) | C11—H11 | 0.93 |
N1—H1 | 0.86 | C13—H13A | 0.96 |
C7—C12 | 1.388 (3) | C13—H13B | 0.96 |
C7—C8 | 1.397 (3) | C13—H13C | 0.96 |
C1—C3 | 1.449 (3) | C6—C5 | 1.325 (4) |
C12—C11 | 1.385 (3) | C6—H6 | 0.93 |
C12—H12 | 0.93 | C5—H5 | 0.93 |
C3—C4 | 1.344 (3) | ||
C2—N2—C7 | 131.21 (17) | C10—C9—C8 | 122.1 (2) |
C2—N2—H2 | 114.4 | C10—C9—H9 | 118.9 |
C7—N2—H2 | 114.4 | C8—C9—H9 | 118.9 |
C6—O2—C3 | 106.19 (18) | C3—C4—C5 | 106.5 (2) |
C1—N1—C2 | 128.76 (18) | C3—C4—H4 | 126.7 |
C1—N1—H1 | 115.6 | C5—C4—H4 | 126.7 |
C2—N1—H1 | 115.6 | C11—C10—C9 | 119.5 (2) |
C12—C7—C8 | 120.07 (19) | C11—C10—H10 | 120.2 |
C12—C7—N2 | 123.93 (19) | C9—C10—H10 | 120.2 |
C8—C7—N2 | 115.95 (17) | C10—C11—C12 | 120.4 (2) |
N2—C2—N1 | 114.13 (17) | C10—C11—H11 | 119.8 |
N2—C2—S1 | 128.33 (16) | C12—C11—H11 | 119.8 |
N1—C2—S1 | 117.52 (16) | C8—C13—H13A | 109.5 |
O1—C1—N1 | 123.5 (2) | C8—C13—H13B | 109.5 |
O1—C1—C3 | 121.03 (19) | H13A—C13—H13B | 109.5 |
N1—C1—C3 | 115.5 (2) | C8—C13—H13C | 109.5 |
C11—C12—C7 | 120.0 (2) | H13A—C13—H13C | 109.5 |
C11—C12—H12 | 120 | H13B—C13—H13C | 109.5 |
C7—C12—H12 | 120 | C5—C6—O2 | 110.5 (2) |
C4—C3—O2 | 109.6 (2) | C5—C6—H6 | 124.7 |
C4—C3—C1 | 132.6 (2) | O2—C6—H6 | 124.7 |
O2—C3—C1 | 117.80 (18) | C6—C5—C4 | 107.1 (2) |
C9—C8—C7 | 117.88 (19) | C6—C5—H5 | 126.4 |
C9—C8—C13 | 120.0 (2) | C4—C5—H5 | 126.4 |
C7—C8—C13 | 122.15 (19) | ||
C2—N2—C7—C12 | −24.6 (3) | N1—C1—C3—O2 | −5.5 (3) |
C2—N2—C7—C8 | 158.1 (2) | C12—C7—C8—C9 | 1.5 (3) |
C7—N2—C2—N1 | −177.53 (18) | N2—C7—C8—C9 | 178.90 (19) |
C7—N2—C2—S1 | 0.8 (3) | C12—C7—C8—C13 | −178.4 (2) |
C1—N1—C2—N2 | 8.7 (3) | N2—C7—C8—C13 | −1.0 (3) |
C1—N1—C2—S1 | −169.87 (17) | C7—C8—C9—C10 | −0.3 (3) |
C2—N1—C1—O1 | −6.2 (4) | C13—C8—C9—C10 | 179.6 (2) |
C2—N1—C1—C3 | 174.14 (18) | O2—C3—C4—C5 | 0.5 (3) |
C8—C7—C12—C11 | −1.5 (3) | C1—C3—C4—C5 | −178.3 (2) |
N2—C7—C12—C11 | −178.73 (18) | C8—C9—C10—C11 | −0.9 (4) |
C6—O2—C3—C4 | −0.1 (2) | C9—C10—C11—C12 | 0.9 (4) |
C6—O2—C3—C1 | 178.91 (18) | C7—C12—C11—C10 | 0.3 (3) |
O1—C1—C3—C4 | −6.4 (4) | C3—O2—C6—C5 | −0.3 (3) |
N1—C1—C3—C4 | 173.3 (2) | O2—C6—C5—C4 | 0.6 (3) |
O1—C1—C3—O2 | 174.84 (19) | C3—C4—C5—C6 | −0.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.86 | 2.26 | 2.682 (3) | 110 |
N1—H1···S1i | 0.86 | 2.80 | 3.639 (2) | 165 |
N2—H2···O1 | 0.86 | 1.92 | 2.649 (2) | 141 |
Symmetry code: (i) −x, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | C13H12N2O2S |
Mr | 260.31 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 294 |
a, b, c (Å) | 6.0976 (1), 16.6689 (6), 13.1462 (4) |
β (°) | 108.765 (2) |
V (Å3) | 1265.16 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.25 |
Crystal size (mm) | 0.50 × 0.08 × 0.07 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Gaussian (Coppens et al., 1965) |
Tmin, Tmax | 0.925, 0.983 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8242, 2408, 1594 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.610 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.130, 1.03 |
No. of reflections | 2408 |
No. of parameters | 164 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.30 |
Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.86 | 2.26 | 2.682 (3) | 110 |
N1—H1···S1i | 0.86 | 2.80 | 3.639 (2) | 165 |
N2—H2···O1 | 0.86 | 1.92 | 2.649 (2) | 141 |
Symmetry code: (i) −x, −y, −z. |
Acknowledgements
The authors thank the Crystallography Group, São Carlos Physics Institute, USP, and acknowledge financial support from Brazilian agency CNPq.
References
Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73–93. CrossRef CAS Google Scholar
Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038. CrossRef CAS IUCr Journals Web of Science Google Scholar
Duque, J., Estevez-Hernandez, O., Reguera, E., Corrêa, R. S. & Gutierrez Maria, P. (2008). Acta Cryst. E64, o1068. Web of Science CSD CrossRef IUCr Journals Google Scholar
Estévez-Hernández, O., Naranjo-Rodríguez, I., Hidalgo-Hidalgo de Cisneros, J. L. & Reguera, E. (2007). Sens. Actuators B, 123, 488–494. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Koch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488. Web of Science CrossRef CAS Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Theodoro, J. E., Mascarenhas, Y., Ellena, J., Estévez-Hernández, O. & Duque, J. (2008). Acta Cryst. E64, o1193. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiourea and its derivatives form a versatile family of ligands suitable to form complexes with ions of transition metals through the S atom (Aly et al., 2007). Of analytical interest is the potential application of these compounds as ionophores or chemical modifiers in potenciometric and amperometric sensors (Estévez-Hernández et al., 2007). The derived crystal structures help to understand the behaviour of these ligands as ionophores and also the complex formation with salts of the heavy metals. The title compound (Fig.1) is another example of our newly synthesized furoylthiourea derivatives.
The title compound crystallizes in the thioamide form. The bond lengths and angles are within the ranges observed for similar compounds (Koch, 2001). The C2—S1 [1.652 (2) Å] and C1—O1 [1.221 (2) Å] bonds both show the expected double-bond character. The short values of the C2—N1 [1.400 (3) Å], C2—N2 [1.330 (3) Å] and C1—N1 [1.377 (2) Å] bonds indicate partial double bond character. These results can be explained by the existence of resonance in this part of the molecule. The furan carbonyl group [O1/O2/C1/C3-C6] is nearly coplanar with the plane of the thiourea fragment [N1/N2/C2/S1, dihedral angle 2.6 (1)°], whereas the C7-C12 benzene ring is inclined by 22.4 (1)°. The trans-cis geometry in the thiourea group is stabilized by the N2—H2···O1 and N1—H1···O2 intramolecular hydrogen bonds (Fig.1 and Table 1). The crystal structure is stabilized by two intermolecular N1—H1···S1 hydrogen bonds (Fig.2 and Table 1) between centrosymmetrically related molecules forming dimers stacked along the [100] direction.