organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Cyano­anilinium chloride

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 30 June 2008; accepted 3 July 2008; online 12 July 2008)

In the title salt, C7H7N2+·Cl, all non-H atoms of the cation are essentially coplanar (r.m.s. deviation = 0.005 Å). In the crystal structure, the organic cations and chloride ions are linked to form a two-dimensional network parallel to the (001) plane by N—H⋯Cl hydrogen bonds.

Related literature

For the use of amine derivatives in coordination chemistry, see: Manzur et al. (2007[Manzur, J., Vega, A. & Garcia, A. M. (2007). Eur. J. Inorg. Chem. 35, 5500-5510.]); Ismayilov et al. (2007[Ismayilov, R. H., Wang, W. Z. & Lee, G. H. (2007). Dalton Trans. pp. 2898-2907.]); Austria et al. (2007[Austria, C., Zhang, J. & Valle, H. (2007). Inorg. Chem. 46, 6283-6290.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7N2+·Cl

  • Mr = 154.60

  • Triclinic, [P \overline 1]

  • a = 4.663 (3) Å

  • b = 6.074 (5) Å

  • c = 13.212 (9) Å

  • α = 93.37 (5)°

  • β = 96.201 (19)°

  • γ = 96.22 (4)°

  • V = 368.9 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 298 (2) K

  • 0.25 × 0.18 × 0.18 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.901, Tmax = 0.917

  • 2486 measured reflections

  • 1618 independent reflections

  • 1342 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.157

  • S = 1.07

  • 1618 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H9A⋯Cl1i 0.89 2.61 3.111 (3) 116
N2—H9A⋯Cl1ii 0.89 2.65 3.178 (3) 119
N2—H9C⋯Cl1iii 0.89 2.73 3.278 (3) 121
N2—H9B⋯Cl1 0.89 2.76 3.338 (3) 124
Symmetry codes: (i) -x, -y+1, -z; (ii) x, y+1, z; (iii) -x+1, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past five years, we have focused on the chemistry of amine derivatives because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Manzur et al. 2007; Ismayilov et al. 2007; Austria et al. 2007). We report here the crystal structure of the title compound, 3-cyanobenzenaminium monochloride.

In the title compound (Fig.1), the N2 atom of the amine group is protonated. The nitrile group is coplanar with the benzene ring. Bond lengths and angles lie within normal ranges.

In the crystal structure the organic cation and Cl- ions are linked to form a two-dimensional network parallel to the (0 0 1) plane (Fig.2) by N—H···Cl hydrogen bonds (Table 1).

Related literature top

For the use of amine derivatives in coordination chemistry, see: Manzur et al. (2007); Ismayilov et al. (2007); Austria et al. (2007).

Experimental top

3-Cyanobenzenaminium monochloride (3 mmol) was dissolved in ethanol (20 ml). The solution was allowed to evaporate to obtain colourless block-shaped crystals of the title compound.

Refinement top

All H atoms were fixed geometrically [C-H = 0.93 Å and N-H = 0.89 Å] and treated as riding, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound viewed along the a axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
3-Cyanoanilinium chloride top
Crystal data top
C7H7N2+·ClZ = 2
Mr = 154.60F(000) = 160
Triclinic, P1Dx = 1.392 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.663 (3) ÅCell parameters from 1678 reflections
b = 6.074 (5) Åθ = 2.3–24.4°
c = 13.212 (9) ŵ = 0.44 mm1
α = 93.37 (5)°T = 298 K
β = 96.201 (19)°Block, colourless
γ = 96.22 (4)°0.25 × 0.18 × 0.18 mm
V = 368.9 (5) Å3
Data collection top
Rigaku Mercury2
diffractometer
1618 independent reflections
Radiation source: fine-focus sealed tube1342 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 75
Tmin = 0.901, Tmax = 0.917l = 1617
2486 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0787P)2 + 0.2472P]
where P = (Fo2 + 2Fc2)/3
1618 reflections(Δ/σ)max = 0.001
91 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C7H7N2+·Clγ = 96.22 (4)°
Mr = 154.60V = 368.9 (5) Å3
Triclinic, P1Z = 2
a = 4.663 (3) ÅMo Kα radiation
b = 6.074 (5) ŵ = 0.44 mm1
c = 13.212 (9) ÅT = 298 K
α = 93.37 (5)°0.25 × 0.18 × 0.18 mm
β = 96.201 (19)°
Data collection top
Rigaku Mercury2
diffractometer
1618 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1342 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.917Rint = 0.021
2486 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.07Δρmax = 0.52 e Å3
1618 reflectionsΔρmin = 0.52 e Å3
91 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.38158 (16)0.25924 (11)0.07001 (5)0.0414 (3)
C10.0572 (5)0.7649 (4)0.19904 (18)0.0302 (5)
N20.1472 (5)0.7573 (4)0.09653 (16)0.0377 (6)
H9A0.07470.86430.06220.057*
H9B0.08160.62590.06410.057*
H9C0.34020.77700.10080.057*
C30.1968 (5)0.9320 (4)0.3237 (2)0.0329 (6)
C70.3747 (6)1.0962 (5)0.3564 (2)0.0391 (6)
C60.1466 (6)0.6149 (5)0.2669 (2)0.0374 (6)
H6A0.26250.50810.24750.045*
N10.5144 (6)1.2233 (5)0.3856 (2)0.0545 (7)
C40.1099 (6)0.7815 (5)0.3928 (2)0.0395 (6)
H4A0.16750.78650.45800.047*
C20.1148 (5)0.9263 (4)0.2256 (2)0.0322 (6)
H2A0.17321.02710.17940.039*
C50.0624 (7)0.6251 (5)0.3633 (2)0.0443 (7)
H5A0.12290.52480.40940.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0519 (5)0.0373 (4)0.0395 (4)0.0155 (3)0.0126 (3)0.0062 (3)
C10.0334 (12)0.0304 (13)0.0285 (12)0.0073 (10)0.0074 (10)0.0027 (9)
N20.0446 (13)0.0398 (13)0.0324 (12)0.0139 (10)0.0107 (10)0.0040 (9)
C30.0308 (12)0.0338 (14)0.0360 (13)0.0102 (10)0.0063 (10)0.0020 (10)
C70.0404 (14)0.0421 (16)0.0380 (14)0.0140 (12)0.0093 (12)0.0045 (11)
C60.0442 (15)0.0333 (14)0.0388 (14)0.0165 (11)0.0094 (11)0.0065 (11)
N10.0597 (17)0.0551 (17)0.0558 (17)0.0274 (14)0.0191 (14)0.0036 (13)
C40.0491 (16)0.0429 (16)0.0307 (13)0.0136 (12)0.0130 (12)0.0063 (11)
C20.0325 (13)0.0316 (13)0.0346 (13)0.0099 (10)0.0048 (10)0.0062 (10)
C50.0577 (18)0.0420 (17)0.0398 (15)0.0216 (13)0.0132 (13)0.0154 (12)
Geometric parameters (Å, º) top
C1—C61.380 (4)C3—C71.440 (4)
C1—C21.385 (3)C7—N11.139 (4)
C1—N21.460 (3)C6—C51.374 (4)
N2—H9A0.89C6—H6A0.93
N2—H9B0.89C4—C51.374 (4)
N2—H9C0.89C4—H4A0.93
C3—C41.390 (4)C2—H2A0.93
C3—C21.391 (4)C5—H5A0.93
C6—C1—C2121.9 (2)C5—C6—C1119.2 (2)
C6—C1—N2119.8 (2)C5—C6—H6A120.4
C2—C1—N2118.3 (2)C1—C6—H6A120.4
C1—N2—H9A109.5C5—C4—C3119.1 (2)
C1—N2—H9B109.5C5—C4—H4A120.4
H9A—N2—H9B109.5C3—C4—H4A120.4
C1—N2—H9C109.5C1—C2—C3117.5 (2)
H9A—N2—H9C109.5C1—C2—H2A121.2
H9B—N2—H9C109.5C3—C2—H2A121.2
C4—C3—C2121.3 (2)C6—C5—C4121.0 (2)
C4—C3—C7118.2 (2)C6—C5—H5A119.5
C2—C3—C7120.4 (2)C4—C5—H5A119.5
N1—C7—C3177.6 (3)
C2—C1—C6—C50.2 (4)N2—C1—C2—C3179.6 (2)
N2—C1—C6—C5179.4 (3)C4—C3—C2—C10.0 (4)
C2—C3—C4—C50.5 (4)C7—C3—C2—C1179.8 (2)
C7—C3—C4—C5179.3 (3)C1—C6—C5—C40.3 (5)
C6—C1—C2—C30.3 (4)C3—C4—C5—C60.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H9A···Cl1i0.892.613.111 (3)116
N2—H9A···Cl1ii0.892.653.178 (3)119
N2—H9C···Cl1iii0.892.733.278 (3)121
N2—H9B···Cl10.892.763.338 (3)124
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC7H7N2+·Cl
Mr154.60
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)4.663 (3), 6.074 (5), 13.212 (9)
α, β, γ (°)93.37 (5), 96.201 (19), 96.22 (4)
V3)368.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.25 × 0.18 × 0.18
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.901, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
2486, 1618, 1342
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.157, 1.07
No. of reflections1618
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.52

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H9A···Cl1i0.892.613.111 (3)116
N2—H9A···Cl1ii0.892.653.178 (3)119
N2—H9C···Cl1iii0.892.733.278 (3)121
N2—H9B···Cl10.892.763.338 (3)124
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1, z.
 

Acknowledgements

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationAustria, C., Zhang, J. & Valle, H. (2007). Inorg. Chem. 46, 6283–6290.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationIsmayilov, R. H., Wang, W. Z. & Lee, G. H. (2007). Dalton Trans. pp. 2898–2907.  Web of Science CSD CrossRef PubMed Google Scholar
First citationManzur, J., Vega, A. & Garcia, A. M. (2007). Eur. J. Inorg. Chem. 35, 5500–5510.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds