organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1474-o1475

Tetra-O-4-methyl­phenyl­sulfonyl­penta­erythritol

aDepartment of Chemistry, Handan College, Handan, Hebei 056005, People's Republic of China, bDepartment of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China, cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and dCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 30 June 2008; accepted 4 July 2008; online 12 July 2008)

In the title mol­ecule (systematic name: methane­tetra­yltetra­methyl­ene tetra-p-toluene­sulfonate), C33H36O12S4, the central C atom and the S atoms exhibit distorted tetra­hedral configurations. The aromatic rings in opposite arms are nearly parallel to each other, with a dihedral angle of 10.26 (8) or 3.45 (9)°. The mol­ecules are linked into a two-dimensional network parallel to the bc plane by weak C—H⋯O hydrogen bonds, ππ [centroid–centroid distance = 3.5806 (12) Å] and S—O⋯π [O⋯centroid = 3.1455 (15) Å and S—O⋯centroid = 122.41 (7)°] inter­molecular inter­actions. Intramolecular C—H⋯O hydrogen bonds are also present.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For a related structure, see: Li et al. (2008[Li, S.-X., Li, H.-M., Lu, Z.-L., Fun, H.-K. & Chantrapromma, S. (2008). Acta Cryst. E64, o1472-o1473.]). For general background and applications of penta­erythritol derivatives, see: Constable et al. (1998[Constable, E. C., Housecroft, C. E., Cattalini, M. & Phillips, D. (1998). New J. Chem. pp. 193-200.]); Fundueanu et al. (1998[Fundueanu, G., Esposito, E., Mihai, D., Carpov, A., Desbrieres, J., Rinaudo, M. & Nastruzzi, C. (1998). Int. J. Pharm. 170, 11-21.]); Jiang et al. (2002[Jiang, H., Lee, S. J. & Lin, W. (2002). Org. Lett. 4, 2149-2152.]); Kim et al. (2000[Kim, J., Leong, A. J., Lindoy, L. F., Kim, J., Nachbaur, J., Nezhadali, A., Rounaghi, G. & Wei, G. (2000). J. Chem. Soc. Dalton Trans. pp. 3453-3459.]); Luo & Chen (2001[Luo, F. T. & Chen, C. H. (2001). Heterocycles, 55, 1663-1678.]); Mischiati et al. (2001[Mischiati, C., Jeang, K.-T., Feriotto, G., Breda, L., Borgatti, M., Bianchi, N. & Gambari, R. (2001). Antisense Nucleic Acid Drug Dev. 11, 209-217.]); Oike et al. (2001[Oike, H., Hamada, M., Eguchi, S., Danda, Y. & Tezuka, Y. (2001). Macromolecules, 34, 2776-2782.]).

[Scheme 1]

Experimental

Crystal data
  • C33H36O12S4

  • Mr = 752.86

  • Monoclinic, P 21 /c

  • a = 13.2983 (2) Å

  • b = 18.0368 (2) Å

  • c = 15.4181 (2) Å

  • β = 110.653 (1)°

  • V = 3460.50 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 100.0 (1) K

  • 0.47 × 0.41 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.857, Tmax = 0.949

  • 45048 measured reflections

  • 10090 independent reflections

  • 7927 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.119

  • S = 1.04

  • 10090 reflections

  • 446 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2C⋯O4 0.97 2.48 2.849 (2) 102
C3—H3B⋯O6 0.97 2.47 2.905 (2) 107
C3—H3B⋯O7 0.97 2.55 2.876 (2) 100
C3—H3C⋯O9i 0.97 2.46 3.433 (2) 175
C4—H4A⋯O4 0.97 2.55 2.879 (2) 100
C5—H5B⋯O12 0.97 2.44 2.888 (2) 107
C5—H5C⋯O7 0.97 2.49 2.8396 (19) 101
C7—H7A⋯O2 0.93 2.58 2.937 (2) 103
C8—H8B⋯O11ii 0.93 2.52 3.140 (2) 124
C10—H10A⋯O6i 0.93 2.41 3.257 (2) 151
C18—H18A⋯O6 0.93 2.59 2.932 (2) 103
C22—H22A⋯O12iii 0.93 2.52 3.154 (2) 126
C25—H25A⋯O8 0.93 2.56 2.924 (2) 104
C28—H28A⋯O12 0.93 2.54 2.905 (2) 104
C29—H29A⋯O8iv 0.93 2.42 3.334 (2) 165
C31—H31A⋯O12iii 0.93 2.53 3.209 (2) 130
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Pentaerythritol is a valuable starting point for building complex molecular and supramolecular structures due to its symmetric four-armed geometry and is widely used in macromolecular chemistry (Oike et al., 2001), medicinal chemistry (Mischiati et al., 2001; Fundueanu et al., 1998), in the construction of dendrimers (Jiang et al., 2002; Constable et al., 1998) and other applications (Kim et al., 2000; Luo & Chen, 2001). To explore the potential of the pentaerythritol unit in supramolecular chemistry, we report herein the synthesis and crystal structure of tetra-O-(4-methylphenylsulfonyl)pentaerythritol, the title compound.

In the title molecule (Fig. 1), atoms C1, S1, S2, S3 and S4 exhibit the usual distorted tetrahedral configuration. The aromatic rings in opposite arms of the molecule are nearly parallel to each other; the dihedral angles between the C6–C11 (A) and C20–C25 (B) benzene rings is 10.26 (8)° and that between the C13–C18 (C) and C27–C32 (D) benzene rings is 3.45 (9)°. The dihedral angle between the adjacent benzene rings are: A/C 49.67 (9)°, A/D 52.93 (9)°, B/C 53.20 (9)° and B/D 56.15 (9)°. The O1/O7/C1/C2/C4 plane (r.m.s. deviation 0.039 Å) forms dihedral angles of 81.59 (5)° and 84.85 (5)°, respectively, with the rings A and B. The benzene rings C and D form dihedral angles of 59.75 (5)° and 62.82 (5)°, respectively, with the O4/O10/C1/C3/C5 plane. The conformations of the four 4-methylphenylsulfonyl groups with respect to the pentaerythritol unit (C1–C5/O1/O4/O7/O10) can be indicated by torsion angles S1—O1—C2—C1 = -175.72 (10)°, S2—O4—C3—C1 = 154.00 (10)°, S3—O7—C4—C1 = -179.78 (10)° and S4—O10—C5—C1 = 154.75 (10)°. Bond lengths and angles in the title molecule are in normal ranges (Allen et al., 1987) and comparable to those in a related structure (Li et al., 2008).

In the crystal packing (Fig. 2), the molecules are linked into a two-dimensional network parallel to the bc plane by weak C—H···O hydrogen bonds (Table 1). In addition, π-π interactions are observed between C13-C18 (centroid Cg1) and C27-C32 (centroid Cg2) benzene rings at (x, y, z) and (1+x, y, z), respectively, with centroid-centroid distance of 3.5806 (12) Å. Also, an S—O···π intermolecular interaction is observed [O3···Cg2i = 3.1455 (15) Å and S1—O3···Cg2i = 122.41 (7)°; the symmetry code is given in Table 1].

Related literature top

For bond-length data, see: Allen et al. (1987). For a related structure, see: Li et al. (2008). For general background and applications of pentaerythritol derivatives, see: Constable et al. (1998); Fundueanu et al. (1998); Jiang et al. (2002); Kim et al. (2000); Luo & Chen (2001); Mischiati et al. (2001); Oike et al. (2001).

Experimental top

The title compound was synthesized by dissolving pentaerythritol (1.36 g, 10.0 mmol) in dry pyridine (80 ml) and tosyl chloride (9.5 g, 50.0 mmol) was then added. The reaction mixture was stirred for 24 h at room temperature, after which it was poured into ice-water (250 ml) containing 1 M HCl and extracted with CH2Cl2 (80 × 3 ml). The organic layer was washed with water (60 × 2 ml), dried with MgSO4 and concentrated. The solid residue was recrystallized from ethanol to afford the desired compound as a white solid (6.42 g, yield: 90%). Block-shaped colourless single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvent in the open air at room temperature (m.p. 423 K).

Refinement top

All H atoms were placed in calculated positions, with C-H = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic, C-H = 0.97 Å, Uiso = 1.2Ueq(C) for CH2 and C-H = 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the b axis. Hydrogen bonds are shown as dashed lines.
methanetetrayltetramethylene tetra-p-toluenesulfonate top
Crystal data top
C33H36O12S4F(000) = 1576
Mr = 752.86Dx = 1.445 Mg m3
Monoclinic, P21/cMelting point: 423 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.2983 (2) ÅCell parameters from 10090 reflections
b = 18.0368 (2) Åθ = 1.8–30.0°
c = 15.4181 (2) ŵ = 0.34 mm1
β = 110.653 (1)°T = 100 K
V = 3460.50 (8) Å3Block, colourless
Z = 40.47 × 0.41 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10090 independent reflections
Radiation source: fine-focus sealed tube7927 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 1.8°
ω scansh = 1817
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2525
Tmin = 0.857, Tmax = 0.949l = 2121
45048 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0595P)2 + 1.2746P]
where P = (Fo2 + 2Fc2)/3
10090 reflections(Δ/σ)max = 0.001
446 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C33H36O12S4V = 3460.50 (8) Å3
Mr = 752.86Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.2983 (2) ŵ = 0.34 mm1
b = 18.0368 (2) ÅT = 100 K
c = 15.4181 (2) Å0.47 × 0.41 × 0.16 mm
β = 110.653 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10090 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
7927 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.949Rint = 0.039
45048 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.04Δρmax = 0.66 e Å3
10090 reflectionsΔρmin = 0.42 e Å3
446 parameters
Special details top

Experimental. The low-temparture data was collected with the Oxford Cryosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.04280 (3)0.38393 (2)0.37155 (3)0.01965 (9)
S20.41959 (4)0.31806 (2)0.71340 (3)0.02583 (10)
S30.16570 (3)0.37598 (2)0.89436 (3)0.02097 (9)
S40.18947 (4)0.29379 (2)0.54246 (3)0.02429 (10)
O10.06272 (10)0.34535 (6)0.46843 (7)0.0207 (2)
O20.01854 (10)0.45006 (6)0.36647 (8)0.0249 (2)
O30.00233 (10)0.32556 (7)0.30634 (8)0.0267 (3)
O40.30102 (10)0.34530 (6)0.65781 (9)0.0256 (3)
O50.48315 (12)0.38305 (7)0.72159 (10)0.0347 (3)
O60.41903 (11)0.28056 (7)0.79505 (9)0.0323 (3)
O70.14708 (10)0.33953 (6)0.79639 (7)0.0213 (2)
O80.24146 (10)0.43489 (6)0.90850 (8)0.0256 (3)
O90.18879 (11)0.31437 (6)0.95619 (8)0.0280 (3)
O100.07710 (10)0.33045 (6)0.60052 (8)0.0237 (2)
O110.26269 (11)0.35436 (7)0.52419 (10)0.0334 (3)
O120.17766 (11)0.25301 (7)0.46728 (8)0.0302 (3)
C10.11235 (13)0.34044 (8)0.63322 (10)0.0189 (3)
C20.08925 (14)0.39261 (8)0.55016 (11)0.0205 (3)
H2B0.02960.42520.54570.025*
H2C0.15180.42270.55630.025*
C30.21256 (13)0.29377 (8)0.64564 (12)0.0213 (3)
H3B0.22820.26190.69950.026*
H3C0.20150.26290.59150.026*
C40.12796 (14)0.38928 (8)0.71795 (11)0.0203 (3)
H4A0.18880.42220.72840.024*
H4B0.06430.41910.70900.024*
C50.01947 (13)0.28597 (8)0.61833 (11)0.0207 (3)
H5B0.01210.25380.56600.025*
H5C0.03220.25550.67300.025*
C60.17148 (13)0.40800 (8)0.37554 (10)0.0193 (3)
C70.20491 (14)0.48153 (9)0.38533 (12)0.0246 (3)
H7A0.15920.51900.39050.030*
C80.30696 (15)0.49811 (9)0.38722 (13)0.0284 (4)
H8B0.32960.54730.39360.034*
C90.37690 (14)0.44311 (10)0.37979 (12)0.0265 (3)
C100.34113 (15)0.36985 (9)0.36990 (12)0.0274 (4)
H10A0.38680.33240.36470.033*
C110.23934 (15)0.35158 (9)0.36764 (12)0.0249 (3)
H11B0.21650.30250.36100.030*
C120.48782 (16)0.46125 (12)0.38123 (15)0.0365 (4)
H12B0.50960.50850.41040.055*
H12C0.48740.46300.31890.055*
H12D0.53720.42380.41540.055*
C130.44820 (14)0.25381 (9)0.64082 (12)0.0250 (3)
C140.48460 (15)0.27930 (10)0.57213 (12)0.0279 (4)
H14A0.49210.32980.56410.033*
C150.50952 (15)0.22807 (10)0.51580 (13)0.0296 (4)
H15A0.53440.24470.46990.035*
C160.49800 (15)0.15206 (10)0.52657 (13)0.0290 (4)
C170.46100 (15)0.12852 (10)0.59613 (14)0.0306 (4)
H17A0.45300.07800.60420.037*
C180.43601 (14)0.17829 (9)0.65301 (13)0.0266 (3)
H18A0.41130.16170.69900.032*
C190.52492 (17)0.09697 (12)0.46446 (14)0.0370 (4)
H19A0.56680.05730.50130.056*
H19B0.56540.12120.43200.056*
H19C0.45970.07730.42050.056*
C200.04014 (14)0.41323 (8)0.88336 (11)0.0211 (3)
C210.04285 (15)0.36589 (9)0.88235 (12)0.0262 (4)
H21A0.03250.31480.88630.031*
C220.14120 (15)0.39600 (10)0.87544 (12)0.0275 (4)
H22A0.19690.36460.87500.033*
C230.15853 (15)0.47227 (10)0.86912 (12)0.0257 (3)
C240.07485 (16)0.51828 (10)0.86920 (13)0.0295 (4)
H24A0.08550.56930.86470.035*
C250.02422 (15)0.48965 (9)0.87594 (12)0.0267 (4)
H25A0.07950.52110.87550.032*
C260.26526 (16)0.50341 (11)0.86390 (14)0.0345 (4)
H26A0.27270.55290.83950.052*
H26B0.26940.50430.92480.052*
H26C0.32190.47290.82400.052*
C270.21526 (13)0.23237 (9)0.61915 (12)0.0229 (3)
C280.21199 (14)0.15680 (9)0.60537 (12)0.0250 (3)
H28A0.19270.13830.55710.030*
C290.23782 (15)0.10914 (10)0.66464 (13)0.0289 (4)
H29A0.23600.05820.65560.035*
C300.26628 (15)0.13558 (11)0.73704 (13)0.0294 (4)
C310.26943 (15)0.21215 (11)0.74919 (13)0.0304 (4)
H31A0.28910.23070.79720.037*
C320.24395 (15)0.26053 (10)0.69117 (12)0.0278 (4)
H32A0.24590.31140.70000.033*
C330.29291 (18)0.08257 (13)0.80129 (15)0.0412 (5)
H33A0.33460.04210.76610.062*
H33B0.33350.10800.83280.062*
H33C0.22760.06370.84600.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0232 (2)0.02041 (17)0.01541 (17)0.00089 (14)0.00691 (15)0.00004 (13)
S20.0271 (2)0.0254 (2)0.0251 (2)0.00384 (16)0.00944 (17)0.00123 (16)
S30.0284 (2)0.01908 (17)0.01522 (18)0.00331 (14)0.00744 (16)0.00123 (13)
S40.0255 (2)0.02166 (18)0.0239 (2)0.00318 (15)0.00649 (17)0.00113 (15)
O10.0300 (6)0.0187 (5)0.0152 (5)0.0004 (4)0.0103 (5)0.0008 (4)
O20.0259 (6)0.0246 (5)0.0243 (6)0.0052 (5)0.0090 (5)0.0024 (5)
O30.0298 (7)0.0288 (6)0.0193 (6)0.0038 (5)0.0060 (5)0.0053 (5)
O40.0273 (6)0.0218 (5)0.0310 (6)0.0007 (5)0.0143 (5)0.0025 (5)
O50.0381 (8)0.0302 (6)0.0361 (7)0.0115 (5)0.0133 (6)0.0044 (5)
O60.0386 (8)0.0343 (7)0.0228 (6)0.0049 (6)0.0093 (6)0.0004 (5)
O70.0321 (7)0.0177 (5)0.0151 (5)0.0052 (4)0.0097 (5)0.0022 (4)
O80.0265 (6)0.0254 (6)0.0227 (6)0.0006 (5)0.0057 (5)0.0001 (5)
O90.0401 (8)0.0243 (6)0.0180 (6)0.0057 (5)0.0085 (5)0.0053 (4)
O100.0224 (6)0.0204 (5)0.0289 (6)0.0013 (4)0.0099 (5)0.0037 (5)
O110.0310 (7)0.0252 (6)0.0390 (8)0.0076 (5)0.0063 (6)0.0022 (5)
O120.0381 (8)0.0297 (6)0.0213 (6)0.0014 (5)0.0088 (5)0.0021 (5)
C10.0248 (8)0.0175 (6)0.0161 (7)0.0020 (6)0.0091 (6)0.0007 (5)
C20.0287 (9)0.0184 (6)0.0165 (7)0.0010 (6)0.0107 (6)0.0016 (5)
C30.0241 (8)0.0197 (7)0.0225 (8)0.0012 (6)0.0110 (7)0.0009 (6)
C40.0294 (9)0.0172 (6)0.0158 (7)0.0033 (6)0.0099 (6)0.0020 (5)
C50.0245 (8)0.0182 (6)0.0212 (7)0.0027 (6)0.0103 (7)0.0015 (6)
C60.0240 (8)0.0199 (7)0.0154 (7)0.0012 (6)0.0088 (6)0.0012 (5)
C70.0283 (9)0.0188 (7)0.0278 (8)0.0016 (6)0.0112 (7)0.0021 (6)
C80.0286 (9)0.0227 (7)0.0356 (10)0.0018 (6)0.0133 (8)0.0006 (7)
C90.0257 (9)0.0316 (8)0.0244 (8)0.0025 (7)0.0115 (7)0.0035 (7)
C100.0327 (10)0.0254 (8)0.0293 (9)0.0092 (7)0.0175 (8)0.0048 (7)
C110.0348 (10)0.0178 (7)0.0263 (8)0.0033 (6)0.0159 (7)0.0018 (6)
C120.0290 (10)0.0412 (10)0.0443 (12)0.0038 (8)0.0190 (9)0.0072 (9)
C130.0197 (8)0.0280 (8)0.0260 (8)0.0004 (6)0.0066 (7)0.0001 (7)
C140.0246 (9)0.0318 (8)0.0254 (8)0.0006 (7)0.0066 (7)0.0050 (7)
C150.0270 (9)0.0374 (9)0.0237 (8)0.0020 (7)0.0083 (7)0.0040 (7)
C160.0222 (9)0.0348 (9)0.0281 (9)0.0030 (7)0.0064 (7)0.0026 (7)
C170.0265 (9)0.0282 (8)0.0381 (10)0.0001 (7)0.0125 (8)0.0001 (7)
C180.0221 (8)0.0274 (8)0.0317 (9)0.0013 (6)0.0111 (7)0.0012 (7)
C190.0365 (11)0.0414 (10)0.0337 (10)0.0048 (8)0.0130 (9)0.0035 (8)
C200.0285 (9)0.0197 (7)0.0169 (7)0.0023 (6)0.0105 (6)0.0002 (6)
C210.0354 (10)0.0204 (7)0.0254 (8)0.0007 (6)0.0140 (7)0.0004 (6)
C220.0319 (10)0.0280 (8)0.0252 (8)0.0043 (7)0.0130 (7)0.0007 (7)
C230.0311 (9)0.0290 (8)0.0191 (8)0.0028 (7)0.0116 (7)0.0006 (6)
C240.0381 (10)0.0216 (7)0.0336 (9)0.0063 (7)0.0185 (8)0.0012 (7)
C250.0331 (10)0.0205 (7)0.0295 (9)0.0013 (6)0.0149 (8)0.0004 (6)
C260.0344 (11)0.0411 (10)0.0322 (10)0.0068 (8)0.0168 (8)0.0009 (8)
C270.0178 (8)0.0248 (7)0.0242 (8)0.0014 (6)0.0051 (6)0.0021 (6)
C280.0228 (8)0.0244 (8)0.0300 (9)0.0010 (6)0.0120 (7)0.0043 (6)
C290.0254 (9)0.0257 (8)0.0373 (10)0.0005 (6)0.0133 (8)0.0007 (7)
C300.0204 (9)0.0401 (10)0.0284 (9)0.0018 (7)0.0093 (7)0.0017 (7)
C310.0254 (9)0.0430 (10)0.0236 (8)0.0032 (7)0.0097 (7)0.0056 (7)
C320.0272 (9)0.0296 (8)0.0238 (8)0.0034 (7)0.0056 (7)0.0064 (7)
C330.0358 (11)0.0524 (12)0.0406 (12)0.0050 (9)0.0198 (9)0.0083 (10)
Geometric parameters (Å, º) top
S1—O31.4238 (12)C12—H12C0.96
S1—O21.4315 (12)C12—H12D0.96
S1—O11.5833 (11)C13—C141.389 (2)
S1—C61.7453 (17)C13—C181.392 (2)
S2—O51.4244 (13)C14—C151.386 (3)
S2—O61.4314 (13)C14—H14A0.93
S2—O41.5840 (13)C15—C161.396 (3)
S2—C131.7435 (18)C15—H15A0.93
S3—O91.4252 (12)C16—C171.395 (3)
S3—O81.4271 (13)C16—C191.508 (3)
S3—O71.5848 (11)C17—C181.375 (3)
S3—C201.7518 (17)C17—H17A0.93
S4—O111.4240 (13)C18—H18A0.93
S4—O121.4274 (13)C19—H19A0.96
S4—O101.5899 (13)C19—H19B0.96
S4—C271.7404 (18)C19—H19C0.96
O1—C21.4578 (18)C20—C211.391 (2)
O4—C31.458 (2)C20—C251.393 (2)
O7—C41.4546 (18)C21—C221.385 (3)
O10—C51.4559 (19)C21—H21A0.93
C1—C41.528 (2)C22—C231.393 (2)
C1—C31.530 (2)C22—H22A0.93
C1—C21.531 (2)C23—C241.388 (3)
C1—C51.531 (2)C23—C261.502 (3)
C2—H2B0.97C24—C251.384 (3)
C2—H2C0.97C24—H24A0.93
C3—H3B0.97C25—H25A0.93
C3—H3C0.97C26—H26A0.96
C4—H4A0.97C26—H26B0.96
C4—H4B0.97C26—H26C0.96
C5—H5B0.97C27—C281.383 (2)
C5—H5C0.97C27—C321.391 (2)
C6—C71.390 (2)C28—C291.383 (2)
C6—C111.394 (2)C28—H28A0.93
C7—C81.380 (2)C29—C301.384 (3)
C7—H7A0.93C29—H29A0.93
C8—C91.392 (2)C30—C311.396 (3)
C8—H8B0.93C30—C331.506 (3)
C9—C101.395 (2)C31—C321.375 (3)
C9—C121.503 (3)C31—H31A0.93
C10—C111.382 (3)C32—H32A0.93
C10—H10A0.93C33—H33A0.96
C11—H11B0.93C33—H33B0.96
C12—H12B0.96C33—H33C0.96
O3—S1—O2120.75 (8)C9—C12—H12C109.5
O3—S1—O1103.71 (7)H12B—C12—H12C109.5
O2—S1—O1108.68 (7)C9—C12—H12D109.5
O3—S1—C6109.30 (8)H12B—C12—H12D109.5
O2—S1—C6109.11 (7)H12C—C12—H12D109.5
O1—S1—C6103.91 (7)C14—C13—C18121.01 (16)
O5—S2—O6119.85 (8)C14—C13—S2118.89 (13)
O5—S2—O4103.83 (8)C18—C13—S2120.09 (14)
O6—S2—O4108.03 (8)C15—C14—C13118.81 (17)
O5—S2—C13110.30 (9)C15—C14—H14A120.6
O6—S2—C13108.69 (8)C13—C14—H14A120.6
O4—S2—C13105.06 (8)C14—C15—C16121.31 (17)
O9—S3—O8120.30 (8)C14—C15—H15A119.3
O9—S3—O7103.79 (7)C16—C15—H15A119.3
O8—S3—O7108.60 (7)C17—C16—C15118.28 (17)
O9—S3—C20109.69 (8)C17—C16—C19120.99 (17)
O8—S3—C20109.06 (7)C15—C16—C19120.73 (17)
O7—S3—C20104.11 (7)C18—C17—C16121.45 (17)
O11—S4—O12119.87 (8)C18—C17—H17A119.3
O11—S4—O10103.51 (7)C16—C17—H17A119.3
O12—S4—O10108.71 (7)C17—C18—C13119.13 (17)
O11—S4—C27109.74 (8)C17—C18—H18A120.4
O12—S4—C27109.16 (8)C13—C18—H18A120.4
O10—S4—C27104.68 (7)C16—C19—H19A109.5
C2—O1—S1117.87 (9)C16—C19—H19B109.5
C3—O4—S2118.41 (10)H19A—C19—H19B109.5
C4—O7—S3117.34 (9)C16—C19—H19C109.5
C5—O10—S4117.92 (10)H19A—C19—H19C109.5
C4—C1—C3111.13 (13)H19B—C19—H19C109.5
C4—C1—C2106.71 (12)C21—C20—C25120.63 (16)
C3—C1—C2110.60 (13)C21—C20—S3119.40 (12)
C4—C1—C5110.94 (13)C25—C20—S3119.97 (13)
C3—C1—C5106.66 (12)C22—C21—C20118.94 (15)
C2—C1—C5110.85 (13)C22—C21—H21A120.5
O1—C2—C1106.24 (11)C20—C21—H21A120.5
O1—C2—H2B110.5C21—C22—C23121.42 (17)
C1—C2—H2B110.5C21—C22—H22A119.3
O1—C2—H2C110.5C23—C22—H22A119.3
C1—C2—H2C110.5C24—C23—C22118.54 (17)
H2B—C2—H2C108.7C24—C23—C26121.25 (16)
O4—C3—C1107.03 (12)C22—C23—C26120.21 (17)
O4—C3—H3B110.3C25—C24—C23121.23 (16)
C1—C3—H3B110.3C25—C24—H24A119.4
O4—C3—H3C110.3C23—C24—H24A119.4
C1—C3—H3C110.3C24—C25—C20119.23 (17)
H3B—C3—H3C108.6C24—C25—H25A120.4
O7—C4—C1106.63 (11)C20—C25—H25A120.4
O7—C4—H4A110.4C23—C26—H26A109.5
C1—C4—H4A110.4C23—C26—H26B109.5
O7—C4—H4B110.4H26A—C26—H26B109.5
C1—C4—H4B110.4C23—C26—H26C109.5
H4A—C4—H4B108.6H26A—C26—H26C109.5
O10—C5—C1106.62 (12)H26B—C26—H26C109.5
O10—C5—H5B110.4C28—C27—C32120.99 (16)
C1—C5—H5B110.4C28—C27—S4119.91 (13)
O10—C5—H5C110.4C32—C27—S4119.03 (13)
C1—C5—H5C110.4C27—C28—C29118.85 (16)
H5B—C5—H5C108.6C27—C28—H28A120.6
C7—C6—C11120.93 (16)C29—C28—H28A120.6
C7—C6—S1120.88 (13)C28—C29—C30121.41 (16)
C11—C6—S1118.18 (12)C28—C29—H29A119.3
C8—C7—C6118.92 (15)C30—C29—H29A119.3
C8—C7—H7A120.5C29—C30—C31118.61 (17)
C6—C7—H7A120.5C29—C30—C33120.43 (18)
C7—C8—C9121.64 (16)C31—C30—C33120.96 (18)
C7—C8—H8B119.2C32—C31—C30120.96 (17)
C9—C8—H8B119.2C32—C31—H31A119.5
C8—C9—C10118.19 (16)C30—C31—H31A119.5
C8—C9—C12121.62 (17)C31—C32—C27119.18 (16)
C10—C9—C12120.19 (16)C31—C32—H32A120.4
C11—C10—C9121.47 (16)C27—C32—H32A120.4
C11—C10—H10A119.3C30—C33—H33A109.5
C9—C10—H10A119.3C30—C33—H33B109.5
C10—C11—C6118.85 (15)H33A—C33—H33B109.5
C10—C11—H11B120.6C30—C33—H33C109.5
C6—C11—H11B120.6H33A—C33—H33C109.5
C9—C12—H12B109.5H33B—C33—H33C109.5
O3—S1—O1—C2170.85 (11)O4—S2—C13—C1483.71 (15)
O2—S1—O1—C241.20 (13)O5—S2—C13—C18151.46 (14)
C6—S1—O1—C274.89 (12)O6—S2—C13—C1818.19 (17)
O5—S2—O4—C3173.46 (11)O4—S2—C13—C1897.23 (15)
O6—S2—O4—C345.20 (13)C18—C13—C14—C150.4 (3)
C13—S2—O4—C370.68 (13)S2—C13—C14—C15178.62 (14)
O9—S3—O7—C4176.31 (12)C13—C14—C15—C160.4 (3)
O8—S3—O7—C447.20 (13)C14—C15—C16—C170.3 (3)
C20—S3—O7—C468.89 (13)C14—C15—C16—C19179.71 (18)
O11—S4—O10—C5170.33 (11)C15—C16—C17—C180.1 (3)
O12—S4—O10—C541.85 (13)C19—C16—C17—C18179.86 (18)
C27—S4—O10—C574.70 (12)C16—C17—C18—C130.1 (3)
S1—O1—C2—C1175.72 (10)C14—C13—C18—C170.3 (3)
C4—C1—C2—O1173.83 (13)S2—C13—C18—C17178.76 (14)
C3—C1—C2—O165.17 (16)O9—S3—C20—C2137.17 (15)
C5—C1—C2—O152.92 (16)O8—S3—C20—C21170.84 (13)
S2—O4—C3—C1154.00 (10)O7—S3—C20—C2173.38 (14)
C4—C1—C3—O460.20 (16)O9—S3—C20—C25142.69 (14)
C2—C1—C3—O458.14 (16)O8—S3—C20—C259.02 (16)
C5—C1—C3—O4178.76 (12)O7—S3—C20—C25106.76 (14)
S3—O7—C4—C1179.78 (10)C25—C20—C21—C221.1 (3)
C3—C1—C4—O760.81 (16)S3—C20—C21—C22178.76 (13)
C2—C1—C4—O7178.53 (13)C20—C21—C22—C230.3 (3)
C5—C1—C4—O757.68 (16)C21—C22—C23—C240.5 (3)
S4—O10—C5—C1154.75 (10)C21—C22—C23—C26178.59 (17)
C4—C1—C5—O1062.45 (15)C22—C23—C24—C250.4 (3)
C3—C1—C5—O10176.39 (12)C26—C23—C24—C25178.66 (16)
C2—C1—C5—O1055.93 (15)C23—C24—C25—C200.4 (3)
O3—S1—C6—C7142.11 (13)C21—C20—C25—C241.2 (3)
O2—S1—C6—C78.11 (16)S3—C20—C25—C24178.69 (13)
O1—S1—C6—C7107.68 (14)O11—S4—C27—C28138.81 (14)
O3—S1—C6—C1137.20 (15)O12—S4—C27—C285.58 (17)
O2—S1—C6—C11171.20 (12)O10—S4—C27—C28110.67 (14)
O1—S1—C6—C1173.01 (14)O11—S4—C27—C3238.17 (16)
C11—C6—C7—C80.1 (2)O12—S4—C27—C32171.40 (14)
S1—C6—C7—C8179.35 (13)O10—S4—C27—C3272.35 (15)
C6—C7—C8—C90.1 (3)C32—C27—C28—C290.0 (3)
C7—C8—C9—C100.2 (3)S4—C27—C28—C29176.92 (14)
C7—C8—C9—C12179.59 (17)C27—C28—C29—C300.2 (3)
C8—C9—C10—C110.1 (3)C28—C29—C30—C310.5 (3)
C12—C9—C10—C11179.50 (17)C28—C29—C30—C33179.33 (18)
C9—C10—C11—C60.0 (3)C29—C30—C31—C320.6 (3)
C7—C6—C11—C100.2 (2)C33—C30—C31—C32179.26 (18)
S1—C6—C11—C10179.46 (13)C30—C31—C32—C270.4 (3)
O5—S2—C13—C1427.60 (17)C28—C27—C32—C310.1 (3)
O6—S2—C13—C14160.86 (14)S4—C27—C32—C31176.88 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2C···O40.972.482.849 (2)102
C3—H3B···O60.972.472.905 (2)107
C3—H3B···O70.972.552.876 (2)100
C3—H3C···O9i0.972.463.433 (2)175
C4—H4A···O40.972.552.879 (2)100
C5—H5B···O120.972.442.888 (2)107
C5—H5C···O70.972.492.8396 (19)101
C7—H7A···O20.932.582.937 (2)103
C8—H8B···O11ii0.932.523.140 (2)124
C10—H10A···O6i0.932.413.257 (2)151
C18—H18A···O60.932.592.932 (2)103
C22—H22A···O12iii0.932.523.154 (2)126
C25—H25A···O80.932.562.924 (2)104
C28—H28A···O120.932.542.905 (2)104
C29—H29A···O8iv0.932.423.334 (2)165
C31—H31A···O12iii0.932.533.209 (2)130
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC33H36O12S4
Mr752.86
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.2983 (2), 18.0368 (2), 15.4181 (2)
β (°) 110.653 (1)
V3)3460.50 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.47 × 0.41 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.857, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
45048, 10090, 7927
Rint0.039
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.119, 1.04
No. of reflections10090
No. of parameters446
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.42

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2C···O40.972.482.849 (2)102
C3—H3B···O60.972.472.905 (2)107
C3—H3B···O70.972.552.876 (2)100
C3—H3C···O9i0.972.463.433 (2)175
C4—H4A···O40.972.552.879 (2)100
C5—H5B···O120.972.442.888 (2)107
C5—H5C···O70.972.492.8396 (19)101
C7—H7A···O20.932.582.937 (2)103
C8—H8B···O11ii0.932.523.140 (2)124
C10—H10A···O6i0.932.413.257 (2)151
C18—H18A···O60.932.592.932 (2)103
C22—H22A···O12iii0.932.523.154 (2)126
C25—H25A···O80.932.562.924 (2)104
C28—H28A···O120.932.542.905 (2)104
C29—H29A···O8iv0.932.423.334 (2)165
C31—H31A···O12iii0.932.533.209 (2)130
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

The authors gratefully acknowledge the financial assistance of Beijing Normal University. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConstable, E. C., Housecroft, C. E., Cattalini, M. & Phillips, D. (1998). New J. Chem. pp. 193–200.  Web of Science CrossRef Google Scholar
First citationFundueanu, G., Esposito, E., Mihai, D., Carpov, A., Desbrieres, J., Rinaudo, M. & Nastruzzi, C. (1998). Int. J. Pharm. 170, 11–21.  Web of Science CrossRef CAS Google Scholar
First citationJiang, H., Lee, S. J. & Lin, W. (2002). Org. Lett. 4, 2149–2152.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, J., Leong, A. J., Lindoy, L. F., Kim, J., Nachbaur, J., Nezhadali, A., Rounaghi, G. & Wei, G. (2000). J. Chem. Soc. Dalton Trans. pp. 3453–3459.  Web of Science CrossRef Google Scholar
First citationLi, S.-X., Li, H.-M., Lu, Z.-L., Fun, H.-K. & Chantrapromma, S. (2008). Acta Cryst. E64, o1472–o1473.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLuo, F. T. & Chen, C. H. (2001). Heterocycles, 55, 1663–1678.  CrossRef CAS Google Scholar
First citationMischiati, C., Jeang, K.-T., Feriotto, G., Breda, L., Borgatti, M., Bianchi, N. & Gambari, R. (2001). Antisense Nucleic Acid Drug Dev. 11, 209–217.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOike, H., Hamada, M., Eguchi, S., Danda, Y. & Tezuka, Y. (2001). Macromolecules, 34, 2776–2782.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1474-o1475
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds