organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1503-o1504

4-[(E)-2,6-Di­chloro­benzyl­­idene­amino]-3-{1-[4-(2-methyl­prop­yl)phen­yl]eth­yl}-1H-1,2,4-triazole-5(4H)-thione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India, dDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and eDepartment of Chemistry, Nehru Arts & Science College, Kanhangad, Kerala 671 328, India
*Correspondence e-mail: hkfun@usm.my

(Received 7 July 2008; accepted 9 July 2008; online 16 July 2008)

In the title Schiff base compound, C21H22Cl2N4S, the triazole ring makes dihedral angles of 2.15 (11) and 87.48 (11)° with the 2,6-dichloro­phenyl and methyl­propyl­phenyl rings, respectively. Weak intra­molecular C—H⋯S and C—H⋯Cl inter­actions generate S(6) and S(5) ring motifs, respectively. In the crystal structure, centrosymmetrically related mol­ecules are linked into dimers by N—H⋯S hydrogen bonds. These dimers are arranged into sheets parallel to the ab plane and are stacked along the c axis. C—H⋯π inter­actions involving the methyl­propyl­phenyl ring and ππ inter­actions involving the dichloro­phenyl ring [centroid–centroid distance = 3.5865 (3) Å] are also observed.

Related literature

For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For related structures, see: Fun et al. (2008a[Fun, H.-K., Jebas, S. R., Razak, I. A., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008a). Acta Cryst. E64, o1076-o1077.],b[Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008b). Acta Cryst. E64, o1001-o1002.]). For background to the activities and applications of 1,2,4-triazole derivatives, see: Almasirad et al. (2004[Almasirad, A., Tabatabai, S. A., Faizi, M., Kebriaeezadeh, A., Mehrabi, N., Dalvandi, A. & Shafiee, A. (2004). Bioorg. Med. Chem. Lett. 14, 6057-6059.]); Al-Soud et al. (2003[Al-Soud, Y. A., Al-Masoudi, N. A. & Ferwanah, A. R. S. (2003). Bioorg. Med. Chem. 11, 1701-1708.]); Amir & Shikha (2004[Amir, M. & Shikha, K. (2004). Eur. J. Med. Chem. 39, 535-545.]); Holla et al. (2003[Holla, B. S., Veerendra, B., Shivananda, M. K. & Poojary, B. (2003). Eur. J. Med. Chem. 38, 759-767.]); Kawashima et al. (1987[Kawashima, Y., Ishikawa, H., Kida, S., Tanaka, T. & Masuda, T. (1987). Chem Abstr. 106, 138475x.]); Palaska et al. (2002[Palaska, E., Sahin, G., Kelicen, P., Durlu, N. T. & Altinok, G. (2002). Il Farmaco, 57, 101-107.]); Walczak et al. (2004[Walczak, K., Gondela, A. & Suwin'ski, J. (2004). Eur. J. Med. Chem. 39, 849-853.]); Zitouni et al. (2005[Zitouni, G. T., Kaplancíklí, Z. A., Yíldíz, M. T., Chevallet, P. & Kaya, D. (2005). Eur. J. Med. Chem. 40, 607-613.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22Cl2N4S

  • Mr = 433.40

  • Triclinic, [P \overline 1]

  • a = 8.6190 (2) Å

  • b = 9.4441 (2) Å

  • c = 14.4244 (4) Å

  • α = 104.669 (2)°

  • β = 95.492 (2)°

  • γ = 110.418 (1)°

  • V = 1042.33 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 100.0 (1) K

  • 0.29 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.887, Tmax = 0.934

  • 19865 measured reflections

  • 6032 independent reflections

  • 4139 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.136

  • S = 1.00

  • 6032 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯S1i 0.86 2.44 3.2849 (19) 169
C10—H10A⋯Cl2 0.93 2.62 2.978 (2) 104
C10—H10A⋯S1 0.93 2.52 3.2066 (19) 131
C15—H15ACg1ii 0.93 2.94 3.793 (3) 154
Symmetry codes: (i) -x+2, -y-1, -z; (ii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

1,2,4-Triazoles and their derivatives represent an overwhelming and rapid developing field in modern heterocyclic chemistry. A degree of respectability has been bestowed for 1,2,4-triazole derivatives due to their antibacterial, antifungal (Zitouni et al., 2005), antitubercular (Walczak et al., 2004), anticancer (Holla et al., 2003), antitumor (Al-Soud et al., 2003), anticonvulsant (Almasirad et al., 2004), antiinflammatory, and analgesic properties (Amir & Shikha, 2004). Certain 1,2,4-triazoles also find applications in the preparation of photographic plates, polymers, and as analytical agents (Kawashima et al., 1987). Similarly, ibuprofen belongs to the class of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) with antipyretic, anti-inflammatory and analgesic properties (Palaska et al., 2002). Our earlier studies involved synthesis of heterocyclic compounds which contain in their structures both the ibuprofen and 1,2,4-triazole fragments (Fun et al., 2008a,b). In this connection and in continuation of our interest in the synthesis of chemically and biologically important heterocycles, we report here the crystal structure of a substituted 1,2,4-triazole Schiff base carrying only the ibuprofen moiety.

In the title Schiff base compound (Fig. 1), the 1,2,4 triazole ring (C8-C9/N1-N3) is planar with a maximum deviation of 0.009 (2) Å for atom N3. The 1,2,4 triazole ring is co-planar with the 2,6-dichlorophenyl (C11-C16) ring [dihedral angle = 2.15 (11)°] but is almost perpendicular to the methylpropylphenyl (C1-C6) ring with a dihedral angle of 87.48 (11)°. The methylidene amino linkage (N4/C10) is slightly twisted from the mean plane of the 1,2,4 triazole ring as indicated by the torsion angle C9–N3–N4–C10 of 26.4 (3)°. Weak C—H···S and C—H···Cl intramolecular interactions generate S(6) and S(5) ring motifs, respectively (Bernstein et al., 1995). The bond distances and angles have normal values (Allen et al., 1987) and are comparable with closely related structures (Fun et al., 2008a,b).

In the crystal structure, centrosymmetrically related molecules are linked into dimers (Fig. 2) by N—H···S hydrogen bonds (Table 1). These dimers are arranged into sheets parallel to the ab plane and these sheets are stacked along the c axis (Fig. 3). In addition, the crystal structure is stabilized by C—H···π interactions (Table 1) involving the C1-C6 ring (centroid Cg1) and π-π interaction involving the C11-C16 ring (centroid Cg2) [Cg2···Cg2ii = 3.5865 (3) Å, symmetry code: (ii) 1 - x, -y, -z].

Related literature top

For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2008a,b). For background to the activities and applications of 1,2,4-triazole derivatives, see: Almasirad et al. (2004); Al-Soud et al. (2003); Amir & Shikha (2004); Holla et al. (2003); Kawashima et al. (1987); Palaska et al. (2002); Walczak et al. (2004); Zitouni et al. (2005). Cg1 is the centroid of the C1–C6 ring.

Experimental top

The title compound was obtained by refluxing 4-amino-5-[1-(4-isobutylphenyl)ethyl]-4H-1,2,4-triazole-3-thiol (0.01 mol) and 2,6-dichlorobenzaldehyde (0.01 mol) in ethanol (50 ml) with the addition of 3 drops of concentrated sulfuric acid for 3 h. The solid product obtained was collected by filtration, washed with ethanol and dried. Colourless single crystals suitable for X-ray analysis were obtained from a acetone-N,N-dimethylformamide (DMF) (1:3 v/v) solution by slow evaporation (yield 53%; m.p. 438–440 K)

Refinement top

All H atoms were placed in calculated positions (N-H = 0.86 Å and C-H = 0.93-0.98 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl). A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Weak C—H···S and C—H···Cl hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound, viewed along the a axis, showing hydrogen-bonded (dashed lines) dimers.
[Figure 3] Fig. 3. The packing diagram of the title compound, viewed along the c axis, showing stacking of the molecular sheets. Hydrogen bonds are shown as dashed lines.
4-[(E)-2,6-Dichlorobenzylideneamino]-3-{1-[4-(2- methylpropyl)phenyl]ethyl}-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C21H22Cl2N4SZ = 2
Mr = 433.40F(000) = 452
Triclinic, P1Dx = 1.381 Mg m3
Hall symbol: -P 1Melting point = 438–440 K
a = 8.6190 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4441 (2) ÅCell parameters from 6032 reflections
c = 14.4244 (4) Åθ = 1.5–30.0°
α = 104.669 (2)°µ = 0.43 mm1
β = 95.492 (2)°T = 100 K
γ = 110.418 (1)°Block, colourless
V = 1042.33 (5) Å30.29 × 0.20 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6032 independent reflections
Radiation source: fine-focus sealed tube4139 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 1.5°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1313
Tmin = 0.887, Tmax = 0.935l = 2019
19865 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0746P)2]
where P = (Fo2 + 2Fc2)/3
6032 reflections(Δ/σ)max = 0.001
256 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C21H22Cl2N4Sγ = 110.418 (1)°
Mr = 433.40V = 1042.33 (5) Å3
Triclinic, P1Z = 2
a = 8.6190 (2) ÅMo Kα radiation
b = 9.4441 (2) ŵ = 0.43 mm1
c = 14.4244 (4) ÅT = 100 K
α = 104.669 (2)°0.29 × 0.20 × 0.16 mm
β = 95.492 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6032 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4139 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.935Rint = 0.050
19865 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.00Δρmax = 0.59 e Å3
6032 reflectionsΔρmin = 0.47 e Å3
256 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.79027 (6)0.43005 (6)0.06227 (3)0.02335 (13)
Cl10.43164 (7)0.07928 (7)0.21127 (4)0.03523 (15)
Cl20.41695 (7)0.33808 (6)0.17537 (4)0.03136 (14)
N10.9611 (2)0.3270 (2)0.21761 (12)0.0244 (4)
N20.9465 (2)0.3961 (2)0.11923 (12)0.0240 (4)
H2A1.00370.45110.09710.029*
N30.7738 (2)0.28053 (18)0.12730 (11)0.0192 (3)
N40.6602 (2)0.20834 (19)0.11584 (12)0.0229 (4)
C10.9409 (2)0.0211 (2)0.32320 (13)0.0218 (4)
C21.1052 (3)0.0657 (2)0.30759 (15)0.0259 (4)
H2B1.15150.01050.29150.031*
C31.2013 (3)0.2223 (2)0.31568 (15)0.0266 (4)
H3A1.31090.24920.30460.032*
C41.1366 (3)0.3403 (2)0.34015 (14)0.0244 (4)
C50.9747 (3)0.2957 (2)0.35952 (14)0.0262 (4)
H5A0.93010.37260.37860.031*
C60.8779 (3)0.1389 (2)0.35107 (14)0.0234 (4)
H6A0.76960.11250.36420.028*
C70.8319 (3)0.1523 (2)0.31079 (14)0.0225 (4)
H7A0.71310.16510.30130.027*
C80.8563 (2)0.2560 (2)0.22068 (14)0.0217 (4)
C90.8351 (2)0.3702 (2)0.06064 (14)0.0206 (4)
C100.5498 (2)0.2695 (2)0.03633 (14)0.0223 (4)
H10A0.54950.35780.01050.027*
C110.4228 (2)0.2036 (2)0.01691 (14)0.0215 (4)
C120.3619 (3)0.1177 (2)0.08757 (15)0.0239 (4)
C130.2388 (3)0.0628 (2)0.06263 (16)0.0270 (4)
H13A0.20110.00540.11120.032*
C140.1729 (3)0.0938 (2)0.03479 (16)0.0278 (5)
H14A0.09060.05700.05160.033*
C150.2278 (3)0.1792 (3)0.10761 (16)0.0284 (5)
H15A0.18290.20030.17320.034*
C160.3504 (3)0.2325 (2)0.08126 (14)0.0246 (4)
C171.2359 (3)0.5077 (2)0.34117 (15)0.0281 (5)
H17A1.17870.52860.28810.034*
H17B1.34620.51470.32810.034*
C181.2612 (3)0.6380 (2)0.43631 (15)0.0248 (4)
H18A1.14980.62740.45120.030*
C191.3448 (3)0.8002 (2)0.42311 (17)0.0331 (5)
H19A1.35840.88130.48260.050*
H19B1.27520.80980.37090.050*
H19C1.45350.81210.40750.050*
C201.3655 (3)0.6216 (3)0.52176 (15)0.0307 (5)
H20A1.37510.70170.58080.046*
H20B1.47630.63450.50920.046*
H20C1.31090.51850.52890.046*
C210.8713 (3)0.2028 (3)0.39995 (15)0.0315 (5)
H21A0.80100.31240.38820.047*
H21B0.84960.13870.45640.047*
H21C0.98800.18900.41130.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0258 (3)0.0241 (2)0.0194 (2)0.0112 (2)0.00672 (19)0.00244 (18)
Cl10.0389 (3)0.0551 (4)0.0221 (3)0.0310 (3)0.0104 (2)0.0093 (2)
Cl20.0362 (3)0.0338 (3)0.0213 (3)0.0135 (2)0.0063 (2)0.0036 (2)
N10.0296 (9)0.0241 (8)0.0190 (8)0.0132 (7)0.0055 (7)0.0016 (7)
N20.0272 (9)0.0240 (8)0.0228 (8)0.0152 (7)0.0061 (7)0.0030 (7)
N30.0210 (8)0.0184 (7)0.0182 (8)0.0081 (6)0.0061 (6)0.0043 (6)
N40.0241 (8)0.0230 (8)0.0247 (9)0.0120 (7)0.0080 (7)0.0072 (7)
C10.0245 (10)0.0248 (10)0.0144 (9)0.0095 (8)0.0034 (7)0.0036 (7)
C20.0280 (10)0.0235 (10)0.0270 (11)0.0134 (8)0.0080 (8)0.0033 (8)
C30.0245 (10)0.0280 (10)0.0245 (10)0.0090 (8)0.0086 (8)0.0037 (8)
C40.0299 (10)0.0252 (10)0.0159 (9)0.0108 (8)0.0050 (8)0.0023 (8)
C50.0293 (10)0.0250 (10)0.0242 (10)0.0140 (8)0.0062 (8)0.0020 (8)
C60.0245 (10)0.0261 (10)0.0205 (9)0.0124 (8)0.0072 (8)0.0037 (8)
C70.0251 (10)0.0229 (9)0.0195 (9)0.0103 (8)0.0064 (8)0.0042 (7)
C80.0249 (10)0.0194 (9)0.0199 (9)0.0075 (8)0.0069 (7)0.0051 (7)
C90.0227 (9)0.0165 (8)0.0212 (9)0.0067 (7)0.0071 (7)0.0039 (7)
C100.0216 (9)0.0203 (9)0.0237 (10)0.0066 (8)0.0081 (8)0.0054 (7)
C110.0192 (9)0.0203 (9)0.0235 (10)0.0049 (7)0.0062 (8)0.0072 (7)
C120.0228 (10)0.0270 (10)0.0223 (10)0.0093 (8)0.0068 (8)0.0082 (8)
C130.0225 (10)0.0300 (11)0.0323 (11)0.0125 (8)0.0106 (8)0.0113 (9)
C140.0219 (10)0.0300 (11)0.0356 (12)0.0107 (9)0.0062 (9)0.0158 (9)
C150.0274 (10)0.0296 (11)0.0255 (11)0.0074 (9)0.0028 (8)0.0103 (8)
C160.0246 (10)0.0244 (10)0.0226 (10)0.0065 (8)0.0079 (8)0.0064 (8)
C170.0349 (12)0.0259 (10)0.0224 (10)0.0104 (9)0.0104 (9)0.0060 (8)
C180.0267 (10)0.0220 (10)0.0241 (10)0.0086 (8)0.0062 (8)0.0053 (8)
C190.0390 (13)0.0245 (10)0.0335 (12)0.0102 (10)0.0105 (10)0.0070 (9)
C200.0353 (12)0.0306 (11)0.0264 (11)0.0164 (9)0.0049 (9)0.0046 (9)
C210.0416 (13)0.0319 (11)0.0234 (11)0.0159 (10)0.0103 (9)0.0088 (9)
Geometric parameters (Å, º) top
S1—C91.6797 (19)C10—C111.472 (3)
Cl1—C121.730 (2)C10—H10A0.93
Cl2—C161.740 (2)C11—C121.398 (3)
N1—C81.297 (2)C11—C161.409 (3)
N1—N21.377 (2)C12—C131.389 (3)
N2—C91.345 (2)C13—C141.381 (3)
N2—H2A0.86C13—H13A0.93
N3—C81.384 (2)C14—C151.382 (3)
N3—C91.385 (2)C14—H14A0.93
N3—N41.394 (2)C15—C161.381 (3)
N4—C101.275 (2)C15—H15A0.93
C1—C21.388 (3)C17—C181.531 (3)
C1—C61.390 (3)C17—H17A0.97
C1—C71.530 (3)C17—H17B0.97
C2—C31.388 (3)C18—C191.519 (3)
C2—H2B0.93C18—C201.527 (3)
C3—C41.396 (3)C18—H18A0.98
C3—H3A0.93C19—H19A0.96
C4—C51.388 (3)C19—H19B0.96
C4—C171.508 (3)C19—H19C0.96
C5—C61.389 (3)C20—H20A0.96
C5—H5A0.93C20—H20B0.96
C6—H6A0.93C20—H20C0.96
C7—C81.498 (3)C21—H21A0.96
C7—C211.529 (3)C21—H21B0.96
C7—H7A0.98C21—H21C0.96
C8—N1—N2104.17 (15)C13—C12—Cl1116.33 (16)
C9—N2—N1114.24 (15)C11—C12—Cl1121.52 (16)
C9—N2—H2A122.9C14—C13—C12119.57 (19)
N1—N2—H2A122.9C14—C13—H13A120.2
C8—N3—C9108.43 (15)C12—C13—H13A120.2
C8—N3—N4119.01 (15)C13—C14—C15120.7 (2)
C9—N3—N4132.41 (16)C13—C14—H14A119.6
C10—N4—N3117.04 (16)C15—C14—H14A119.6
C2—C1—C6117.99 (19)C16—C15—C14118.81 (19)
C2—C1—C7121.30 (17)C16—C15—H15A120.6
C6—C1—C7120.71 (18)C14—C15—H15A120.6
C1—C2—C3121.00 (18)C15—C16—C11122.96 (19)
C1—C2—H2B119.5C15—C16—Cl2117.26 (16)
C3—C2—H2B119.5C11—C16—Cl2119.79 (16)
C2—C3—C4121.3 (2)C4—C17—C18115.60 (17)
C2—C3—H3A119.4C4—C17—H17A108.4
C4—C3—H3A119.4C18—C17—H17A108.4
C5—C4—C3117.32 (19)C4—C17—H17B108.4
C5—C4—C17121.41 (18)C18—C17—H17B108.4
C3—C4—C17121.22 (19)H17A—C17—H17B107.4
C4—C5—C6121.51 (18)C19—C18—C20110.68 (17)
C4—C5—H5A119.2C19—C18—C17109.89 (18)
C6—C5—H5A119.2C20—C18—C17111.28 (17)
C5—C6—C1120.83 (19)C19—C18—H18A108.3
C5—C6—H6A119.6C20—C18—H18A108.3
C1—C6—H6A119.6C17—C18—H18A108.3
C8—C7—C21110.54 (16)C18—C19—H19A109.5
C8—C7—C1108.88 (16)C18—C19—H19B109.5
C21—C7—C1112.70 (16)H19A—C19—H19B109.5
C8—C7—H7A108.2C18—C19—H19C109.5
C21—C7—H7A108.2H19A—C19—H19C109.5
C1—C7—H7A108.2H19B—C19—H19C109.5
N1—C8—N3110.81 (16)C18—C20—H20A109.5
N1—C8—C7126.05 (18)C18—C20—H20B109.5
N3—C8—C7123.04 (17)H20A—C20—H20B109.5
N2—C9—N3102.32 (15)C18—C20—H20C109.5
N2—C9—S1127.33 (15)H20A—C20—H20C109.5
N3—C9—S1130.33 (15)H20B—C20—H20C109.5
N4—C10—C11121.60 (18)C7—C21—H21A109.5
N4—C10—H10A119.2C7—C21—H21B109.5
C11—C10—H10A119.2H21A—C21—H21B109.5
C12—C11—C16115.84 (18)C7—C21—H21C109.5
C12—C11—C10125.92 (18)H21A—C21—H21C109.5
C16—C11—C10118.21 (17)H21B—C21—H21C109.5
C13—C12—C11122.11 (19)
C8—N1—N2—C90.0 (2)N1—N2—C9—N31.0 (2)
C8—N3—N4—C10158.60 (18)N1—N2—C9—S1177.52 (14)
C9—N3—N4—C1026.4 (3)C8—N3—C9—N21.52 (19)
C6—C1—C2—C32.6 (3)N4—N3—C9—N2176.87 (18)
C7—C1—C2—C3177.75 (18)C8—N3—C9—S1176.89 (16)
C1—C2—C3—C40.3 (3)N4—N3—C9—S11.5 (3)
C2—C3—C4—C52.3 (3)N3—N4—C10—C11179.51 (17)
C2—C3—C4—C17175.13 (19)N4—C10—C11—C1226.3 (3)
C3—C4—C5—C62.6 (3)N4—C10—C11—C16155.8 (2)
C17—C4—C5—C6174.83 (19)C16—C11—C12—C130.6 (3)
C4—C5—C6—C10.3 (3)C10—C11—C12—C13178.53 (19)
C2—C1—C6—C52.3 (3)C16—C11—C12—Cl1177.38 (15)
C7—C1—C6—C5178.04 (18)C10—C11—C12—Cl10.6 (3)
C2—C1—C7—C842.3 (2)C11—C12—C13—C140.3 (3)
C6—C1—C7—C8138.03 (19)Cl1—C12—C13—C14177.75 (16)
C2—C1—C7—C2180.7 (2)C12—C13—C14—C150.1 (3)
C6—C1—C7—C2198.9 (2)C13—C14—C15—C160.2 (3)
N2—N1—C8—N31.0 (2)C14—C15—C16—C110.1 (3)
N2—N1—C8—C7175.37 (18)C14—C15—C16—Cl2179.50 (16)
C9—N3—C8—N11.7 (2)C12—C11—C16—C150.5 (3)
N4—N3—C8—N1177.76 (17)C10—C11—C16—C15178.60 (19)
C9—N3—C8—C7174.84 (17)C12—C11—C16—Cl2179.88 (15)
N4—N3—C8—C71.2 (3)C10—C11—C16—Cl22.0 (2)
C21—C7—C8—N129.1 (3)C5—C4—C17—C1856.3 (3)
C1—C7—C8—N195.2 (2)C3—C4—C17—C18126.4 (2)
C21—C7—C8—N3154.92 (18)C4—C17—C18—C19173.51 (18)
C1—C7—C8—N380.8 (2)C4—C17—C18—C2063.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···S1i0.862.443.2849 (19)169
C10—H10A···Cl20.932.622.978 (2)104
C10—H10A···S10.932.523.2066 (19)131
C15—H15A···Cg1ii0.932.943.793 (3)154
Symmetry codes: (i) x+2, y1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC21H22Cl2N4S
Mr433.40
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.6190 (2), 9.4441 (2), 14.4244 (4)
α, β, γ (°)104.669 (2), 95.492 (2), 110.418 (1)
V3)1042.33 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.29 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.887, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
19865, 6032, 4139
Rint0.050
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.136, 1.00
No. of reflections6032
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.47

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···S1i0.862.443.2849 (19)169
C10—H10A···Cl20.932.622.978 (2)104
C10—H10A···S10.932.523.2066 (19)131
C15—H15A···Cg1ii0.932.943.793 (3)154
Symmetry codes: (i) x+2, y1, z; (ii) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

KVS, BK and AM are grateful to Kerala State Council for Science Technology and Environment, Thiruvananthapuram, for financial assistance. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAlmasirad, A., Tabatabai, S. A., Faizi, M., Kebriaeezadeh, A., Mehrabi, N., Dalvandi, A. & Shafiee, A. (2004). Bioorg. Med. Chem. Lett. 14, 6057–6059.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAl-Soud, Y. A., Al-Masoudi, N. A. & Ferwanah, A. R. S. (2003). Bioorg. Med. Chem. 11, 1701–1708.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAmir, M. & Shikha, K. (2004). Eur. J. Med. Chem. 39, 535–545.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Jebas, S. R., Razak, I. A., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008a). Acta Cryst. E64, o1076–o1077.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008b). Acta Cryst. E64, o1001–o1002.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHolla, B. S., Veerendra, B., Shivananda, M. K. & Poojary, B. (2003). Eur. J. Med. Chem. 38, 759–767.  Web of Science CrossRef PubMed Google Scholar
First citationKawashima, Y., Ishikawa, H., Kida, S., Tanaka, T. & Masuda, T. (1987). Chem Abstr. 106, 138475x.  Google Scholar
First citationPalaska, E., Sahin, G., Kelicen, P., Durlu, N. T. & Altinok, G. (2002). Il Farmaco, 57, 101–107.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalczak, K., Gondela, A. & Suwin'ski, J. (2004). Eur. J. Med. Chem. 39, 849–853.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZitouni, G. T., Kaplancíklí, Z. A., Yíldíz, M. T., Chevallet, P. & Kaya, D. (2005). Eur. J. Med. Chem. 40, 607–613.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1503-o1504
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds