organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(E)-4-Bromo­benzyl­­idene­amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India, cDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and dDepartment of Chemistry, Nehru Arts and Science College, Kanhangad, Kerala 671 328, India
*Correspondence e-mail: hkfun@usm.my

(Received 8 July 2008; accepted 11 July 2008; online 16 July 2008)

In the title mol­ecule, C10H9BrN4S, the dihedral angle between the triazole and benzene rings is 12.32 (19)°. An intra­molecular C—H⋯S hydrogen bond generates an S(6) ring motif. In the crystal packing, centrosymmetrically related mol­ecules are linked into a dimer by N—H⋯S hydrogen bonds, and the dimers are linked into a chain running along [1[\overline{1}]1] by Br⋯N short contacts [3.187 (3) Å]. The crystal packing is further strengthened by ππ inter­actions involving the triazole ring [centroid–centroid distance = 3.322 (2) Å].

Related literature

For the pharmacological activity of triazole compounds, see: Bekircan et al. (2006[Bekircan, O. & Bektas, H. (2006). Molecules, 11, 469-477.]); Brandt et al. (2007[Brandt, C. D., Kitchen, J. A., Beckmann, U., White, N. G., Jameson, G. B. & Brooker, S. (2007). Supramol. Chem. 19, 17-27.]); Holla et al. (1996[Holla, B. S., Poojary, K. N., Kalluraya, B. & Gowda, P. V. (1996). Il Farmaco, 51, 793-799.], 2002[Holla, B. S., Poojary, K. N., Rao, B. S. & Shivananda, M. K. (2002). Eur. J. Med. Chem. 37, 511-517.]); Yale et al. (1966[Yale, H. L. & Piala, J. J. (1966). J. Med. Chem. 9, 42-46.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9BrN4S

  • Mr = 297.18

  • Triclinic, [P \overline 1]

  • a = 6.9239 (5) Å

  • b = 7.6072 (5) Å

  • c = 11.5982 (8) Å

  • α = 82.453 (5)°

  • β = 88.339 (5)°

  • γ = 68.204 (4)°

  • V = 562.18 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.82 mm−1

  • T = 100.0 (1) K

  • 0.32 × 0.31 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.265, Tmax = 0.629

  • 13535 measured reflections

  • 3252 independent reflections

  • 2538 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.121

  • S = 1.09

  • 3252 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 1.20 e Å−3

  • Δρmin = −1.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯S1i 0.87 2.48 3.321 (4) 164
C7—H7A⋯S1 0.93 2.50 3.223 (4) 134
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Various 1,2,4-triazole derivatives are found to be associated with diverse pharmacological activity (Holla et al., 1996,2002). Schiff bases of 1,2,4-triazoles find diverse applications and extensive biological activity. Schiff bases derived from 3-substituted-4-amino-5-mercapto-1,2,4 triazoles show antiinflammatory, analgesic, antimicrobial and antidepressant activities (Yale et al., 1966; Bekircan et al., 2006). The incorporation of the 1,2,4-triazole unit into Schiff-base macrocycles is of considerable current interest as complexes of 1,2,4-triazoles are being developed for potential use in applications such as magnetic materials and photochemically driven molecular devices (Brandt et al., 2007). These applications prompted us to synthesize a novel Schiff base, derived from the reaction of 4-amino-5-methyl-2,4-dihydro-3H-1,2,4- triazole-3-thione with 4-bromo benzaldehyde.

In the title compound (Fig.1), the bond lengths and angles are found to have normal values (Allen et al., 1987). The dihedral angle between the triazole ring (N2/C8/N3/N4/C9) and the benzene ring (C1-C6) is 12.32 (19)°, indicating that they are slightly twisted from each other. An intramolecular C—H···S hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995).

In the crystal packing, centrosymmetrically related molecules are linked into a dimer by N—H···S hydrogen bonds (Table 1). The dimers are linked into a chain running along the [1 1 1] by Br1···N4(1+x, -1+y, 1+z) short contacts [3.187 (3) Å]. The crystal packing is further strengthened by π-π interactions between the N2/C8/N3/N4/C9 (centroid Cg1) rings of the molecules at (x, y, z) and (1-x, 1-y, z) [centroid-centroid distance = 3.322 (2) Å].

Related literature top

For the pharmacological activity of triazole compounds, see: Bekircan et al. (2006); Brandt et al. (2007); Holla et al. (1996, 2002); Yale et al. (1966). For bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

A mixture of 4-amino-5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (0.01 mol), 4-bromobenzaldehyde (0.01 mol) in ethanol (30 ml) and 2 drops of concentrated H2SO4 was refluxed for 3 h. The solid product obtained was collected by filtration, washed with ethanol and dried. Single crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation.

Refinement top

H atoms were positioned geometrically [C-H = 0.93-0.96 %A and N-H = 0.87 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5eq(Cmethyl). A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds and Br···N short contacts are shown as dashed lines.
4-[(E)-4-Bromobenzylideneamino]-3-methyl-1H-1,2,4-triazole- 5(4H)-thione top
Crystal data top
C10H9BrN4SZ = 2
Mr = 297.18F(000) = 296
Triclinic, P1Dx = 1.756 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9239 (5) ÅCell parameters from 5175 reflections
b = 7.6072 (5) Åθ = 2.9–33.2°
c = 11.5982 (8) ŵ = 3.82 mm1
α = 82.453 (5)°T = 100 K
β = 88.339 (5)°Plate, colourless
γ = 68.204 (4)°0.32 × 0.31 × 0.12 mm
V = 562.18 (7) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3252 independent reflections
Radiation source: fine-focus sealed tube2538 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ and ω scansθmax = 30.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.265, Tmax = 0.629k = 1010
13535 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0635P)2 + 0.1826P]
where P = (Fo2 + 2Fc2)/3
3252 reflections(Δ/σ)max = 0.001
146 parametersΔρmax = 1.20 e Å3
0 restraintsΔρmin = 1.50 e Å3
Crystal data top
C10H9BrN4Sγ = 68.204 (4)°
Mr = 297.18V = 562.18 (7) Å3
Triclinic, P1Z = 2
a = 6.9239 (5) ÅMo Kα radiation
b = 7.6072 (5) ŵ = 3.82 mm1
c = 11.5982 (8) ÅT = 100 K
α = 82.453 (5)°0.32 × 0.31 × 0.12 mm
β = 88.339 (5)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3252 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2538 reflections with I > 2σ(I)
Tmin = 0.265, Tmax = 0.629Rint = 0.059
13535 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.09Δρmax = 1.20 e Å3
3252 reflectionsΔρmin = 1.50 e Å3
146 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.07281 (6)0.01690 (5)0.76969 (3)0.02379 (13)
S10.13495 (15)0.36883 (13)0.17836 (8)0.0247 (2)
N10.5353 (5)0.4917 (4)0.2620 (2)0.0212 (6)
N20.4008 (5)0.5702 (4)0.1661 (2)0.0201 (6)
N30.1919 (5)0.6408 (4)0.0225 (3)0.0243 (6)
N40.3110 (5)0.7506 (4)0.0027 (3)0.0236 (6)
C10.8184 (6)0.3339 (5)0.4542 (3)0.0237 (7)
H1A0.85340.41210.39570.028*
C20.9486 (6)0.2514 (5)0.5516 (3)0.0246 (7)
H2A1.06980.27510.55900.029*
C30.8955 (6)0.1335 (5)0.6374 (3)0.0214 (7)
C40.7153 (6)0.0956 (5)0.6288 (3)0.0230 (7)
H4A0.68300.01400.68620.028*
C50.5843 (6)0.1829 (5)0.5321 (3)0.0224 (7)
H5A0.46060.16260.52650.027*
C60.6348 (5)0.2997 (5)0.4439 (3)0.0199 (7)
C70.4924 (5)0.3838 (5)0.3443 (3)0.0199 (7)
H7A0.37100.35920.34070.024*
C80.2417 (6)0.5275 (5)0.1234 (3)0.0217 (7)
C90.4376 (6)0.7049 (5)0.0860 (3)0.0211 (7)
C100.5990 (6)0.7828 (5)0.1022 (3)0.0249 (7)
H10A0.63350.83460.02800.037*
H10B0.72090.68280.13770.037*
H10C0.54780.88180.15140.037*
H1N30.11570.65420.03840.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0287 (2)0.02116 (18)0.01825 (18)0.00691 (14)0.00647 (13)0.00315 (12)
S10.0301 (5)0.0264 (4)0.0191 (4)0.0150 (4)0.0050 (3)0.0069 (3)
N10.0242 (15)0.0186 (13)0.0177 (14)0.0058 (12)0.0047 (11)0.0029 (11)
N20.0251 (14)0.0185 (13)0.0154 (13)0.0085 (12)0.0020 (11)0.0041 (10)
N30.0318 (16)0.0226 (14)0.0179 (14)0.0120 (13)0.0029 (12)0.0058 (11)
N40.0259 (15)0.0242 (15)0.0203 (14)0.0109 (13)0.0003 (12)0.0040 (11)
C10.0278 (18)0.0222 (16)0.0194 (16)0.0094 (14)0.0024 (14)0.0028 (13)
C20.0227 (17)0.0252 (17)0.0243 (18)0.0076 (14)0.0052 (14)0.0009 (14)
C30.0253 (17)0.0167 (15)0.0164 (15)0.0024 (13)0.0035 (13)0.0022 (12)
C40.0307 (19)0.0178 (15)0.0188 (16)0.0083 (14)0.0018 (14)0.0007 (12)
C50.0255 (17)0.0198 (16)0.0225 (17)0.0100 (14)0.0034 (14)0.0002 (13)
C60.0237 (16)0.0176 (15)0.0173 (15)0.0074 (13)0.0001 (13)0.0003 (12)
C70.0239 (16)0.0191 (15)0.0158 (15)0.0079 (13)0.0044 (13)0.0009 (12)
C80.0229 (16)0.0210 (16)0.0182 (16)0.0057 (14)0.0004 (13)0.0006 (12)
C90.0252 (17)0.0181 (15)0.0195 (16)0.0088 (14)0.0006 (13)0.0013 (12)
C100.0285 (18)0.0230 (17)0.0228 (17)0.0116 (15)0.0006 (14)0.0047 (13)
Geometric parameters (Å, º) top
Br1—C31.895 (3)C2—C31.386 (5)
S1—C81.686 (4)C2—H2A0.93
N1—C71.278 (4)C3—C41.390 (5)
N1—N21.390 (4)C4—C51.392 (5)
N2—C81.380 (5)C4—H4A0.93
N2—C91.381 (4)C5—C61.390 (5)
N3—C81.331 (4)C5—H5A0.93
N3—N41.377 (4)C6—C71.455 (4)
N3—H1N30.87C7—H7A0.93
N4—C91.296 (5)C9—C101.473 (5)
C1—C21.391 (5)C10—H10A0.96
C1—C61.400 (5)C10—H10B0.96
C1—H1A0.93C10—H10C0.96
C7—N1—N2119.6 (3)C6—C5—H5A119.4
C8—N2—C9108.5 (3)C4—C5—H5A119.4
C8—N2—N1133.0 (3)C5—C6—C1119.2 (3)
C9—N2—N1118.1 (3)C5—C6—C7118.3 (3)
C8—N3—N4114.1 (3)C1—C6—C7122.5 (3)
C8—N3—H1N3137.0N1—C7—C6119.6 (3)
N4—N3—H1N3108.1N1—C7—H7A120.2
C9—N4—N3104.3 (3)C6—C7—H7A120.2
C2—C1—C6120.3 (3)N3—C8—N2102.7 (3)
C2—C1—H1A119.8N3—C8—S1126.6 (3)
C6—C1—H1A119.8N2—C8—S1130.6 (3)
C3—C2—C1119.2 (4)N4—C9—N2110.4 (3)
C3—C2—H2A120.4N4—C9—C10126.1 (3)
C1—C2—H2A120.4N2—C9—C10123.5 (3)
C2—C3—C4121.7 (3)C9—C10—H10A109.5
C2—C3—Br1119.8 (3)C9—C10—H10B109.5
C4—C3—Br1118.5 (3)H10A—C10—H10B109.5
C3—C4—C5118.4 (3)C9—C10—H10C109.5
C3—C4—H4A120.8H10A—C10—H10C109.5
C5—C4—H4A120.8H10B—C10—H10C109.5
C6—C5—C4121.2 (3)
C7—N1—N2—C816.6 (6)C5—C6—C7—N1179.9 (3)
C7—N1—N2—C9171.9 (3)C1—C6—C7—N10.7 (5)
C8—N3—N4—C90.5 (4)N4—N3—C8—N20.9 (4)
C6—C1—C2—C30.7 (5)N4—N3—C8—S1177.3 (3)
C1—C2—C3—C40.1 (5)C9—N2—C8—N31.0 (4)
C1—C2—C3—Br1179.1 (3)N1—N2—C8—N3173.0 (3)
C2—C3—C4—C51.4 (5)C9—N2—C8—S1177.2 (3)
Br1—C3—C4—C5179.4 (3)N1—N2—C8—S15.1 (6)
C3—C4—C5—C62.3 (5)N3—N4—C9—N20.2 (4)
C4—C5—C6—C11.7 (5)N3—N4—C9—C10180.0 (3)
C4—C5—C6—C7179.0 (3)C8—N2—C9—N40.8 (4)
C2—C1—C6—C50.1 (5)N1—N2—C9—N4174.2 (3)
C2—C1—C6—C7179.5 (3)C8—N2—C9—C10179.4 (3)
N2—N1—C7—C6179.2 (3)N1—N2—C9—C106.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···S1i0.872.483.321 (4)164
C7—H7A···S10.932.503.223 (4)134
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H9BrN4S
Mr297.18
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.9239 (5), 7.6072 (5), 11.5982 (8)
α, β, γ (°)82.453 (5), 88.339 (5), 68.204 (4)
V3)562.18 (7)
Z2
Radiation typeMo Kα
µ (mm1)3.82
Crystal size (mm)0.32 × 0.31 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.265, 0.629
No. of measured, independent and
observed [I > 2σ(I)] reflections
13535, 3252, 2538
Rint0.059
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.121, 1.09
No. of reflections3252
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.20, 1.50

Computer programs: APEX2 (Bruker, 2005), APEX2 (Bruker, 2005, SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···S1i0.872.483.321 (4)164
C7—H7A···S10.932.503.223 (4)134
Symmetry code: (i) x, y+1, z.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

HKF and SRJ thank the Malaysian government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBekircan, O. & Bektas, H. (2006). Molecules, 11, 469–477.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandt, C. D., Kitchen, J. A., Beckmann, U., White, N. G., Jameson, G. B. & Brooker, S. (2007). Supramol. Chem. 19, 17–27.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHolla, B. S., Poojary, K. N., Kalluraya, B. & Gowda, P. V. (1996). Il Farmaco, 51, 793–799.  CAS PubMed Web of Science Google Scholar
First citationHolla, B. S., Poojary, K. N., Rao, B. S. & Shivananda, M. K. (2002). Eur. J. Med. Chem. 37, 511–517.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYale, H. L. & Piala, J. J. (1966). J. Med. Chem. 9, 42–46.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds