organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­chloro-N-(4-chloro­phenyl­sulfon­yl)­acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 11 July 2008; accepted 12 July 2008; online 19 July 2008)

In the crystal structure of the title compound (N4CPSDCAA), C8H6Cl3NO3S, the conformations of the N—H and C=O bonds in the SO2—NH—CO—C group are trans to each other, similar to those observed in 2,2-dichloro-N-(phenyl­sulfon­yl)­acetamide (NPSDCAA), 2,2-dichloro-N-(4-methyl­phenyl­sulfon­yl)acetamide (N4MPSDCAA) and N-(4-chloro­phenyl­sulfon­yl)-2,2,2-trimethyl­acetamide (N4CPSTMAA), with similar bond parameters. The –SNHCOC– unit in N4CPSDCAA is essentially planar and makes a dihedral angle of 79.67 (5)° with the benzene ring, comparable to 79.75 (8)° in NPSDCAA, 81.02 (5)° in N4MPSDCAA and 82.2 (1)° in N4CPSTMAA. The mol­ecules in N4CPSDCAA are linked into layers parallel to the (001) plane by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656-660.], 2006[Gowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675-682.]); Gowda, Foro, Nirmala et al. (2008[Gowda, B. T., Foro, S., Nirmala, P. G., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1522.]); Gowda, Foro, Sowmya et al. (2008[Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008). Acta Cryst. E64, o1279.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6Cl3NO3S

  • Mr = 302.55

  • Orthorhombic, P b c a

  • a = 9.5909 (5) Å

  • b = 10.1750 (5) Å

  • c = 23.256 (1) Å

  • V = 2269.49 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 299 (2) K

  • 0.32 × 0.28 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]) Tmin = 0.745, Tmax = 0.926

  • 10378 measured reflections

  • 2309 independent reflections

  • 1642 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.073

  • S = 1.08

  • 2309 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.86 1.97 2.814 (2) 169
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the substituent effects on the crystal structures of N-(aryl)-sulfonamides and substituted amides, in the present work, the structure of N-(4-chlorophenylsulfonyl)-2,2-dichloroacetamide (N4CPSDCAA) has been determined (Gowda et al., 2003, 2006; Gowda, Foro, Nirmala et al., 2008; Gowda, Foro, Sowmya et al., 2008). The conformations of the N—H and CO bonds of the SO2—NH—CO—C group in N4CPSDCAA are trans to each other (Fig. 1), similar to those observed in N-(phenylsulfonyl)-2,2-dichloroacetamide (NPSDCAA), N-(4-methylphenylsulfonyl)-2,2-dichloroacetamide (N4MPSDCAA) (Gowda, Foro, Nirmala et al., 2008) and (4-chlorophenylsulfonyl)-2,2,2- trimethylacetamide (N4CPSTMAA) (Gowda, Foro, Sowmya et al., 2008). The bond parameters in N4CPSDCAA are similar to those in NPSDCAA, N4MPSDCAA, N4CPSTMAA (Gowda, Foro, Nirmala et al., 2008; Gowda, Foro, Sowmya et al., 2008), N-(aryl)-2,2-dichloro- acetamides (Gowda et al., 2006) and 4-chlorobenzenesulfonamide (Gowda et al., 2003).

The packing diagram of N4CPSDCAA showing the N—H···O hydrogen bonds (Table 1) involved in the formation of layers parallel to the (0 0 1) plane is shown in Fig. 2.

Related literature top

For related literature, see: Gowda et al. (2003, 2006); , Gowda, Foro, Nirmala et al. (2008); Gowda, Foro, Sowmya et al. (2008).

Experimental top

The title compound was prepared by refluxing 4-chlorobenzenesulfonamide (0.10 mole) with excess dichloroacetyl chloride (0.20 mole) for about an hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution. The title compound was precipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound used for X-ray diffraction studies were obtained by slow evaporation of an ethanolic solution.

Refinement top

H atoms were positioned with idealized geometry (C-H = 0.93 or 0.98 Å, N-H = 0.86 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C,N). To improve R1, wR2 and S values (1 0 2) reflection was omitted during the refinement

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
2,2-Dichloro-N-(4-chlorophenylsulfonyl)acetamide top
Crystal data top
C8H6Cl3NO3SF(000) = 1216
Mr = 302.55Dx = 1.771 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5145 reflections
a = 9.5909 (5) Åθ = 2.2–28.0°
b = 10.1750 (5) ŵ = 0.98 mm1
c = 23.256 (1) ÅT = 299 K
V = 2269.49 (19) Å3Plate, colourless
Z = 80.32 × 0.28 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2309 independent reflections
Radiation source: fine-focus sealed tube1642 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω and ϕ scansθmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 1111
Tmin = 0.745, Tmax = 0.926k = 1012
10378 measured reflectionsl = 2829
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0279P)2 + 1.2816P]
where P = (Fo2 + 2Fc2)/3
2309 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C8H6Cl3NO3SV = 2269.49 (19) Å3
Mr = 302.55Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.5909 (5) ŵ = 0.98 mm1
b = 10.1750 (5) ÅT = 299 K
c = 23.256 (1) Å0.32 × 0.28 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2309 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1642 reflections with I > 2σ(I)
Tmin = 0.745, Tmax = 0.926Rint = 0.020
10378 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.09Δρmax = 0.34 e Å3
2309 reflectionsΔρmin = 0.27 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1931 (2)0.2061 (2)0.10986 (9)0.0312 (5)
C20.0826 (2)0.2583 (2)0.07911 (10)0.0397 (6)
H20.00870.23530.08820.048*
C30.1095 (3)0.3449 (3)0.03482 (11)0.0464 (6)
H30.03640.38020.01360.056*
C40.2445 (3)0.3787 (2)0.02219 (9)0.0431 (6)
C50.3549 (3)0.3264 (3)0.05226 (10)0.0471 (6)
H50.44580.34990.04300.056*
C60.3295 (2)0.2384 (2)0.09643 (10)0.0405 (6)
H60.40310.20150.11680.049*
C70.2795 (2)0.2659 (2)0.24629 (9)0.0275 (5)
C80.2532 (2)0.3590 (2)0.29700 (9)0.0332 (5)
H80.17890.42100.28690.040*
N10.16103 (17)0.21068 (16)0.22462 (7)0.0283 (4)
H1N0.08300.23140.24040.034*
O10.01558 (16)0.06430 (16)0.16706 (7)0.0436 (4)
O20.26697 (17)0.01306 (15)0.17698 (7)0.0424 (4)
O30.39439 (14)0.24435 (16)0.22705 (6)0.0379 (4)
Cl10.27646 (9)0.48942 (8)0.03310 (3)0.0686 (2)
Cl20.40650 (7)0.44634 (6)0.31294 (3)0.04543 (17)
Cl30.20101 (7)0.26485 (7)0.35760 (2)0.04963 (19)
S10.15710 (6)0.10591 (5)0.16960 (2)0.03174 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0315 (12)0.0341 (12)0.0280 (11)0.0011 (9)0.0005 (9)0.0033 (9)
C20.0314 (12)0.0452 (14)0.0425 (13)0.0007 (11)0.0017 (10)0.0020 (11)
C30.0477 (15)0.0485 (15)0.0431 (14)0.0070 (12)0.0074 (12)0.0085 (12)
C40.0581 (16)0.0403 (14)0.0310 (12)0.0046 (12)0.0046 (12)0.0020 (11)
C50.0397 (14)0.0629 (17)0.0386 (13)0.0102 (13)0.0071 (11)0.0001 (12)
C60.0312 (13)0.0557 (15)0.0346 (12)0.0004 (11)0.0008 (10)0.0001 (11)
C70.0255 (12)0.0289 (11)0.0280 (10)0.0023 (9)0.0023 (9)0.0051 (9)
C80.0322 (12)0.0322 (12)0.0352 (11)0.0030 (9)0.0028 (10)0.0014 (10)
N10.0200 (9)0.0353 (10)0.0296 (9)0.0004 (7)0.0020 (7)0.0014 (8)
O10.0366 (9)0.0498 (10)0.0443 (9)0.0153 (8)0.0038 (7)0.0004 (8)
O20.0464 (10)0.0329 (9)0.0481 (10)0.0080 (8)0.0005 (8)0.0007 (7)
O30.0220 (8)0.0523 (10)0.0394 (9)0.0023 (7)0.0003 (7)0.0074 (8)
Cl10.0915 (6)0.0667 (5)0.0475 (4)0.0120 (4)0.0065 (4)0.0189 (4)
Cl20.0487 (4)0.0371 (3)0.0505 (4)0.0099 (3)0.0066 (3)0.0048 (3)
Cl30.0497 (4)0.0641 (4)0.0350 (3)0.0146 (3)0.0070 (3)0.0037 (3)
S10.0303 (3)0.0313 (3)0.0337 (3)0.0030 (2)0.0011 (2)0.0007 (2)
Geometric parameters (Å, º) top
C1—C61.385 (3)C6—H60.93
C1—C21.385 (3)C7—O31.209 (2)
C1—S11.757 (2)C7—N11.364 (3)
C2—C31.380 (3)C7—C81.534 (3)
C2—H20.93C8—Cl21.758 (2)
C3—C41.371 (4)C8—Cl31.776 (2)
C3—H30.93C8—H80.98
C4—C51.376 (4)N1—S11.6659 (17)
C4—Cl11.737 (2)N1—H1N0.86
C5—C61.384 (3)O1—S11.4230 (16)
C5—H50.93O2—S11.4257 (16)
C6—C1—C2121.0 (2)O3—C7—N1123.20 (19)
C6—C1—S1120.11 (17)O3—C7—C8123.12 (19)
C2—C1—S1118.73 (17)N1—C7—C8113.68 (17)
C3—C2—C1119.2 (2)C7—C8—Cl2109.69 (15)
C3—C2—H2120.4C7—C8—Cl3108.86 (15)
C1—C2—H2120.4Cl2—C8—Cl3109.94 (12)
C4—C3—C2119.8 (2)C7—C8—H8109.4
C4—C3—H3120.1Cl2—C8—H8109.4
C2—C3—H3120.1Cl3—C8—H8109.4
C3—C4—C5121.3 (2)C7—N1—S1124.49 (15)
C3—C4—Cl1119.2 (2)C7—N1—H1N117.8
C5—C4—Cl1119.4 (2)S1—N1—H1N117.8
C4—C5—C6119.5 (2)O1—S1—O2120.86 (10)
C4—C5—H5120.3O1—S1—N1104.11 (9)
C6—C5—H5120.3O2—S1—N1108.35 (9)
C5—C6—C1119.2 (2)O1—S1—C1109.09 (10)
C5—C6—H6120.4O2—S1—C1109.54 (10)
C1—C6—H6120.4N1—S1—C1103.40 (9)
C6—C1—C2—C30.7 (3)N1—C7—C8—Cl370.2 (2)
S1—C1—C2—C3175.18 (18)O3—C7—N1—S10.5 (3)
C1—C2—C3—C40.5 (4)C8—C7—N1—S1179.96 (14)
C2—C3—C4—C51.1 (4)C7—N1—S1—O1173.55 (16)
C2—C3—C4—Cl1179.21 (19)C7—N1—S1—O243.71 (19)
C3—C4—C5—C60.4 (4)C7—N1—S1—C172.47 (18)
Cl1—C4—C5—C6179.85 (19)C6—C1—S1—O1167.61 (18)
C4—C5—C6—C10.7 (4)C2—C1—S1—O116.5 (2)
C2—C1—C6—C51.3 (3)C6—C1—S1—O233.3 (2)
S1—C1—C6—C5174.49 (18)C2—C1—S1—O2150.84 (17)
O3—C7—C8—Cl210.0 (3)C6—C1—S1—N182.0 (2)
N1—C7—C8—Cl2169.47 (14)C2—C1—S1—N193.83 (19)
O3—C7—C8—Cl3110.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.861.972.814 (2)169
Symmetry code: (i) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H6Cl3NO3S
Mr302.55
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)299
a, b, c (Å)9.5909 (5), 10.1750 (5), 23.256 (1)
V3)2269.49 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.32 × 0.28 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.745, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
10378, 2309, 1642
Rint0.020
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.09
No. of reflections2309
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.27

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.861.972.814 (2)169
Symmetry code: (i) x1/2, y, z+1/2.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationGowda, B. T., Foro, S., Nirmala, P. G., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008). Acta Cryst. E64, o1279.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656–660.  CAS Google Scholar
First citationGowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675–682.  CAS Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds