organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1528-o1529

4-[(E)-2-Furylmethyl­ene­amino]-3-phenyl-1H-1,2,4-triazole-5(4H)-thione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and cDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 11 July 2008; accepted 13 July 2008; online 19 July 2008)

In the title mol­ecule, C13H10N4OS, the triazole ring makes dihedral angles of 16.14 (9) and 58.51 (11)°, respectively, with the phenyl and furan rings. Intra­molecular C—H⋯N hydrogen bonds generate S(5) and S(6) ring motifs. In the crystal structure, centrosymmetrically related mol­ecules are linked via N—H⋯S hydrogen bonds to form dimeric pairs, which are inter­linked via C—H⋯O and C—H⋯π inter­actions.

Related literature

For the biological activities of triazole derivatives, see: Clemons et al. (2004[Clemons, M., Coleman, R. E. & Verma, S. (2004). Cancer Treat. Rev. 30, 325-332.]); Glerman et al. (1997[Glerman, N., Rollas, S., Kiraz, M., Ekinci, A. C. & Vidin, A. (1997). Farmaco, 52, 691-695.]); Holla et al. (2003[Holla, B. S., Veerendra, B., Shivananda, M. K. & Poojary, B. (2003). Eur. J. Med. Chem. 38, 759-767.]); Johnston (2002[Johnston, G. A. R. (2002). Curr. Top. Med. Chem. 2, 903-913.]); Kane et al. (1990[Kane, J. M., Baron, B. M., Dudley, M. W., Sorensen, S. M., Staeger, M. A. & Miller, F. P. (1990). J. Med. Chem. 33, 2772-2777.]); Kkgzel et al. (2004[Kucukguzel, I., Kucukguzel, S. G., Rollas, S., OtuK-Sanis, G., Ozdemir, O., Bayrak, I., Altug, T. & Stables, J. P. (2004). Il Farmaco, 59, 893-901.]); Modzelewska & Kalabun (1999[Modzelewska, B. & Kalabun, J. (1999). Pharmazie, 54, 503-505.]); Rollas et al. (1993[Rollas, S., Kalyoncuoglu, N., Sur-Altiner, D. & Yegenoglu, Y. (1993). Pharmazie, 48, 308-309.]); Shujuan et al. (2004[Shujuan, S., Hongxiang, L., Gao, Y., Fan, P., Ma, B., Ge, W. & Wang, X. (2004). J. Pharm. Biomed. Anal. 34, 1117-1124.]); For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N4OS

  • Mr = 270.31

  • Orthorhombic, P b c n

  • a = 27.4006 (6) Å

  • b = 11.4940 (3) Å

  • c = 7.7886 (2) Å

  • V = 2452.96 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100.0 (1) K

  • 0.40 × 0.13 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.829, Tmax = 0.974

  • 40042 measured reflections

  • 3627 independent reflections

  • 2573 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.125

  • S = 1.05

  • 3627 reflections

  • 176 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯S1i 0.85 (2) 2.42 (2) 3.265 (2) 169 (2)
C4—H4A⋯N2 0.93 2.55 2.859 (2) 100
C6—H6A⋯O1ii 0.93 2.59 3.347 (2) 139
C8—H8A⋯N4 0.93 2.29 2.942 (2) 126
C5—H5ACg1iii 0.93 2.92 3.522 (2) 123
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

1,2,4-Triazoles and their derivatives are found to be associated with various biological activities such as anticonvulsant (Kane et al., 1990; Kkgzel et al., 2004), antifungal (Rollas et al., 1993), anticancer (Holla et al., 2003), anti-inflammatory (Modzelewska & Kalabun, 1999) and antibacterial properties (Glerman et al., 1997). Several compounds containing 1,2,4-triazole rings are well known as drugs. For example, fluconazole is used as an antimicrobial drug (Shujuan et al., 2004), while vorozole, letrozole and anastrozole are non-steroidal drugs used for the threatment of cancer (Clemons et al., 2004) and loreclezole is used as an anticonvulsant (Johnston, 2002) drug. In view of the above properties, we have synthesized the title compound and report here its crystal structure.

Bond lengths and angles in the title molecule (Fig. 1) are found to have normal values (Allen et al., 1987). The furan ring is planar to within ±0.002 (2) Å and the triazole ring is also planar with a maximum deviation of 0.016 (2) Å for atom C1. The triazole and phenyl rings are twisted away from each other by an angle of 16.14 (9)°. The dihedral angle between the furan and triazole rings is 58.51 (11)°. Intramolecular C—H···N hydrogen bonds generate S(5) and S(6) ring motifs (Bernstein et al., 1995).

The crystal structure is stabilized by intermolecular C—H···O and N—H···S hydrogen bonds together with C—H···π interactions involving the phenyl ring. The centrosymmetrically related molecules are linked by N—H···S hydrogen bonds to form a dimeric pair (Fig. 2) which are interlinked via C—H···O hydrogen bonds.

Related literature top

For the biological activities of triazole derivatives, see: Clemons et al. (2004); Glerman et al. (1997); Holla et al. (2003); Johnston (2002); Kane et al. (1990); Kkgzel et al. (2004); Modzelewska & Kalabun (1999); Rollas et al. (1993); Shujuan et al. (2004); For bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995). Cg1 is the centroid of the C3–C8 ring.

Experimental top

The title Schiff base compound was obtained by refluxing a mixture of 4-amino-5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (0.01 mol), furfural (0.01 mol) in ethanol (30 ml) and 2 drops of concentrated H2SO4 for 3 h. The solid product obtained was collected by filtration, washed with ethanol and dried. Single crystals suitable for X-ray analysis were obtained from acetone-N,N-dimethylformamide (DMF) (1:2) solution by slow evaporation (yield 63%; m.p. 451–453 K). Analysis for C13H10N4SO, found (calculated) in %: C 57.63 (57.77), H 3.62 (3.7), N 20.6 (20.74), S 11.79 (11.85).

Refinement top

The N-bound H atom was located in a difference map and refined with a N-H distance restraint of 0.85 (1) Å. C-bound H atoms were positioned geometrically [C-H = 0.93%A] and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.
4-[(E)-2-Furylmethyleneamino]-3-phenyl-1H-1,2,4- triazole-5(4H)-thione top
Crystal data top
C13H10N4OSF(000) = 1120
Mr = 270.31Dx = 1.464 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 5448 reflections
a = 27.4006 (6) Åθ = 2.9–27.9°
b = 11.4940 (3) ŵ = 0.26 mm1
c = 7.7886 (2) ÅT = 100 K
V = 2452.96 (10) Å3Block, orange
Z = 80.40 × 0.13 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3627 independent reflections
Radiation source: fine-focus sealed tube2573 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ and ω scansθmax = 30.2°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 3838
Tmin = 0.829, Tmax = 0.974k = 1616
40042 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0649P)2 + 0.3858P]
where P = (Fo2 + 2Fc2)/3
3627 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 0.26 e Å3
1 restraintΔρmin = 0.32 e Å3
Crystal data top
C13H10N4OSV = 2452.96 (10) Å3
Mr = 270.31Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 27.4006 (6) ŵ = 0.26 mm1
b = 11.4940 (3) ÅT = 100 K
c = 7.7886 (2) Å0.40 × 0.13 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3627 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2573 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 0.974Rint = 0.072
40042 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.26 e Å3
3627 reflectionsΔρmin = 0.32 e Å3
176 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.494570 (15)0.69781 (4)0.50297 (6)0.02259 (13)
O10.36669 (4)1.02453 (10)0.58350 (18)0.0258 (3)
N10.44316 (5)0.52097 (12)0.6503 (2)0.0225 (3)
N20.39895 (5)0.49428 (12)0.7222 (2)0.0228 (3)
N30.40473 (5)0.68093 (11)0.66047 (19)0.0190 (3)
N40.38912 (5)0.79579 (12)0.6319 (2)0.0206 (3)
C10.44803 (6)0.63262 (15)0.6058 (2)0.0203 (3)
C20.37554 (6)0.59359 (14)0.7269 (2)0.0204 (4)
C30.32509 (6)0.60514 (14)0.7901 (2)0.0198 (3)
C40.30539 (6)0.51246 (15)0.8824 (2)0.0244 (4)
H4A0.32470.44840.90860.029*
C50.25719 (6)0.51543 (16)0.9351 (3)0.0267 (4)
H5A0.24440.45330.99710.032*
C60.22781 (6)0.60973 (16)0.8967 (2)0.0259 (4)
H6A0.19540.61110.93200.031*
C70.24716 (6)0.70213 (16)0.8051 (3)0.0255 (4)
H7A0.22750.76560.77830.031*
C80.29558 (6)0.70074 (15)0.7530 (2)0.0229 (4)
H8A0.30840.76370.69310.028*
C90.41795 (6)0.87250 (15)0.6957 (2)0.0212 (4)
H9A0.44580.84940.75480.025*
C100.40718 (6)0.99364 (15)0.6757 (2)0.0214 (4)
C110.42966 (7)1.08948 (16)0.7401 (3)0.0268 (4)
H11A0.45781.09130.80670.032*
C120.40148 (7)1.18664 (15)0.6854 (3)0.0282 (4)
H12A0.40751.26460.70950.034*
C130.36459 (7)1.14332 (15)0.5921 (3)0.0289 (4)
H13A0.34061.18830.53990.035*
H1N10.4628 (6)0.4674 (14)0.619 (3)0.034 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0170 (2)0.0210 (2)0.0298 (3)0.00050 (15)0.00408 (17)0.00147 (18)
O10.0210 (6)0.0219 (6)0.0344 (8)0.0019 (5)0.0013 (5)0.0001 (6)
N10.0169 (7)0.0191 (7)0.0316 (9)0.0034 (5)0.0022 (6)0.0014 (6)
N20.0161 (7)0.0206 (7)0.0317 (9)0.0010 (5)0.0025 (6)0.0013 (6)
N30.0153 (6)0.0172 (7)0.0244 (8)0.0004 (5)0.0002 (6)0.0008 (6)
N40.0185 (6)0.0173 (7)0.0260 (8)0.0016 (5)0.0010 (6)0.0015 (6)
C10.0170 (7)0.0208 (8)0.0232 (9)0.0014 (6)0.0020 (6)0.0018 (7)
C20.0182 (8)0.0182 (8)0.0247 (9)0.0013 (6)0.0014 (7)0.0010 (7)
C30.0167 (7)0.0215 (8)0.0212 (8)0.0018 (6)0.0011 (6)0.0011 (7)
C40.0214 (8)0.0256 (9)0.0262 (9)0.0001 (7)0.0001 (7)0.0040 (7)
C50.0240 (8)0.0306 (10)0.0255 (9)0.0038 (7)0.0025 (7)0.0058 (8)
C60.0199 (8)0.0320 (10)0.0259 (9)0.0012 (7)0.0031 (7)0.0031 (8)
C70.0180 (8)0.0231 (9)0.0353 (10)0.0026 (7)0.0003 (7)0.0044 (8)
C80.0206 (8)0.0204 (8)0.0279 (10)0.0013 (6)0.0008 (7)0.0008 (7)
C90.0161 (7)0.0240 (8)0.0236 (9)0.0006 (6)0.0024 (7)0.0003 (7)
C100.0169 (7)0.0235 (9)0.0238 (9)0.0008 (6)0.0028 (7)0.0001 (7)
C110.0214 (8)0.0254 (9)0.0334 (10)0.0042 (7)0.0033 (7)0.0027 (8)
C120.0280 (9)0.0199 (9)0.0366 (11)0.0031 (7)0.0106 (8)0.0019 (8)
C130.0280 (9)0.0216 (9)0.0372 (11)0.0054 (7)0.0072 (8)0.0050 (8)
Geometric parameters (Å, º) top
S1—C11.6820 (17)C5—C61.383 (3)
O1—C131.368 (2)C5—H5A0.93
O1—C101.368 (2)C6—C71.385 (3)
N1—C11.336 (2)C6—H6A0.93
N1—N21.369 (2)C7—C81.388 (2)
N1—H1N10.853 (9)C7—H7A0.93
N2—C21.310 (2)C8—H8A0.93
N3—C11.377 (2)C9—C101.432 (2)
N3—C21.384 (2)C9—H9A0.93
N3—N41.4054 (18)C10—C111.358 (2)
N4—C91.284 (2)C11—C121.423 (3)
C2—C31.474 (2)C11—H11A0.93
C3—C41.394 (2)C12—C131.341 (3)
C3—C81.395 (2)C12—H12A0.93
C4—C51.384 (2)C13—H13A0.93
C4—H4A0.93
C13—O1—C10105.50 (14)C5—C6—C7119.33 (16)
C1—N1—N2114.19 (14)C5—C6—H6A120.3
C1—N1—H1N1123.8 (15)C7—C6—H6A120.3
N2—N1—H1N1120.9 (15)C6—C7—C8120.52 (17)
C2—N2—N1104.44 (13)C6—C7—H7A119.7
C1—N3—C2108.72 (13)C8—C7—H7A119.7
C1—N3—N4126.29 (13)C7—C8—C3120.18 (16)
C2—N3—N4124.37 (13)C7—C8—H8A119.9
C9—N4—N3113.36 (14)C3—C8—H8A119.9
N1—C1—N3102.77 (14)N4—C9—C10119.92 (16)
N1—C1—S1128.84 (13)N4—C9—H9A120.0
N3—C1—S1128.36 (13)C10—C9—H9A120.0
N2—C2—N3109.79 (14)C11—C10—O1110.56 (15)
N2—C2—C3123.18 (15)C11—C10—C9130.92 (17)
N3—C2—C3127.01 (15)O1—C10—C9118.46 (15)
C4—C3—C8119.00 (15)C10—C11—C12106.24 (17)
C4—C3—C2117.83 (15)C10—C11—H11A126.9
C8—C3—C2123.05 (15)C12—C11—H11A126.9
C5—C4—C3120.26 (16)C13—C12—C11106.25 (16)
C5—C4—H4A119.9C13—C12—H12A126.9
C3—C4—H4A119.9C11—C12—H12A126.9
C6—C5—C4120.71 (17)C12—C13—O1111.45 (16)
C6—C5—H5A119.6C12—C13—H13A124.3
C4—C5—H5A119.6O1—C13—H13A124.3
C1—N1—N2—C21.5 (2)C8—C3—C4—C50.4 (3)
C1—N3—N4—C960.1 (2)C2—C3—C4—C5175.78 (17)
C2—N3—N4—C9129.83 (18)C3—C4—C5—C60.3 (3)
N2—N1—C1—N32.8 (2)C4—C5—C6—C70.3 (3)
N2—N1—C1—S1175.45 (13)C5—C6—C7—C80.3 (3)
C2—N3—C1—N12.91 (19)C6—C7—C8—C31.0 (3)
N4—N3—C1—N1174.24 (15)C4—C3—C8—C71.0 (3)
C2—N3—C1—S1175.32 (14)C2—C3—C8—C7174.91 (17)
N4—N3—C1—S14.0 (3)N3—N4—C9—C10179.42 (14)
N1—N2—C2—N30.50 (19)C13—O1—C10—C110.1 (2)
N1—N2—C2—C3177.88 (17)C13—O1—C10—C9177.54 (16)
C1—N3—C2—N22.2 (2)N4—C9—C10—C11174.88 (19)
N4—N3—C2—N2173.76 (15)N4—C9—C10—O12.0 (3)
C1—N3—C2—C3176.07 (17)O1—C10—C11—C120.1 (2)
N4—N3—C2—C34.5 (3)C9—C10—C11—C12176.88 (18)
N2—C2—C3—C414.2 (3)C10—C11—C12—C130.3 (2)
N3—C2—C3—C4167.70 (17)C11—C12—C13—O10.4 (2)
N2—C2—C3—C8161.76 (17)C10—O1—C13—C120.3 (2)
N3—C2—C3—C816.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···S1i0.85 (2)2.42 (2)3.265 (2)169 (2)
C4—H4A···N20.932.552.859 (2)100
C6—H6A···O1ii0.932.593.347 (2)139
C8—H8A···N40.932.292.942 (2)126
C5—H5A···Cg1iii0.932.923.522 (2)123
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z+1/2; (iii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC13H10N4OS
Mr270.31
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)100
a, b, c (Å)27.4006 (6), 11.4940 (3), 7.7886 (2)
V3)2452.96 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.40 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.829, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
40042, 3627, 2573
Rint0.072
(sin θ/λ)max1)0.708
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.125, 1.06
No. of reflections3627
No. of parameters176
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.32

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···S1i0.85 (2)2.42 (2)3.265 (2)169 (2)
C4—H4A···N20.932.552.859 (2)100
C6—H6A···O1ii0.932.593.347 (2)139
C8—H8A···N40.932.292.942 (2)126
C5—H5A···Cg1iii0.932.923.522 (2)123
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z+1/2; (iii) x1/2, y+1/2, z.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClemons, M., Coleman, R. E. & Verma, S. (2004). Cancer Treat. Rev. 30, 325–332.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGlerman, N., Rollas, S., Kiraz, M., Ekinci, A. C. & Vidin, A. (1997). Farmaco, 52, 691–695.  Web of Science PubMed Google Scholar
First citationHolla, B. S., Veerendra, B., Shivananda, M. K. & Poojary, B. (2003). Eur. J. Med. Chem. 38, 759–767.  Web of Science CrossRef PubMed Google Scholar
First citationJohnston, G. A. R. (2002). Curr. Top. Med. Chem. 2, 903–913.  CrossRef PubMed CAS Google Scholar
First citationKane, J. M., Baron, B. M., Dudley, M. W., Sorensen, S. M., Staeger, M. A. & Miller, F. P. (1990). J. Med. Chem. 33, 2772–2777.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKucukguzel, I., Kucukguzel, S. G., Rollas, S., OtuK-Sanis, G., Ozdemir, O., Bayrak, I., Altug, T. & Stables, J. P. (2004). Il Farmaco, 59, 893–901.  CrossRef PubMed Google Scholar
First citationModzelewska, B. & Kalabun, J. (1999). Pharmazie, 54, 503–505.  Web of Science PubMed Google Scholar
First citationRollas, S., Kalyoncuoglu, N., Sur-Altiner, D. & Yegenoglu, Y. (1993). Pharmazie, 48, 308–309.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShujuan, S., Hongxiang, L., Gao, Y., Fan, P., Ma, B., Ge, W. & Wang, X. (2004). J. Pharm. Biomed. Anal. 34, 1117–1124.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1528-o1529
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds