organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Ethyl N′-(2-hy­droxy­benzyl­­idene)­hydrazine­carboxyl­ate

aMarine College, Zhejiang Institute of Communications, Hangzhou 311112, People's Republic of China
*Correspondence e-mail: bgao_zjvtit@126.com

(Received 14 July 2008; accepted 16 July 2008; online 19 July 2008)

There are two mol­ecules in the asymmetric unit of the title compound, C10H12N2O3, with identical conformations. Each independent mol­ecule is approximately planar and adopts a trans configuration with respect to the C=N double bond. Intra­molecular O—H⋯N hydrogen bonds are observed in both mol­ecules. The mol­ecules are linked into a ribbon-like structure running along the b axis by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds. The ribbons are arranged into layers parallel to ([\overline{3}]02).

Related literature

For the properties of benzaldehyde hydrazone derivatives, see: Parashar et al. (1988[Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201-208.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.]); Borg et al. (1999[Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331-4342.]). For a related structure, see: Shang et al. (2007[Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2O3

  • Mr = 208.12

  • Monoclinic, P 21 /c

  • a = 11.535 (11) Å

  • b = 22.05 (2) Å

  • c = 9.005 (9) Å

  • β = 111.669 (14)°

  • V = 2129 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 273 (2) K

  • 0.27 × 0.24 × 0.23 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.978

  • 14192 measured reflections

  • 3713 independent reflections

  • 1445 reflections with I > 2σ(I)

  • Rint = 0.146

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.150

  • S = 0.78

  • 3713 reflections

  • 274 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.573 (3) 147
N2—H2A⋯O4i 0.86 2.13 2.979 (4) 170
O4—H4A⋯N3 0.82 1.86 2.586 (3) 146
N4—H6⋯O2ii 0.86 2.08 2.931 (4) 170
C5—H5⋯O5i 0.95 2.27 3.184 (4) 161
C15—H15⋯O1ii 0.95 2.46 3.371 (5) 161
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzaldehydehydrazone derivatives have received considerable attention for a long time due to their pharmacological activity (Parashar et al., 1988) and photochromic properties (Hadjoudis et al., 1987). They are important intermediates for 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many properties (Borg et al., 1999). We report here the crystal structure of the title compound.

The asymmetric unit of the title compound contains two independent but essentially identical molecules (Fig. 1). The corresponding bond lengths and angles of the two independent molecules agree with each other and are comparable to those observed for N'-(4-methoxybenzylidene)methoxyformohydrazide (Shang et al., 2007). Each independent molecule is approximately planar and adopts a trans configuration with respect to the CN bond. The dihedral angle between C1-C6 and O2/O3/N1/N2/C7-C10 planes is 7.6 (1)° and that between C11-C16 and O5/O6/N3/N4/C17-C20 planes is 5.5 (1)°. In both independent molecules intramolecular O—H···N hydrogen bonds are observed.

The molecules are linked into a ribbon-like structure running along the b axis by intermolecular N—H···O and C—H···O hydrogen bonds. (Fig.2). The ribbons are arranged into layers parallel to the (3 0 2) plane.

Related literature top

For the properties of benzaldehyde hydrazone derivatives, see: Parashar et al. (1988); Hadjoudis et al. (1987); Borg et al. (1999). For a related structure, see: Shang et al. (2007).

Experimental top

2-Hydroxybenzaldehyde (1.22 g, 0.01 mol) and ethyl hydrazinecarboxylate (1.04 g, 0.01 mol) were dissolved in methanol (25 ml) and left for 3 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 85% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution at room temperature (m.p. 455–457 K).

Refinement top

H atoms were positioned geometrically (N-H = 0.86 Å and C-H = 0.95-0.99 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. O—H···N hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately down the a axis. Dashed lines indicate hydrogen bonds.
(E)-Ethyl N'-(2-hydroxybenzylidene)hydrazinecarboxylate top
Crystal data top
C10H12N2O3F(000) = 880
Mr = 208.12Dx = 1.299 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3713 reflections
a = 11.535 (11) Åθ = 1.9–25.0°
b = 22.05 (2) ŵ = 0.10 mm1
c = 9.005 (9) ÅT = 273 K
β = 111.669 (14)°Block, colourless
V = 2129 (4) Å30.27 × 0.24 × 0.23 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
3713 independent reflections
Radiation source: fine-focus sealed tube1445 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.146
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1312
Tmin = 0.973, Tmax = 0.978k = 2625
14192 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0618P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.78(Δ/σ)max = 0.001
3713 reflectionsΔρmax = 0.30 e Å3
274 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0017 (5)
Crystal data top
C10H12N2O3V = 2129 (4) Å3
Mr = 208.12Z = 8
Monoclinic, P21/cMo Kα radiation
a = 11.535 (11) ŵ = 0.10 mm1
b = 22.05 (2) ÅT = 273 K
c = 9.005 (9) Å0.27 × 0.24 × 0.23 mm
β = 111.669 (14)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3713 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1445 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.978Rint = 0.146
14192 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 0.78Δρmax = 0.30 e Å3
3713 reflectionsΔρmin = 0.16 e Å3
274 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6761 (2)0.00597 (8)0.5564 (3)0.1012 (8)
H10.62490.00710.47250.121*
O20.43571 (18)0.01273 (8)0.1327 (2)0.0799 (7)
O30.32487 (19)0.06261 (8)0.0314 (2)0.0781 (7)
N10.5648 (2)0.07322 (10)0.3410 (3)0.0661 (7)
N20.4749 (2)0.08742 (10)0.1969 (3)0.0740 (8)
H2A0.45780.12460.16790.089*
C10.7458 (3)0.04071 (13)0.6420 (4)0.0744 (10)
C20.8384 (3)0.02856 (15)0.7861 (4)0.0988 (12)
H20.85190.01210.82370.119*
C30.9126 (3)0.07430 (16)0.8778 (4)0.1005 (12)
H30.97650.06500.97750.121*
C40.8937 (3)0.13398 (15)0.8240 (4)0.0933 (11)
H40.94430.16580.88590.112*
C50.8007 (3)0.14600 (14)0.6797 (4)0.0804 (10)
H50.78710.18680.64380.096*
C60.7250 (3)0.10084 (12)0.5834 (3)0.0635 (8)
C70.6293 (3)0.11571 (12)0.4328 (3)0.0669 (9)
H7A0.61350.15690.40070.080*
C80.4133 (3)0.04080 (14)0.1007 (4)0.0676 (9)
C90.2552 (3)0.01839 (14)0.1492 (4)0.0839 (11)
H9A0.20720.00830.10440.101*
H9B0.31290.00710.18090.101*
C100.1687 (3)0.05187 (14)0.2907 (4)0.0954 (11)
H10A0.12090.02280.37280.143*
H10B0.21710.07830.33380.143*
H10C0.11130.07650.25840.143*
O40.44788 (19)0.28071 (8)0.6198 (2)0.0858 (7)
H4A0.49200.25700.68730.103*
O50.7029 (2)0.23103 (9)0.9891 (3)0.0972 (8)
O60.75313 (19)0.14080 (8)1.1180 (2)0.0784 (7)
N30.5222 (2)0.17646 (9)0.7524 (3)0.0661 (7)
N40.5985 (2)0.14460 (10)0.8822 (3)0.0722 (8)
H60.59090.10610.89070.087*
C110.3641 (3)0.24868 (13)0.4965 (4)0.0665 (9)
C120.2807 (3)0.28054 (13)0.3700 (4)0.0814 (10)
H120.28220.32360.37100.098*
C130.1953 (3)0.25032 (15)0.2422 (4)0.0898 (11)
H130.13830.27280.15610.108*
C140.1915 (3)0.18688 (15)0.2380 (4)0.0929 (11)
H140.13370.16600.14920.111*
C150.2741 (3)0.15531 (14)0.3664 (4)0.0786 (10)
H150.27150.11220.36470.094*
C160.3610 (3)0.18441 (12)0.4981 (3)0.0623 (8)
C170.4436 (3)0.14927 (13)0.6327 (3)0.0638 (8)
H170.43890.10630.63110.077*
C180.6864 (3)0.17732 (15)0.9965 (4)0.0728 (9)
C190.8531 (3)0.17077 (14)1.2461 (4)0.0906 (11)
H19A0.81800.19761.30720.109*
H19B0.90370.19581.20140.109*
C200.9322 (3)0.12260 (14)1.3527 (4)0.1046 (12)
H20A0.99740.14161.44410.157*
H20B0.97100.09811.29280.157*
H20C0.88020.09661.39090.157*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.141 (2)0.0421 (13)0.0963 (17)0.0008 (13)0.0154 (15)0.0104 (12)
O20.0980 (16)0.0357 (11)0.0895 (16)0.0003 (11)0.0154 (13)0.0015 (10)
O30.0861 (15)0.0492 (12)0.0760 (15)0.0038 (11)0.0029 (13)0.0049 (11)
N10.0828 (18)0.0437 (14)0.0631 (17)0.0054 (13)0.0167 (15)0.0015 (12)
N20.0922 (19)0.0389 (14)0.0692 (18)0.0031 (13)0.0045 (16)0.0030 (13)
C10.097 (3)0.049 (2)0.070 (2)0.0103 (18)0.022 (2)0.0070 (17)
C20.121 (3)0.062 (2)0.092 (3)0.023 (2)0.014 (3)0.023 (2)
C30.103 (3)0.093 (3)0.078 (3)0.023 (2)0.001 (2)0.012 (2)
C40.100 (3)0.071 (2)0.085 (3)0.004 (2)0.007 (2)0.000 (2)
C50.092 (2)0.0501 (19)0.077 (2)0.0031 (18)0.005 (2)0.0025 (17)
C60.073 (2)0.0487 (18)0.063 (2)0.0105 (16)0.0182 (18)0.0068 (16)
C70.084 (2)0.0419 (17)0.065 (2)0.0046 (16)0.0151 (18)0.0006 (15)
C80.078 (2)0.051 (2)0.068 (2)0.0029 (18)0.0194 (19)0.0028 (17)
C90.090 (2)0.062 (2)0.081 (3)0.0088 (18)0.009 (2)0.0169 (18)
C100.102 (3)0.084 (2)0.076 (2)0.000 (2)0.005 (2)0.0031 (19)
O40.1091 (17)0.0377 (11)0.0897 (16)0.0034 (11)0.0121 (14)0.0022 (11)
O50.128 (2)0.0383 (13)0.0981 (17)0.0128 (12)0.0095 (15)0.0045 (11)
O60.0879 (16)0.0554 (13)0.0721 (15)0.0046 (11)0.0062 (13)0.0023 (11)
N30.0805 (18)0.0402 (14)0.0678 (17)0.0020 (13)0.0159 (15)0.0016 (13)
N40.0864 (19)0.0336 (13)0.0771 (18)0.0030 (13)0.0075 (16)0.0018 (13)
C110.081 (2)0.0425 (18)0.072 (2)0.0037 (16)0.0228 (19)0.0017 (16)
C120.095 (3)0.0512 (19)0.089 (3)0.0076 (19)0.023 (2)0.0140 (19)
C130.101 (3)0.068 (2)0.083 (3)0.004 (2)0.014 (2)0.018 (2)
C140.099 (3)0.070 (2)0.088 (3)0.006 (2)0.009 (2)0.008 (2)
C150.091 (2)0.0497 (18)0.079 (2)0.0087 (18)0.012 (2)0.0058 (18)
C160.070 (2)0.0446 (17)0.070 (2)0.0015 (15)0.0234 (18)0.0022 (15)
C170.073 (2)0.0402 (16)0.072 (2)0.0004 (16)0.0197 (18)0.0004 (16)
C180.082 (2)0.055 (2)0.069 (2)0.0013 (19)0.015 (2)0.0019 (18)
C190.097 (3)0.075 (2)0.079 (2)0.008 (2)0.008 (2)0.0001 (19)
C200.103 (3)0.096 (3)0.092 (3)0.000 (2)0.010 (2)0.010 (2)
Geometric parameters (Å, º) top
O1—C11.358 (3)O4—C111.369 (3)
O1—H10.82O4—H4A0.82
O2—C81.220 (3)O5—C181.205 (3)
O3—C81.338 (3)O6—C181.348 (3)
O3—C91.447 (3)O6—C191.454 (3)
N1—C71.289 (3)N3—C171.274 (3)
N1—N21.365 (3)N3—N41.369 (3)
N2—C81.363 (3)N4—C181.355 (3)
N2—H2A0.86N4—H60.86
C1—C21.368 (4)C11—C121.381 (4)
C1—C61.414 (4)C11—C161.418 (4)
C2—C31.382 (4)C12—C131.379 (4)
C2—H20.95C12—H120.95
C3—C41.391 (4)C13—C141.400 (4)
C3—H30.95C13—H130.95
C4—C51.371 (4)C14—C151.384 (4)
C4—H40.95C14—H140.95
C5—C61.395 (4)C15—C161.395 (4)
C5—H50.95C15—H150.95
C6—C71.436 (4)C16—C171.458 (4)
C7—H7A0.95C17—H170.95
C9—C101.491 (4)C19—C201.495 (4)
C9—H9A0.99C19—H19A0.99
C9—H9B0.99C19—H19B0.99
C10—H10A0.98C20—H20A0.98
C10—H10B0.98C20—H20B0.98
C10—H10C0.98C20—H20C0.98
C1—O1—H1109.4C11—O4—H4A109.4
C8—O3—C9116.4 (2)C18—O6—C19114.9 (2)
C7—N1—N2119.9 (2)C17—N3—N4120.9 (2)
C8—N2—N1117.8 (2)C18—N4—N3116.1 (2)
C8—N2—H2A121.2C18—N4—H6122.0
N1—N2—H2A121.0N3—N4—H6121.9
O1—C1—C2118.8 (3)O4—C11—C12118.4 (3)
O1—C1—C6121.0 (3)O4—C11—C16121.4 (3)
C2—C1—C6120.2 (3)C12—C11—C16120.3 (3)
C1—C2—C3121.2 (3)C13—C12—C11120.5 (3)
C1—C2—H2119.4C13—C12—H12119.7
C3—C2—H2119.4C11—C12—H12119.7
C2—C3—C4120.0 (3)C12—C13—C14120.7 (3)
C2—C3—H3120.0C12—C13—H13119.6
C4—C3—H3120.0C14—C13—H13119.6
C5—C4—C3118.7 (3)C15—C14—C13118.4 (3)
C5—C4—H4120.7C15—C14—H14120.8
C3—C4—H4120.7C13—C14—H14120.8
C4—C5—C6122.8 (3)C14—C15—C16122.4 (3)
C4—C5—H5118.6C14—C15—H15118.8
C6—C5—H5118.6C16—C15—H15118.8
C5—C6—C1117.1 (3)C15—C16—C11117.6 (3)
C5—C6—C7120.7 (3)C15—C16—C17120.4 (3)
C1—C6—C7122.1 (3)C11—C16—C17121.9 (3)
N1—C7—C6120.0 (3)N3—C17—C16119.8 (3)
N1—C7—H7A120.0N3—C17—H17120.1
C6—C7—H7A120.0C16—C17—H17120.1
O2—C8—O3125.7 (3)O5—C18—O6125.3 (3)
O2—C8—N2124.3 (3)O5—C18—N4124.8 (3)
O3—C8—N2110.0 (3)O6—C18—N4110.0 (3)
O3—C9—C10107.9 (3)O6—C19—C20107.7 (3)
O3—C9—H9A110.1O6—C19—H19A110.2
C10—C9—H9A110.1C20—C19—H19A110.2
O3—C9—H9B110.1O6—C19—H19B110.2
C10—C9—H9B110.1C20—C19—H19B110.2
H9A—C9—H9B108.4H19A—C19—H19B108.5
C9—C10—H10A109.5C19—C20—H20A109.5
C9—C10—H10B109.5C19—C20—H20B109.5
H10A—C10—H10B109.5H20A—C20—H20B109.5
C9—C10—H10C109.5C19—C20—H20C109.5
H10A—C10—H10C109.5H20A—C20—H20C109.5
H10B—C10—H10C109.5H20B—C20—H20C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.573 (3)147
N2—H2A···O4i0.862.132.979 (4)170
O4—H4A···N30.821.862.586 (3)146
N4—H6···O2ii0.862.082.931 (4)170
C5—H5···O5i0.952.273.184 (4)161
C15—H15···O1ii0.952.463.371 (5)161
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H12N2O3
Mr208.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)11.535 (11), 22.05 (2), 9.005 (9)
β (°) 111.669 (14)
V3)2129 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.27 × 0.24 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.973, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
14192, 3713, 1445
Rint0.146
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.150, 0.78
No. of reflections3713
No. of parameters274
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.16

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.573 (3)147
N2—H2A···O4i0.862.132.979 (4)170
O4—H4A···N30.821.862.586 (3)146
N4—H6···O2ii0.862.082.931 (4)170
C5—H5···O5i0.952.273.184 (4)161
C15—H15···O1ii0.952.463.371 (5)161
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1.
 

Acknowledgements

The author acknowledges financial support from Zhejiang Institute of Communications, China.

References

First citationBorg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331–4342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationParashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201–208.  CrossRef CAS Web of Science Google Scholar
First citationShang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds