organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1594-o1595

4-Chloro-N′-[(Z)-4-(di­methyl­amino)benzyl­­idene]benzohydrazide mono­hydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 17 July 2008; accepted 21 July 2008; online 26 July 2008)

In the title compound, C16H16ClN3O·H2O, the dihedral angle between the two aromatic rings is 44.58 (11)°. The N atom of the dimethyl­amino group adopts a pyramidal configuration. In the crystal structure, mol­ecules are linked into a two-dimensional network parallel to the (001) plane by inter­molecular N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds involving the water mol­ecule and C—H⋯Cl hydrogen bonds. In addition, C—H⋯π inter­actions are observed.

Related literature

For the biological activities of hydrazones, see: Bedia et al. (2006[Bedia, K.-K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]); Rollas et al. (2002[Rollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171-174.]); Terzioglu & Gürsoy (2003[Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781-786.]); Duraisamy et al. (2008[Duraisamy, S., Soosai, D., Subramaniyan, I., Kanakaraj, M. & Muthusamy, K. (2008). Tetrahedron Lett. 49, 127-132.]); Singh et al. (1992[Singh, V., Srivastava, V. K., Palit, G. & Shanker, K. (1992). Arzneim. Forsch. Drug Res. 42, 993-996.]); Ergenç & Günay, (1998[Ergenç, N. & Günay, N. S. (1998). Eur. J. Med. Chem. 33, 143-148.]); Durgun et al. (1993[Durgun, B. B., Çapan, G., Ergenç, N. & Rollas, S. (1993). Pharmazie, 48, 942-943.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16ClN3O·H2O

  • Mr = 319.78

  • Orthorhombic, P 21 21 21

  • a = 6.4418 (1) Å

  • b = 6.9344 (1) Å

  • c = 33.8083 (7) Å

  • V = 1510.22 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100.0 (1) K

  • 0.32 × 0.16 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.921, Tmax = 0.981

  • 12336 measured reflections

  • 4311 independent reflections

  • 3301 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.114

  • S = 1.01

  • 4311 reflections

  • 205 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1724 Friedel pairs

  • Flack parameter: −0.14 (7)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯N3i 0.84 2.28 3.045 (2) 152
N1—H1N1⋯O1W 0.86 (1) 2.00 (1) 2.843 (3) 169 (2)
O1W—H2W1⋯O1ii 0.84 2.02 2.790 (2) 152
O1W—H2W1⋯N2ii 0.84 2.59 3.240 (3) 135
C15—H15C⋯Cl1iii 0.96 2.78 3.704 (2) 163
C1—H1⋯Cg1iv 0.93 2.97 3.621 (2) 128
C4—H4⋯Cg1v 0.93 2.89 3.565 (2) 130
C10—H10⋯Cg2vi 0.93 2.87 3.589 (2) 135
C13—H13⋯Cg2vii 0.93 2.81 3.497 (3) 131
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x-{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iv) [-x-1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x, y+{\script{3\over 2}}, -z+{\script{3\over 2}}]; (vi) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z]; (vii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Hydrazone compounds have been demonstrated to possess antimicrobial, anticonvulsant, analgesic, antiinflammatory, antiplatelet, antitubercular, anticancer and antitumoral activities (Bedia et al., 2006; Rollas et al., 2002; Terzioglu & Gürsoy, 2003). They are used as chromogenic receptors to show colorimetric responses and UV-Vis spectral changes in the presence of fluoride ions in organic solvents (Duraisamy et al., 2008). Hydrazide-hydrazone compounds are not only intermediates but they are also very effective organic compounds in their own right. When they are used as intermediates, coupling products can be synthesized by using the active hydrogen component of CONHNCH azometine group (Singh et al., 1992). N-Alkyl hydrazides can be synthesized by reduction of hydrazones with NaBH4 (Ergenç & Günay, 1998) and substituted 1,3,4-oxadiazolines can be synthesized when hydrazones are heated in the presence of acetic anhydride (Durgun et al., 1993). Prompted by these reviews, the title compound was synthesized and its crystal structure reported.

The bond lengths and angles in the title molecule (Fig. 1) are found to have normal values (Allen et al., 1987). The dihedral angle between the two benzene rings (C1–C6 and C9–C14) is 44.58 (11)° indicating that the molecule is non-planar. Atom N3 adopts a pyramidal configuration.

The crystal packing (Fig. 2) shows that the molecules are linked into two-dimensional networks parallel to the (001) plane by intermolecular O—H···N, O—H···O and C—H···Cl hydrogen bonds. In addition, the packing is stabilized by C—H···π interactions.

Related literature top

For the biological activities of hydrazones, see: Bedia et al. (2006); Rollas et al. (2002); Terzioglu & Gürsoy (2003); Duraisamy et al. (2008); Singh et al. (1992); Ergenç & Günay, (1998); Durgun et al. (1993). For bond-length data, see: Allen et al. (1987). Cg1 and Cg2 are centroids of the C1–C6 and C9–C14 rings, respectively.

Experimental top

The title compound was prepared by Schiff base condensation of 4-chlorophenyl hydrazide (0.01 mol) and 4-(dimethylamino)benzaldehyde (0.01 mol) in ethanol (30 ml) with 3 drops of concentrated H2SO4. Excess ethanol was removed from the reaction mixture under reduced pressure. The solid product obtained was filtered, washed with water and dried. Single crystals suitable for X-ray analysis were obtained from an ethanol solution by slow evaporation (yield 64%). Analysis % for C16H16N3OCl found (calculated): C 63.62 (63.68), H 5.37 (5.3), N 13.88 (13.93).

Refinement top

The imino H atom was located in a difference map and refined with a N-H distance restraint of 0.85 (1) Å. The water H atoms were also located in a difference map and allowed to ride on the O atom, with Uiso = 1.5Ueq(O). The remaining H atoms were positioned geometrically [C-H = 0.93-0.96 %A] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl). A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis.
(I) top
Crystal data top
C16H16ClN3O·H2OF(000) = 672
Mr = 319.78Dx = 1.406 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1906 reflections
a = 6.4418 (1) Åθ = 2.4–23.3°
b = 6.9344 (1) ŵ = 0.26 mm1
c = 33.8083 (7) ÅT = 100 K
V = 1510.22 (4) Å3Needle, colourless
Z = 40.32 × 0.16 × 0.07 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4311 independent reflections
Radiation source: fine-focus sealed tube3301 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 30.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.921, Tmax = 0.981k = 96
12336 measured reflectionsl = 4737
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0492P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
4311 reflectionsΔρmax = 0.34 e Å3
205 parametersΔρmin = 0.34 e Å3
2 restraintsAbsolute structure: Flack (1983), 1724 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.14 (7)
Crystal data top
C16H16ClN3O·H2OV = 1510.22 (4) Å3
Mr = 319.78Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.4418 (1) ŵ = 0.26 mm1
b = 6.9344 (1) ÅT = 100 K
c = 33.8083 (7) Å0.32 × 0.16 × 0.07 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4311 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3301 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.981Rint = 0.056
12336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114Δρmax = 0.34 e Å3
S = 1.01Δρmin = 0.34 e Å3
4311 reflectionsAbsolute structure: Flack (1983), 1724 Friedel pairs
205 parametersAbsolute structure parameter: 0.14 (7)
2 restraints
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.39865 (9)0.50981 (9)0.568340 (15)0.02126 (14)
O10.3268 (2)0.4990 (2)0.42597 (4)0.0206 (3)
N10.0370 (3)0.4579 (3)0.38853 (5)0.0146 (4)
N20.1527 (3)0.4602 (3)0.35420 (5)0.0151 (4)
N30.4409 (3)0.4624 (3)0.17091 (5)0.0166 (4)
C10.0827 (4)0.4376 (3)0.49549 (6)0.0154 (5)
H10.21990.39670.49710.018*
C20.0388 (4)0.4421 (3)0.52925 (6)0.0173 (5)
H20.01470.40080.55340.021*
C30.2405 (3)0.5086 (4)0.52666 (6)0.0154 (4)
C40.3243 (4)0.5704 (3)0.49095 (6)0.0157 (5)
H40.45950.61700.48970.019*
C50.2028 (3)0.5613 (3)0.45730 (7)0.0153 (5)
H50.25780.60050.43320.018*
C60.0002 (3)0.4943 (4)0.45901 (6)0.0148 (4)
C70.1372 (3)0.4843 (3)0.42347 (6)0.0136 (4)
C80.0579 (4)0.4106 (3)0.32251 (6)0.0147 (5)
H80.07950.36990.32390.018*
C90.1631 (4)0.4172 (3)0.28408 (6)0.0135 (5)
C100.0582 (4)0.3550 (3)0.25039 (7)0.0158 (5)
H100.07570.30620.25270.019*
C110.1513 (4)0.3651 (3)0.21331 (6)0.0156 (5)
H110.07970.32000.19130.019*
C120.3506 (4)0.4420 (3)0.20852 (6)0.0152 (5)
C130.4564 (3)0.5034 (4)0.24292 (6)0.0160 (4)
H130.58970.55380.24080.019*
C140.3643 (3)0.4893 (3)0.27960 (6)0.0151 (4)
H140.43760.52860.30190.018*
C150.6672 (4)0.4541 (4)0.16837 (7)0.0205 (5)
H15A0.72660.54090.18740.031*
H15B0.71320.32510.17380.031*
H15C0.71050.49070.14230.031*
C160.3386 (4)0.3595 (4)0.13815 (7)0.0245 (6)
H16A0.19930.40650.13520.037*
H16B0.41440.38110.11410.037*
H16C0.33540.22390.14380.037*
H1N10.0892 (19)0.419 (3)0.3882 (7)0.028 (7)*
O1W0.3779 (3)0.3316 (2)0.37632 (5)0.0259 (4)
H1W10.40930.25940.35730.039*
H2W10.48300.39230.38370.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0253 (3)0.0248 (3)0.0137 (3)0.0021 (3)0.0051 (2)0.0007 (3)
O10.0130 (7)0.0297 (9)0.0192 (8)0.0003 (7)0.0006 (6)0.0030 (8)
N10.0122 (9)0.0197 (11)0.0120 (9)0.0011 (8)0.0031 (7)0.0003 (8)
N20.0170 (9)0.0155 (10)0.0127 (9)0.0013 (7)0.0028 (7)0.0004 (7)
N30.0203 (10)0.0189 (11)0.0107 (9)0.0014 (8)0.0012 (7)0.0007 (8)
C10.0170 (11)0.0118 (11)0.0174 (11)0.0005 (8)0.0039 (9)0.0007 (8)
C20.0236 (12)0.0168 (12)0.0117 (11)0.0016 (9)0.0041 (9)0.0012 (9)
C30.0221 (11)0.0160 (11)0.0081 (10)0.0016 (10)0.0016 (8)0.0010 (10)
C40.0149 (11)0.0166 (12)0.0155 (12)0.0004 (8)0.0005 (9)0.0013 (9)
C50.0193 (12)0.0157 (12)0.0110 (11)0.0009 (8)0.0017 (9)0.0003 (9)
C60.0151 (10)0.0148 (11)0.0144 (10)0.0012 (9)0.0001 (8)0.0042 (10)
C70.0170 (10)0.0132 (11)0.0108 (10)0.0012 (9)0.0007 (8)0.0003 (9)
C80.0124 (10)0.0162 (11)0.0155 (12)0.0015 (9)0.0007 (9)0.0006 (9)
C90.0157 (11)0.0128 (11)0.0121 (11)0.0013 (8)0.0013 (9)0.0004 (8)
C100.0131 (11)0.0179 (12)0.0164 (12)0.0009 (9)0.0025 (9)0.0008 (9)
C110.0166 (11)0.0191 (12)0.0111 (11)0.0002 (9)0.0025 (9)0.0030 (9)
C120.0192 (11)0.0127 (11)0.0136 (11)0.0016 (9)0.0013 (9)0.0021 (8)
C130.0145 (10)0.0169 (11)0.0167 (11)0.0024 (10)0.0000 (8)0.0003 (10)
C140.0196 (10)0.0142 (11)0.0116 (10)0.0002 (10)0.0022 (8)0.0025 (9)
C150.0207 (12)0.0222 (14)0.0186 (12)0.0021 (10)0.0054 (9)0.0008 (10)
C160.0297 (14)0.0304 (15)0.0134 (12)0.0070 (11)0.0010 (10)0.0015 (10)
O1W0.0162 (9)0.0304 (10)0.0310 (10)0.0004 (7)0.0004 (8)0.0137 (8)
Geometric parameters (Å, º) top
Cl1—C31.739 (2)C8—C91.466 (3)
O1—C71.229 (2)C8—H80.93
N1—C71.358 (3)C9—C101.393 (3)
N1—N21.379 (2)C9—C141.397 (3)
N1—H1N10.857 (10)C10—C111.391 (3)
N2—C81.280 (3)C10—H100.93
N3—C121.405 (3)C11—C121.400 (3)
N3—C151.461 (3)C11—H110.93
N3—C161.473 (3)C12—C131.414 (3)
C1—C21.384 (3)C13—C141.378 (3)
C1—C61.399 (3)C13—H130.93
C1—H10.93C14—H140.93
C2—C31.382 (3)C15—H15A0.96
C2—H20.93C15—H15B0.96
C3—C41.390 (3)C15—H15C0.96
C4—C51.382 (3)C16—H16A0.96
C4—H40.93C16—H16B0.96
C5—C61.389 (3)C16—H16C0.96
C5—H50.93O1W—H1W10.84
C6—C71.493 (3)O1W—H2W10.83
C7—N1—N2118.25 (17)C10—C9—C14118.2 (2)
C7—N1—H1N1120.4 (17)C10—C9—C8119.4 (2)
N2—N1—H1N1120.3 (17)C14—C9—C8122.4 (2)
C8—N2—N1116.33 (19)C11—C10—C9120.8 (2)
C12—N3—C15117.51 (19)C11—C10—H10119.6
C12—N3—C16116.49 (19)C9—C10—H10119.6
C15—N3—C16112.54 (19)C10—C11—C12121.3 (2)
C2—C1—C6120.4 (2)C10—C11—H11119.4
C2—C1—H1119.8C12—C11—H11119.4
C6—C1—H1119.8C11—C12—N3121.5 (2)
C3—C2—C1119.1 (2)C11—C12—C13117.5 (2)
C3—C2—H2120.4N3—C12—C13121.0 (2)
C1—C2—H2120.4C14—C13—C12120.8 (2)
C2—C3—C4121.5 (2)C14—C13—H13119.6
C2—C3—Cl1120.08 (17)C12—C13—H13119.6
C4—C3—Cl1118.36 (17)C13—C14—C9121.5 (2)
C5—C4—C3118.8 (2)C13—C14—H14119.3
C5—C4—H4120.6C9—C14—H14119.3
C3—C4—H4120.6N3—C15—H15A109.5
C4—C5—C6120.9 (2)N3—C15—H15B109.5
C4—C5—H5119.5H15A—C15—H15B109.5
C6—C5—H5119.5N3—C15—H15C109.5
C5—C6—C1119.2 (2)H15A—C15—H15C109.5
C5—C6—C7122.61 (19)H15B—C15—H15C109.5
C1—C6—C7118.15 (19)N3—C16—H16A109.5
O1—C7—N1122.92 (19)N3—C16—H16B109.5
O1—C7—C6121.92 (18)H16A—C16—H16B109.5
N1—C7—C6115.16 (18)N3—C16—H16C109.5
N2—C8—C9120.9 (2)H16A—C16—H16C109.5
N2—C8—H8119.6H16B—C16—H16C109.5
C9—C8—H8119.6H1W1—O1W—H2W1109.6
C7—N1—N2—C8171.4 (2)N1—N2—C8—C9176.96 (18)
C6—C1—C2—C31.9 (3)N2—C8—C9—C10177.5 (2)
C1—C2—C3—C40.2 (4)N2—C8—C9—C144.5 (3)
C1—C2—C3—Cl1178.32 (17)C14—C9—C10—C110.2 (3)
C2—C3—C4—C51.1 (3)C8—C9—C10—C11177.9 (2)
Cl1—C3—C4—C5176.95 (17)C9—C10—C11—C121.5 (3)
C3—C4—C5—C60.9 (3)C10—C11—C12—N3176.4 (2)
C4—C5—C6—C10.7 (3)C10—C11—C12—C131.9 (3)
C4—C5—C6—C7179.3 (2)C15—N3—C12—C11151.7 (2)
C2—C1—C6—C52.2 (3)C16—N3—C12—C1113.7 (3)
C2—C1—C6—C7179.2 (2)C15—N3—C12—C1330.0 (3)
N2—N1—C7—O14.3 (3)C16—N3—C12—C13168.0 (2)
N2—N1—C7—C6175.69 (19)C11—C12—C13—C140.7 (3)
C5—C6—C7—O1151.1 (2)N3—C12—C13—C14177.7 (2)
C1—C6—C7—O127.4 (3)C12—C13—C14—C91.0 (4)
C5—C6—C7—N128.8 (3)C10—C9—C14—C131.5 (3)
C1—C6—C7—N1152.6 (2)C8—C9—C14—C13176.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···N3i0.842.283.045 (2)152
N1—H1N1···O1W0.86 (1)2.00 (1)2.843 (3)169 (2)
O1W—H2W1···O1ii0.842.022.790 (2)152
O1W—H2W1···N2ii0.842.593.240 (3)135
C15—H15C···Cl1iii0.962.783.704 (2)163
C1—H1···Cg1iv0.932.973.621 (2)128
C4—H4···Cg1v0.932.893.565 (2)130
C10—H10···Cg2vi0.932.873.589 (2)135
C13—H13···Cg2vii0.932.813.497 (3)131
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z; (iii) x1/2, y+1, z1/2; (iv) x1, y+1/2, z+3/2; (v) x, y+3/2, z+3/2; (vi) x+1/2, y1/2, z; (vii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC16H16ClN3O·H2O
Mr319.78
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)6.4418 (1), 6.9344 (1), 33.8083 (7)
V3)1510.22 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.32 × 0.16 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.921, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
12336, 4311, 3301
Rint0.056
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.114, 1.01
No. of reflections4311
No. of parameters205
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.34
Absolute structureFlack (1983), 1724 Friedel pairs
Absolute structure parameter0.14 (7)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···N3i0.842.283.045 (2)152
N1—H1N1···O1W0.86 (1)2.00 (1)2.843 (3)169 (2)
O1W—H2W1···O1ii0.842.022.790 (2)152
O1W—H2W1···N2ii0.842.593.240 (3)135
C15—H15C···Cl1iii0.962.783.704 (2)163
C1—H1···Cg1iv0.932.973.621 (2)128
C4—H4···Cg1v0.932.893.565 (2)130
C10—H10···Cg2vi0.932.873.589 (2)135
C13—H13···Cg2vii0.932.813.497 (3)131
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z; (iii) x1/2, y+1, z1/2; (iv) x1, y+1/2, z+3/2; (v) x, y+3/2, z+3/2; (vi) x+1/2, y1/2, z; (vii) x1/2, y+1/2, z.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBedia, K.-K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuraisamy, S., Soosai, D., Subramaniyan, I., Kanakaraj, M. & Muthusamy, K. (2008). Tetrahedron Lett. 49, 127–132.  Google Scholar
First citationDurgun, B. B., Çapan, G., Ergenç, N. & Rollas, S. (1993). Pharmazie, 48, 942–943.  CAS PubMed Web of Science Google Scholar
First citationErgenç, N. & Günay, N. S. (1998). Eur. J. Med. Chem. 33, 143–148.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171–174.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V., Srivastava, V. K., Palit, G. & Shanker, K. (1992). Arzneim. Forsch. Drug Res. 42, 993–996.  CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTerzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781–786.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1594-o1595
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds