metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-1,2-bis­­(1H-imidazol-1-ylmethyl)benzene-κ2N3:N3′]disilver(I) bis­­(4-amino-2,5-di­chloro­benzene­sulfonate) tetra­hydrate

aDepartment of Chemistry and Pharmaceutical Engineering, Suihua University, Suihua 152061, People's Republic of China
*Correspondence e-mail: lhy4486@yahoo.com.cn

(Received 18 July 2008; accepted 22 July 2008; online 26 July 2008)

The asymmetric unit of the title compound, [Ag2(C14H14N4)2](C6H4Cl2NO3S)2·4H2O, contains one-half of each of two independent dicationic units, two 4-amino-2,5-dichloro­benzene­sulfonate anions and four water mol­ecules. Each centrosymmetric dicationic unit has a dinuclear structure in which two AgI atoms are bridged by two 1,2-bis­(1H-imidazol-1-yl­meth­yl)benzene ligands in a slightly distorted linear coordination geometry. The 4-amino-2,5-dichloro­benzene­sulfonate anion does not coordinate with the AgI center, acting only as a counteranion. In the crystal structure, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds form a three-dimensional network.

Related literature

For related literature, see: Aakeröy & Beatty (1998[Aakeröy, C. B. & Beatty, A. M. (1998). Chem. Commun. pp. 1067-1068.]); Cote & Shimizu (2004[Cote, A. P. & Shimizu, G. K. H. (2004). Inorg. Chem. 43, 6663-6673.]); Feazell et al. (2006[Feazell, R. P., Carson, C. E. & Klausmeyer, K. (2006). Inorg. Chem. 45, 2635-2643.]); Li et al. (2006[Li, F.-F., Ma, J.-F., Song, S.-Y., Yang, J., Jia, H.-Q. & Hu, N.-H. (2006). Cryst. Growth Des. 6, 209-215.]); Liu et al. (2007[Liu, H.-Y., Wu, H., Ma, J.-F., Song, S.-Y., Yang, J., Liu, Y.-Y. & Su, Z.-M. (2007). Inorg. Chem. 46, 7299-7311.]); Ma et al. (2005[Ma, J.-F., Yang, J., Li, S.-L., Song, S.-Y., Zhang, H.-J., Wang, H.-S. & Yang, K.-Y. (2005). Cryst. Growth Des. 5, 807-812.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C14H14N4)2](C6H4Cl2NO3S)2·4H2O

  • Mr = 1246.51

  • Triclinic, [P \overline 1]

  • a = 11.732 (6) Å

  • b = 14.598 (6) Å

  • c = 15.718 (6) Å

  • α = 79.068 (12)°

  • β = 72.843 (19)°

  • γ = 70.991 (17)°

  • V = 2418.8 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 293 (2) K

  • 0.35 × 0.25 × 0.24 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.716, Tmax = 0.753

  • 19762 measured reflections

  • 10576 independent reflections

  • 6897 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.152

  • S = 0.96

  • 10576 reflections

  • 649 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected geometric parameters (Å, °)

N2—Ag2 2.092 (3)
N3—Ag2 2.090 (4)
N8—Ag1 2.103 (3)
N9—Ag1 2.100 (3)
N9—Ag1—N8 175.91 (13)
N3—Ag2—N2 178.95 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2A⋯O6 0.81 (6) 2.15 (7) 2.868 (5) 148 (7)
O3W—H3A⋯O2 0.82 (7) 2.00 (7) 2.819 (6) 172 (9)
O1W—H1A⋯O4i 0.80 (6) 1.99 (6) 2.762 (5) 165 (7)
N6—H6B⋯O2ii 0.80 (3) 2.19 (4) 2.928 (5) 154 (6)
N5—H5B⋯O5iii 0.81 (6) 2.28 (6) 2.913 (5) 136 (5)
Symmetry codes: (i) x-1, y, z+1; (ii) x, y+1, z; (iii) -x+1, -y+1, -z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

AgI complexes have shown versatility of their coordination geometry (Aakeröy & Beatty, 1998; Ma et al., 2005). Some silver(I) sulfonate compounds, modified by secondary nitrogen-based ligands, have been reported (Cote & Shimizu, 2004; Liu et al., 2007). Herein, we present a new silver-sulfonate complex, namely [Ag2(IBI)2]L2.4H2O, where IBI is 1,2-bis ((1H-imidazol-1-yl)methyl)benzene and L is 4-amino-2,5-dichlorobenzenesulfonic acid.

Selected bond distances and angles are listed in Table 1. The asymmetric unit of the title compound contains one-half each of two independent dicationic units, two 4-amino-2,5-dichlorobenzenesulfonate anions and four water molecules. Each AgI ion is two-coordinated by two N atoms from two IBI ligands, showing a slightly distorted linear geometry. The Ag—N bond distances are within the normal range observed in N-containing AgI complexes (Li et al., 2006; Feazell et al., 2006). The L anion does not coordinate with silver ion but acts as a counteranion.

N—H···O and O—H···O hydrogen bonds between water molecules and L ligands result in the formation of a three-dimensional supramolecular structure (Table 2).

Related literature top

For related literature, see: Aakeröy & Beatty (1998); Cote & Shimizu (2004); Feazell et al. (2006); Li et al. (2006); Liu et al. (2007); Ma et al. (2005).

Experimental top

An aqueous solution (10 ml) of 4-amino-2,5-dichlorobenzenesulfonic acid (1 mmol) was added to solid Ag2CO3 (0.5 mmol) and stirred for several minutes until no further CO2 was given off. 1-(3-(1H-Imidazol-1-yl)methyl)benzyl)-1H-imidazole (1 mmol) was then added and a precipitate was formed. The precipitate was dissolved by ammonium hydroxide. Single crystals of the title compound were obtained by slow evaporation of the solution for 6 d at room temperature.

Refinement top

H atoms bonded to N atoms were located in a difference map and refined with a N—H distance restraint of 0.85 (3) Å and with Uiso(H) = 1.5Ueq(N). Water H atoms were located in a difference Fourier map and refined with O—H and H···H distance restraints of 0.85 (3) Å and 1.30 (3) Å, respectively, and with Uiso(H) = 1.5Ueq(O). H atoms bonded to C atoms were positioned geometrically (C—H = 0.93 or 0.97 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C). The highest residual density peak is located 0.89 Å from atom Ag2 and the deepest hole is located 1.54 Å from atom Ag1.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (i) 1-x, 1-y, 2-z; (ii) 2-x, -y, 1-z.
Bis[µ-1,2-bis(1H-imidazol-1-ylmethyl)benzene- κ2N3:N3']disilver(I) bis(4-amino-2,5-dichlorobenzenesulfonate) tetrahydrate top
Crystal data top
[Ag2(C14H14N4)2](C6H4Cl2NO3S)2·4H2OZ = 2
Mr = 1246.51F(000) = 1256
Triclinic, P1Dx = 1.712 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 11.732 (6) ÅCell parameters from 10576 reflections
b = 14.598 (6) Åθ = 3.0–27.5°
c = 15.718 (6) ŵ = 1.18 mm1
α = 79.068 (12)°T = 293 K
β = 72.843 (19)°Block, colourless
γ = 70.991 (17)°0.35 × 0.25 × 0.24 mm
V = 2418.8 (18) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
10576 independent reflections
Radiation source: fine-focus sealed tube6897 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1515
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1818
Tmin = 0.716, Tmax = 0.753l = 2019
19762 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0975P)2]
where P = (Fo2 + 2Fc2)/3
10576 reflections(Δ/σ)max = 0.002
649 parametersΔρmax = 0.92 e Å3
13 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Ag2(C14H14N4)2](C6H4Cl2NO3S)2·4H2Oγ = 70.991 (17)°
Mr = 1246.51V = 2418.8 (18) Å3
Triclinic, P1Z = 2
a = 11.732 (6) ÅMo Kα radiation
b = 14.598 (6) ŵ = 1.18 mm1
c = 15.718 (6) ÅT = 293 K
α = 79.068 (12)°0.35 × 0.25 × 0.24 mm
β = 72.843 (19)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
10576 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
6897 reflections with I > 2σ(I)
Tmin = 0.716, Tmax = 0.753Rint = 0.023
19762 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04413 restraints
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.92 e Å3
10576 reflectionsΔρmin = 0.36 e Å3
649 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8198 (3)0.6791 (2)0.2186 (2)0.0354 (7)
C20.7330 (3)0.7577 (2)0.1876 (2)0.0366 (7)
H20.72020.75900.13170.044*
C30.6652 (3)0.8340 (2)0.2383 (2)0.0388 (7)
C40.6792 (4)0.8342 (2)0.3238 (2)0.0438 (8)
C50.7666 (3)0.7540 (2)0.3548 (2)0.0427 (8)
H50.77840.75160.41130.051*
C60.8349 (3)0.6793 (2)0.3037 (2)0.0356 (7)
C70.3133 (4)0.2224 (2)0.3052 (2)0.0443 (8)
C80.1970 (4)0.2875 (2)0.3230 (2)0.0475 (9)
C90.1282 (4)0.3219 (3)0.2605 (2)0.0480 (9)
H90.05050.36740.27510.058*
C100.1729 (4)0.2898 (3)0.1759 (2)0.0474 (9)
C110.2901 (4)0.2236 (2)0.1576 (2)0.0470 (9)
C120.3595 (4)0.1902 (2)0.2207 (3)0.0458 (8)
H120.43800.14570.20620.055*
C130.4409 (4)0.3953 (3)0.8315 (3)0.0484 (9)
H130.37340.45110.83550.058*
C140.5857 (4)0.2737 (3)0.8637 (3)0.0601 (11)
H140.63930.22890.89530.072*
C150.5879 (4)0.2697 (3)0.7782 (3)0.0538 (10)
H150.64130.22270.74060.065*
C160.2850 (4)0.5007 (3)1.1974 (3)0.0592 (11)
H160.21680.53001.17310.071*
C170.2902 (4)0.5130 (3)1.2789 (3)0.0562 (10)
H170.22820.55131.32070.067*
C180.4640 (4)0.4143 (3)1.2125 (3)0.0525 (9)
H180.54430.37191.20190.063*
C190.4582 (5)0.4438 (3)1.3650 (3)0.0597 (12)
H19A0.54670.43721.34400.072*
H19B0.44810.38391.40120.072*
C200.6035 (4)0.4727 (3)0.5778 (2)0.0473 (9)
C210.7006 (5)0.4807 (4)0.5034 (3)0.0672 (13)
H210.72720.53630.49120.081*
C220.7575 (5)0.4091 (5)0.4482 (3)0.0814 (17)
H220.82230.41630.39880.098*
C230.7203 (5)0.3264 (5)0.4645 (3)0.0805 (16)
H230.76000.27720.42680.097*
C240.6223 (5)0.3165 (3)0.5383 (3)0.0597 (11)
H240.59580.26090.54940.072*
C250.5645 (4)0.3890 (3)0.5949 (2)0.0426 (8)
C260.4588 (4)0.3750 (3)0.6729 (2)0.0513 (9)
H26A0.39060.43470.67670.062*
H26B0.42930.32410.66290.062*
C270.9272 (5)0.2163 (3)0.6345 (3)0.0624 (11)
H270.87720.26680.60420.075*
C280.9248 (4)0.2116 (3)0.7213 (3)0.0602 (11)
H280.87420.25640.76160.072*
C291.0624 (4)0.0856 (3)0.6622 (3)0.0555 (10)
H291.12520.02700.65610.067*
C301.2267 (4)0.0007 (3)0.2968 (3)0.0548 (10)
H301.29070.03380.32460.066*
C311.2282 (4)0.0092 (3)0.2127 (3)0.0529 (9)
H311.29200.04780.17210.064*
C321.0534 (4)0.0933 (3)0.2743 (3)0.0556 (10)
H320.97460.13790.28230.067*
C331.0740 (5)0.0685 (3)0.1172 (3)0.0587 (11)
H33A1.10580.11880.07710.070*
H33B0.98370.09200.13230.070*
C340.8843 (4)0.0216 (3)0.9298 (2)0.0479 (9)
C350.7849 (5)0.0306 (4)1.0058 (3)0.0628 (12)
H350.74570.01841.02470.075*
C360.7438 (5)0.1089 (4)1.0529 (3)0.0759 (14)
H360.67810.11271.10390.091*
C370.7994 (6)0.1817 (4)1.0251 (3)0.0802 (15)
H370.77050.23601.05670.096*
C380.8985 (5)0.1757 (4)0.9501 (3)0.0682 (13)
H380.93600.22570.93180.082*
C390.9421 (4)0.0953 (3)0.9020 (2)0.0525 (10)
C401.0505 (4)0.0916 (4)0.8221 (3)0.0634 (12)
H40A1.09910.13080.82930.076*
H40B1.10340.02490.81900.076*
N11.1171 (3)0.0505 (2)0.1992 (2)0.0470 (7)
N21.1180 (4)0.0633 (3)0.3353 (2)0.0544 (8)
N31.0130 (4)0.1370 (3)0.5975 (2)0.0584 (9)
N41.0121 (3)0.1272 (2)0.7374 (2)0.0509 (8)
N50.1005 (4)0.3204 (3)0.1159 (3)0.0668 (11)
H5A0.041 (4)0.371 (3)0.130 (4)0.100*
H5B0.140 (6)0.309 (4)0.066 (4)0.100*
N60.6122 (5)0.9084 (3)0.3745 (3)0.0742 (13)
H6A0.622 (6)0.912 (4)0.424 (3)0.111*
H6B0.580 (6)0.960 (3)0.351 (4)0.111*
N70.4956 (3)0.3487 (2)0.75842 (19)0.0425 (7)
N80.4938 (3)0.3527 (2)0.8973 (2)0.0516 (8)
N90.3948 (3)0.4387 (2)1.1558 (2)0.0516 (8)
N100.4063 (3)0.4572 (2)1.2871 (2)0.0457 (7)
O10.4075 (4)0.2441 (2)0.4284 (2)0.0799 (11)
O20.5249 (3)0.1193 (2)0.3297 (2)0.0792 (10)
O1W0.2170 (4)0.5412 (3)0.9721 (2)0.0832 (11)
H1A0.169 (7)0.563 (5)1.016 (4)0.125*
H1B0.178 (6)0.515 (4)0.953 (4)0.125*
O30.3444 (3)0.1006 (2)0.4441 (2)0.0727 (10)
O2W0.7688 (5)0.3506 (4)0.1994 (4)0.1072 (15)
H2A0.810 (8)0.375 (6)0.216 (5)0.161*
H2B0.794 (8)0.356 (6)0.144 (2)0.161*
O41.0322 (3)0.5854 (3)0.1273 (2)0.0742 (9)
O3W0.7592 (4)0.1554 (4)0.2732 (4)0.1118 (16)
H3A0.691 (5)0.145 (5)0.285 (6)0.168*
H3B0.746 (7)0.214 (3)0.254 (5)0.168*
O50.8507 (3)0.6085 (2)0.07362 (17)0.0578 (7)
O4W0.2819 (6)0.9250 (4)0.5166 (4)0.1301 (19)
H4A0.299 (8)0.963 (6)0.542 (6)0.195*
H4B0.354 (5)0.902 (7)0.480 (5)0.195*
O60.8852 (3)0.49480 (18)0.2017 (2)0.0645 (8)
S10.40489 (11)0.16866 (7)0.38332 (8)0.0534 (3)
S20.90401 (9)0.58453 (7)0.15024 (6)0.0444 (2)
Ag10.44041 (4)0.40061 (3)1.02509 (2)0.06083 (13)
Ag21.06711 (4)0.09945 (3)0.46655 (2)0.06964 (14)
Cl10.94358 (9)0.58423 (6)0.34728 (6)0.0462 (2)
Cl20.55802 (10)0.93124 (7)0.19615 (7)0.0550 (3)
Cl30.12837 (12)0.33250 (8)0.42796 (7)0.0687 (3)
Cl40.35254 (12)0.17913 (8)0.05280 (7)0.0663 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0315 (18)0.0399 (16)0.0357 (15)0.0105 (14)0.0085 (13)0.0052 (14)
C20.0325 (18)0.0433 (17)0.0334 (15)0.0118 (14)0.0083 (13)0.0006 (14)
C30.0345 (19)0.0360 (16)0.0422 (17)0.0089 (14)0.0091 (14)0.0014 (15)
C40.049 (2)0.0370 (16)0.0439 (18)0.0071 (15)0.0124 (16)0.0087 (15)
C50.048 (2)0.0433 (17)0.0387 (17)0.0096 (16)0.0154 (16)0.0070 (15)
C60.0338 (18)0.0354 (15)0.0388 (16)0.0109 (13)0.0118 (14)0.0005 (14)
C70.054 (2)0.0309 (15)0.049 (2)0.0136 (15)0.0180 (17)0.0035 (15)
C80.057 (2)0.0329 (16)0.0454 (19)0.0040 (16)0.0121 (17)0.0037 (15)
C90.052 (2)0.0379 (17)0.0407 (18)0.0017 (16)0.0082 (17)0.0048 (15)
C100.055 (2)0.0391 (17)0.0422 (18)0.0104 (17)0.0107 (17)0.0027 (16)
C110.059 (3)0.0356 (16)0.0442 (19)0.0200 (17)0.0040 (17)0.0021 (15)
C120.046 (2)0.0318 (16)0.053 (2)0.0083 (15)0.0046 (17)0.0069 (16)
C130.042 (2)0.0469 (19)0.048 (2)0.0110 (16)0.0016 (17)0.0048 (17)
C140.064 (3)0.058 (2)0.048 (2)0.006 (2)0.017 (2)0.0007 (19)
C150.058 (3)0.049 (2)0.0436 (19)0.0066 (18)0.0071 (18)0.0067 (17)
C160.053 (3)0.080 (3)0.055 (2)0.019 (2)0.022 (2)0.017 (2)
C170.048 (2)0.076 (3)0.052 (2)0.018 (2)0.0129 (19)0.022 (2)
C180.056 (3)0.050 (2)0.057 (2)0.0168 (19)0.019 (2)0.0073 (19)
C190.088 (3)0.047 (2)0.060 (2)0.021 (2)0.043 (2)0.0001 (19)
C200.059 (3)0.057 (2)0.0376 (17)0.0276 (19)0.0206 (17)0.0026 (17)
C210.079 (3)0.100 (3)0.041 (2)0.059 (3)0.018 (2)0.011 (2)
C220.065 (3)0.144 (5)0.043 (2)0.049 (4)0.009 (2)0.001 (3)
C230.081 (4)0.110 (4)0.047 (2)0.012 (3)0.015 (2)0.030 (3)
C240.073 (3)0.060 (2)0.051 (2)0.020 (2)0.017 (2)0.013 (2)
C250.048 (2)0.0498 (19)0.0366 (16)0.0219 (17)0.0159 (16)0.0032 (16)
C260.051 (2)0.064 (2)0.0449 (19)0.026 (2)0.0159 (18)0.0026 (18)
C270.075 (3)0.061 (2)0.049 (2)0.020 (2)0.017 (2)0.004 (2)
C280.063 (3)0.064 (3)0.047 (2)0.020 (2)0.005 (2)0.001 (2)
C290.054 (3)0.058 (2)0.053 (2)0.020 (2)0.0076 (19)0.004 (2)
C300.056 (3)0.056 (2)0.055 (2)0.0096 (19)0.022 (2)0.0115 (19)
C310.051 (3)0.057 (2)0.053 (2)0.0085 (19)0.0183 (19)0.0155 (18)
C320.050 (3)0.062 (2)0.058 (2)0.017 (2)0.015 (2)0.013 (2)
C330.074 (3)0.057 (2)0.054 (2)0.021 (2)0.033 (2)0.0028 (19)
C340.049 (2)0.064 (2)0.0389 (17)0.0257 (19)0.0177 (17)0.0020 (17)
C350.064 (3)0.086 (3)0.047 (2)0.035 (3)0.016 (2)0.002 (2)
C360.071 (4)0.108 (4)0.047 (2)0.024 (3)0.010 (2)0.013 (3)
C370.102 (5)0.089 (4)0.058 (3)0.020 (3)0.031 (3)0.025 (3)
C380.089 (4)0.076 (3)0.060 (3)0.042 (3)0.034 (3)0.002 (2)
C390.060 (3)0.069 (2)0.0423 (19)0.031 (2)0.0258 (18)0.0057 (19)
C400.054 (3)0.096 (3)0.051 (2)0.039 (2)0.017 (2)0.006 (2)
N10.052 (2)0.0457 (16)0.0515 (17)0.0198 (15)0.0194 (15)0.0032 (14)
N20.062 (2)0.060 (2)0.0488 (18)0.0249 (18)0.0172 (17)0.0071 (16)
N30.070 (3)0.0564 (19)0.0496 (19)0.0232 (18)0.0090 (17)0.0071 (17)
N40.050 (2)0.0619 (19)0.0448 (17)0.0266 (17)0.0124 (15)0.0048 (16)
N50.071 (3)0.068 (2)0.0485 (19)0.001 (2)0.023 (2)0.0029 (19)
N60.100 (3)0.0504 (19)0.061 (2)0.016 (2)0.036 (2)0.0224 (18)
N70.0403 (18)0.0440 (15)0.0406 (15)0.0167 (13)0.0046 (13)0.0010 (13)
N80.058 (2)0.0554 (18)0.0439 (16)0.0223 (16)0.0093 (15)0.0044 (15)
N90.058 (2)0.0583 (19)0.0448 (17)0.0223 (17)0.0136 (16)0.0088 (15)
N100.055 (2)0.0435 (15)0.0468 (16)0.0206 (15)0.0211 (15)0.0006 (14)
O10.116 (3)0.0512 (16)0.099 (2)0.0303 (18)0.061 (2)0.0044 (17)
O20.059 (2)0.0723 (19)0.103 (3)0.0016 (17)0.033 (2)0.0103 (19)
O1W0.067 (3)0.118 (3)0.067 (2)0.034 (2)0.0094 (17)0.043 (2)
O30.098 (3)0.0560 (16)0.077 (2)0.0340 (17)0.046 (2)0.0235 (16)
O2W0.092 (3)0.108 (3)0.131 (4)0.050 (3)0.020 (3)0.010 (3)
O40.0386 (18)0.113 (3)0.0653 (18)0.0073 (17)0.0007 (14)0.0401 (18)
O3W0.069 (3)0.094 (3)0.165 (5)0.008 (2)0.041 (3)0.005 (3)
O50.067 (2)0.0644 (16)0.0407 (13)0.0052 (14)0.0208 (13)0.0158 (12)
O4W0.188 (6)0.085 (3)0.127 (4)0.043 (4)0.051 (4)0.010 (3)
O60.095 (2)0.0394 (13)0.0644 (17)0.0098 (14)0.0358 (17)0.0090 (13)
S10.0593 (7)0.0375 (4)0.0692 (6)0.0130 (4)0.0298 (5)0.0011 (4)
S20.0410 (5)0.0485 (5)0.0396 (4)0.0005 (4)0.0116 (4)0.0141 (4)
Ag10.0758 (3)0.0704 (2)0.04346 (17)0.03161 (18)0.00942 (15)0.01273 (15)
Ag20.0871 (3)0.0778 (2)0.04749 (19)0.0295 (2)0.01030 (17)0.01494 (17)
Cl10.0453 (5)0.0444 (4)0.0475 (5)0.0044 (4)0.0209 (4)0.0021 (4)
Cl20.0497 (6)0.0453 (5)0.0618 (6)0.0019 (4)0.0213 (5)0.0022 (4)
Cl30.0803 (8)0.0638 (6)0.0436 (5)0.0058 (5)0.0142 (5)0.0120 (5)
Cl40.0791 (8)0.0626 (6)0.0467 (5)0.0158 (6)0.0014 (5)0.0164 (5)
Geometric parameters (Å, º) top
C1—C21.382 (4)C26—H26B0.97
C1—C61.401 (4)C27—C281.345 (6)
C1—S21.756 (3)C27—N31.357 (6)
C2—C31.377 (5)C27—H270.93
C2—H20.93C28—N41.358 (6)
C3—C41.402 (5)C28—H280.93
C3—Cl21.734 (3)C29—N31.308 (5)
C4—N61.353 (5)C29—N41.319 (5)
C4—C51.398 (5)C29—H290.93
C5—C61.364 (5)C30—C311.346 (6)
C5—H50.93C30—N21.360 (6)
C6—Cl11.738 (3)C30—H300.93
C7—C81.369 (5)C31—N11.363 (5)
C7—C121.387 (5)C31—H310.93
C7—S11.773 (4)C32—N21.317 (5)
C8—C91.373 (5)C32—N11.341 (5)
C8—Cl31.756 (4)C32—H320.93
C9—C101.388 (5)C33—N11.468 (5)
C9—H90.93C33—C34ii1.499 (6)
C10—N51.371 (5)C33—H33A0.97
C10—C111.383 (6)C33—H33B0.97
C11—C121.385 (5)C34—C391.390 (5)
C11—Cl41.748 (4)C34—C351.393 (6)
C12—H120.93C34—C33ii1.499 (6)
C13—N81.313 (5)C35—C361.355 (7)
C13—N71.331 (5)C35—H350.93
C13—H130.93C36—C371.362 (8)
C14—C151.350 (6)C36—H360.93
C14—N81.362 (6)C37—C381.383 (8)
C14—H140.93C37—H370.93
C15—N71.359 (5)C38—C391.388 (7)
C15—H150.93C38—H380.93
C16—C171.349 (6)C39—C401.495 (6)
C16—N91.369 (6)C40—N41.478 (5)
C16—H160.93C40—H40A0.97
C17—N101.370 (5)C40—H40B0.97
C17—H170.93N2—Ag22.092 (3)
C18—N91.303 (5)N3—Ag22.090 (4)
C18—N101.327 (5)N5—H5A0.84 (3)
C18—H180.93N5—H5B0.81 (6)
C19—N101.475 (4)N6—H6A0.83 (3)
C19—C20i1.508 (6)N6—H6B0.80 (3)
C19—H19A0.97N8—Ag12.103 (3)
C19—H19B0.97N9—Ag12.100 (3)
C20—C211.387 (6)O1—S11.430 (3)
C20—C251.394 (5)O2—S11.443 (4)
C20—C19i1.508 (6)O1W—H1A0.80 (6)
C21—C221.356 (8)O1W—H1B0.83 (7)
C21—H210.93O3—S11.450 (3)
C22—C231.369 (8)O2W—H2A0.81 (6)
C22—H220.93O2W—H2B0.83 (3)
C23—C241.395 (7)O4—S21.443 (3)
C23—H230.93O3W—H3A0.82 (7)
C24—C251.381 (6)O3W—H3B0.83 (3)
C24—H240.93O5—S21.451 (3)
C25—C261.502 (5)O4W—H4A0.84 (10)
C26—N71.476 (4)O4W—H4B0.87 (8)
C26—H26A0.97O6—S21.449 (3)
C2—C1—C6117.7 (3)N3—C29—N4111.7 (4)
C2—C1—S2118.7 (2)N3—C29—H29124.1
C6—C1—S2123.6 (2)N4—C29—H29124.1
C3—C2—C1121.0 (3)C31—C30—N2110.0 (4)
C3—C2—H2119.5C31—C30—H30125.0
C1—C2—H2119.5N2—C30—H30125.0
C2—C3—C4121.5 (3)C30—C31—N1105.9 (4)
C2—C3—Cl2119.2 (3)C30—C31—H31127.1
C4—C3—Cl2119.3 (3)N1—C31—H31127.1
N6—C4—C5121.0 (3)N2—C32—N1110.6 (4)
N6—C4—C3122.0 (3)N2—C32—H32124.7
C5—C4—C3117.1 (3)N1—C32—H32124.7
C6—C5—C4121.2 (3)N1—C33—C34ii112.0 (3)
C6—C5—H5119.4N1—C33—H33A109.2
C4—C5—H5119.4C34ii—C33—H33A109.2
C5—C6—C1121.6 (3)N1—C33—H33B109.2
C5—C6—Cl1117.6 (2)C34ii—C33—H33B109.2
C1—C6—Cl1120.8 (3)H33A—C33—H33B107.9
C8—C7—C12117.2 (3)C39—C34—C35118.6 (4)
C8—C7—S1125.6 (3)C39—C34—C33ii122.9 (4)
C12—C7—S1117.1 (3)C35—C34—C33ii118.5 (4)
C7—C8—C9122.4 (4)C36—C35—C34121.9 (4)
C7—C8—Cl3121.2 (3)C36—C35—H35119.1
C9—C8—Cl3116.4 (3)C34—C35—H35119.1
C8—C9—C10121.0 (4)C35—C36—C37119.5 (5)
C8—C9—H9119.5C35—C36—H36120.2
C10—C9—H9119.5C37—C36—H36120.2
N5—C10—C11122.6 (4)C36—C37—C38120.5 (5)
N5—C10—C9120.5 (4)C36—C37—H37119.7
C11—C10—C9116.9 (3)C38—C37—H37119.7
C10—C11—C12121.7 (4)C37—C38—C39120.3 (4)
C10—C11—Cl4119.6 (3)C37—C38—H38119.8
C12—C11—Cl4118.6 (3)C39—C38—H38119.8
C11—C12—C7120.8 (4)C38—C39—C34119.1 (4)
C11—C12—H12119.6C38—C39—C40118.3 (4)
C7—C12—H12119.6C34—C39—C40122.6 (4)
N8—C13—N7111.7 (3)N4—C40—C39112.6 (3)
N8—C13—H13124.2N4—C40—H40A109.1
N7—C13—H13124.2C39—C40—H40A109.1
C15—C14—N8110.5 (4)N4—C40—H40B109.1
C15—C14—H14124.8C39—C40—H40B109.1
N8—C14—H14124.8H40A—C40—H40B107.8
C14—C15—N7105.4 (4)C32—N1—C31107.6 (3)
C14—C15—H15127.3C32—N1—C33125.1 (4)
N7—C15—H15127.3C31—N1—C33127.3 (4)
C17—C16—N9110.0 (4)C32—N2—C30105.9 (3)
C17—C16—H16125.0C32—N2—Ag2128.8 (3)
N9—C16—H16125.0C30—N2—Ag2125.3 (3)
C16—C17—N10105.4 (4)C29—N3—C27104.9 (4)
C16—C17—H17127.3C29—N3—Ag2124.5 (3)
N10—C17—H17127.3C27—N3—Ag2130.6 (3)
N9—C18—N10111.9 (4)C29—N4—C28107.8 (3)
N9—C18—H18124.0C29—N4—C40125.9 (4)
N10—C18—H18124.0C28—N4—C40126.2 (4)
N10—C19—C20i112.7 (3)C10—N5—H5A112 (4)
N10—C19—H19A109.1C10—N5—H5B113 (4)
C20i—C19—H19A109.1H5A—N5—H5B126 (5)
N10—C19—H19B109.1C4—N6—H6A124 (5)
C20i—C19—H19B109.1C4—N6—H6B120 (5)
H19A—C19—H19B107.8H6A—N6—H6B113 (6)
C21—C20—C25118.5 (4)C13—N7—C15107.5 (3)
C21—C20—C19i118.8 (4)C13—N7—C26126.3 (3)
C25—C20—C19i122.7 (4)C15—N7—C26126.1 (4)
C22—C21—C20121.5 (4)C13—N8—C14104.8 (3)
C22—C21—H21119.3C13—N8—Ag1125.4 (3)
C20—C21—H21119.3C14—N8—Ag1129.8 (3)
C21—C22—C23120.5 (5)C18—N9—C16105.3 (3)
C21—C22—H22119.7C18—N9—Ag1128.8 (3)
C23—C22—H22119.7C16—N9—Ag1125.8 (3)
C22—C23—C24119.5 (5)C18—N10—C17107.4 (3)
C22—C23—H23120.3C18—N10—C19125.5 (4)
C24—C23—H23120.3C17—N10—C19127.1 (4)
C25—C24—C23120.2 (4)H1A—O1W—H1B104 (5)
C25—C24—H24119.9H2A—O2W—H2B104 (6)
C23—C24—H24119.9H3A—O3W—H3B105 (4)
C24—C25—C20119.9 (4)H4A—O4W—H4B101 (4)
C24—C25—C26118.0 (3)O1—S1—O2113.8 (2)
C20—C25—C26122.1 (4)O1—S1—O3112.0 (2)
N7—C26—C25112.3 (3)O2—S1—O3111.8 (2)
N7—C26—H26A109.1O1—S1—C7108.49 (17)
C25—C26—H26A109.1O2—S1—C7104.3 (2)
N7—C26—H26B109.1O3—S1—C7105.73 (18)
C25—C26—H26B109.1O4—S2—O6112.7 (2)
H26A—C26—H26B107.9O4—S2—O5113.29 (19)
C28—C27—N3110.4 (4)O6—S2—O5111.49 (18)
C28—C27—H27124.8O4—S2—C1105.88 (18)
N3—C27—H27124.8O6—S2—C1107.38 (17)
C27—C28—N4105.2 (4)O5—S2—C1105.46 (16)
C27—C28—H28127.4N9—Ag1—N8175.91 (13)
N4—C28—H28127.4N3—Ag2—N2178.95 (15)
C6—C1—C2—C31.0 (5)C33ii—C34—C39—C38179.2 (3)
S2—C1—C2—C3179.5 (3)C35—C34—C39—C40179.1 (4)
C1—C2—C3—C41.5 (5)C33ii—C34—C39—C400.5 (5)
C1—C2—C3—Cl2179.6 (3)C38—C39—C40—N495.9 (4)
C2—C3—C4—N6179.4 (4)C34—C39—C40—N484.4 (5)
Cl2—C3—C4—N60.5 (6)N2—C32—N1—C310.5 (5)
C2—C3—C4—C50.9 (5)N2—C32—N1—C33178.8 (3)
Cl2—C3—C4—C5179.8 (3)C30—C31—N1—C320.6 (5)
N6—C4—C5—C6179.6 (4)C30—C31—N1—C33178.9 (4)
C3—C4—C5—C60.1 (5)C34ii—C33—N1—C32145.3 (4)
C4—C5—C6—C10.6 (5)C34ii—C33—N1—C3136.7 (6)
C4—C5—C6—Cl1178.6 (3)N1—C32—N2—C300.2 (5)
C2—C1—C6—C50.0 (5)N1—C32—N2—Ag2177.8 (2)
S2—C1—C6—C5179.4 (3)C31—C30—N2—C320.2 (5)
C2—C1—C6—Cl1179.1 (2)C31—C30—N2—Ag2178.3 (3)
S2—C1—C6—Cl11.5 (4)N4—C29—N3—C270.6 (5)
C12—C7—C8—C91.1 (5)N4—C29—N3—Ag2178.8 (3)
S1—C7—C8—C9176.0 (3)C28—C27—N3—C290.6 (5)
C12—C7—C8—Cl3179.4 (3)C28—C27—N3—Ag2178.6 (3)
S1—C7—C8—Cl34.5 (5)N3—C29—N4—C280.4 (5)
C7—C8—C9—C101.6 (6)N3—C29—N4—C40176.5 (3)
Cl3—C8—C9—C10178.9 (3)C27—C28—N4—C290.0 (5)
C8—C9—C10—N5176.3 (4)C27—C28—N4—C40176.1 (4)
C8—C9—C10—C111.3 (6)C39—C40—N4—C29135.6 (4)
N5—C10—C11—C12177.1 (4)C39—C40—N4—C2849.0 (6)
C9—C10—C11—C120.5 (5)N8—C13—N7—C151.5 (4)
N5—C10—C11—Cl42.0 (5)N8—C13—N7—C26178.6 (3)
C9—C10—C11—Cl4179.6 (3)C14—C15—N7—C131.2 (4)
C10—C11—C12—C70.0 (5)C14—C15—N7—C26178.3 (4)
Cl4—C11—C12—C7179.1 (3)C25—C26—N7—C13124.6 (4)
C8—C7—C12—C110.3 (5)C25—C26—N7—C1558.8 (5)
S1—C7—C12—C11175.7 (3)N7—C13—N8—C141.2 (5)
N8—C14—C15—N70.5 (5)N7—C13—N8—Ag1179.5 (2)
N9—C16—C17—N100.1 (5)C15—C14—N8—C130.4 (5)
C25—C20—C21—C220.2 (6)C15—C14—N8—Ag1179.7 (3)
C19i—C20—C21—C22178.3 (4)N10—C18—N9—C160.5 (4)
C20—C21—C22—C230.0 (7)N10—C18—N9—Ag1175.9 (2)
C21—C22—C23—C240.6 (8)C17—C16—N9—C180.2 (5)
C22—C23—C24—C250.8 (7)C17—C16—N9—Ag1176.3 (3)
C23—C24—C25—C200.6 (6)N9—C18—N10—C170.6 (5)
C23—C24—C25—C26179.5 (4)N9—C18—N10—C19178.9 (3)
C21—C20—C25—C240.1 (5)C16—C17—N10—C180.4 (5)
C19i—C20—C25—C24177.9 (3)C16—C17—N10—C19178.7 (4)
C21—C20—C25—C26179.0 (3)C20i—C19—N10—C18157.7 (4)
C19i—C20—C25—C261.0 (5)C20i—C19—N10—C1724.3 (6)
C24—C25—C26—N7104.5 (4)C8—C7—S1—O149.1 (4)
C20—C25—C26—N776.6 (4)C12—C7—S1—O1135.9 (3)
N3—C27—C28—N40.4 (5)C8—C7—S1—O2170.8 (3)
N2—C30—C31—N10.5 (5)C12—C7—S1—O214.2 (3)
C39—C34—C35—C360.1 (6)C8—C7—S1—O371.2 (4)
C33ii—C34—C35—C36178.5 (4)C12—C7—S1—O3103.8 (3)
C34—C35—C36—C371.0 (7)C2—C1—S2—O4115.0 (3)
C35—C36—C37—C381.0 (8)C6—C1—S2—O465.6 (3)
C36—C37—C38—C390.3 (7)C2—C1—S2—O6124.4 (3)
C37—C38—C39—C340.5 (6)C6—C1—S2—O655.1 (3)
C37—C38—C39—C40179.2 (4)C2—C1—S2—O55.4 (3)
C35—C34—C39—C380.6 (5)C6—C1—S2—O5174.1 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2A···O60.81 (6)2.15 (7)2.868 (5)148 (7)
O3W—H3A···O20.82 (7)2.00 (7)2.819 (6)172 (9)
O1W—H1A···O4iii0.80 (6)1.99 (6)2.762 (5)165 (7)
N6—H6B···O2iv0.80 (3)2.19 (4)2.928 (5)154 (6)
N5—H5B···O5v0.81 (6)2.28 (6)2.913 (5)136 (5)
Symmetry codes: (iii) x1, y, z+1; (iv) x, y+1, z; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag2(C14H14N4)2](C6H4Cl2NO3S)2·4H2O
Mr1246.51
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.732 (6), 14.598 (6), 15.718 (6)
α, β, γ (°)79.068 (12), 72.843 (19), 70.991 (17)
V3)2418.8 (18)
Z2
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.35 × 0.25 × 0.24
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.716, 0.753
No. of measured, independent and
observed [I > 2σ(I)] reflections
19762, 10576, 6897
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.152, 0.96
No. of reflections10576
No. of parameters649
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.92, 0.36

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
N2—Ag22.092 (3)N8—Ag12.103 (3)
N3—Ag22.090 (4)N9—Ag12.100 (3)
N9—Ag1—N8175.91 (13)N3—Ag2—N2178.95 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2A···O60.81 (6)2.15 (7)2.868 (5)148 (7)
O3W—H3A···O20.82 (7)2.00 (7)2.819 (6)172 (9)
O1W—H1A···O4i0.80 (6)1.99 (6)2.762 (5)165 (7)
N6—H6B···O2ii0.80 (3)2.19 (4)2.928 (5)154 (6)
N5—H5B···O5iii0.81 (6)2.28 (6)2.913 (5)136 (5)
Symmetry codes: (i) x1, y, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z.
 

Acknowledgements

The authors thank the Science Foundation of Suihua University (grant No. K071001) for supporting this work.

References

First citationAakeröy, C. B. & Beatty, A. M. (1998). Chem. Commun. pp. 1067–1068.  Google Scholar
First citationCote, A. P. & Shimizu, G. K. H. (2004). Inorg. Chem. 43, 6663–6673.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFeazell, R. P., Carson, C. E. & Klausmeyer, K. (2006). Inorg. Chem. 45, 2635–2643.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, F.-F., Ma, J.-F., Song, S.-Y., Yang, J., Jia, H.-Q. & Hu, N.-H. (2006). Cryst. Growth Des. 6, 209–215.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, H.-Y., Wu, H., Ma, J.-F., Song, S.-Y., Yang, J., Liu, Y.-Y. & Su, Z.-M. (2007). Inorg. Chem. 46, 7299–7311.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMa, J.-F., Yang, J., Li, S.-L., Song, S.-Y., Zhang, H.-J., Wang, H.-S. & Yang, K.-Y. (2005). Cryst. Growth Des. 5, 807–812.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds