organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­cyclo­hexyl­ammonium bromide

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 22 July 2008; accepted 22 July 2008; online 31 July 2008)

In the title compound, C12H24N+·Br, both cyclo­hexane rings adopt the usual chair conformation. The cation and anion are linked by N—H⋯Br hydrogen bonds into a linear chain running along the c axis.

Related literature

For the crystal structure of dicyclo­hexyl­ammonium chloride, which belongs to the space group P21/c, see: Ng (1995[Ng, S. W. (1995). Acta Cryst. C51, 2149-2150.]).

[Scheme 1]

Experimental

Crystal data
  • C12H24N+·Br

  • Mr = 262.23

  • Orthorhombic, F d d 2

  • a = 24.1258 (4) Å

  • b = 39.3926 (7) Å

  • c = 5.4878 (1) Å

  • V = 5215.49 (16) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 3.12 mm−1

  • T = 100 (2) K

  • 0.40 × 0.02 × 0.02 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.368, Tmax = 0.940

  • 15058 measured reflections

  • 2961 independent reflections

  • 2483 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.139

  • S = 0.98

  • 2961 reflections

  • 127 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.56 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1311 Friedel pairs

  • Flack parameter: 0.01 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯Br1i 0.88 2.43 3.305 (5) 177
N1—H12⋯Br1 0.88 2.43 3.310 (5) 176
Symmetry code: (i) x, y, z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

In the title compound (Fig.1) both cyclohexane rings adopt the usual chair conformation. In the crystal structure, the cation and anion are linked by N—H···Br hydrogen bonds (Table 1) into a linear chain running along the c axis.

Related literature top

For the crystal structure of dicyclohexylammonium chloride, which belongs to the P21/c space group, see: Ng (1995).

Experimental top

This compound was obtained as a side product from the reaction between dicyclohexylammonium bis(chlorodifluroacetato)cyclopentyldiphenystannate (0.5 g, 0.6 mmol) and 4-dimethylaminopyridine hydrobromide perbromide (0.23 g, 0.6 mmol) in a mixture of chloroform and ethanol. Crystals were obtained upon evaporation of the solvent.

Refinement top

H atoms were placed in calculated positions (N—H = 0.88 Å and C—H = 0.99–1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of [(C6H11)2NH2]+.Br- at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Dicyclohexylammonium bromide top
Crystal data top
C12H24N+·BrF(000) = 2208
Mr = 262.23Dx = 1.336 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 3733 reflections
a = 24.1258 (4) Åθ = 2.7–23.5°
b = 39.3926 (7) ŵ = 3.12 mm1
c = 5.4878 (1) ÅT = 100 K
V = 5215.49 (16) Å3Prism, colourless
Z = 160.40 × 0.02 × 0.02 mm
Data collection top
Bruker SMART APEXII
diffractometer
2961 independent reflections
Radiation source: fine-focus sealed tube2483 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3131
Tmin = 0.368, Tmax = 0.940k = 5050
15058 measured reflectionsl = 76
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.1P)2 + 1P]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
2961 reflectionsΔρmax = 0.67 e Å3
127 parametersΔρmin = 0.56 e Å3
1 restraintAbsolute structure: Flack (1983), with 1311 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
C12H24N+·BrV = 5215.49 (16) Å3
Mr = 262.23Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 24.1258 (4) ŵ = 3.12 mm1
b = 39.3926 (7) ÅT = 100 K
c = 5.4878 (1) Å0.40 × 0.02 × 0.02 mm
Data collection top
Bruker SMART APEXII
diffractometer
2961 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2483 reflections with I > 2σ(I)
Tmin = 0.368, Tmax = 0.940Rint = 0.049
15058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.139Δρmax = 0.67 e Å3
S = 0.98Δρmin = 0.56 e Å3
2961 reflectionsAbsolute structure: Flack (1983), with 1311 Friedel pairs
127 parametersAbsolute structure parameter: 0.01 (2)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.057495 (18)0.153140 (12)0.50000 (6)0.03906 (17)
N10.01800 (15)0.14541 (8)1.0006 (10)0.0288 (7)
H110.00300.14791.13050.035*
H120.00360.14750.87240.035*
C10.05883 (19)0.17402 (9)0.9961 (13)0.0304 (8)
H10.08540.17050.85840.037*
C20.0271 (3)0.20707 (12)0.9555 (13)0.0493 (16)
H2A0.00680.20590.79880.059*
H2B0.00040.21021.08750.059*
C30.0668 (4)0.23723 (14)0.9517 (13)0.060 (2)
H3A0.04540.25850.93400.072*
H3B0.09190.23520.80980.072*
C40.1006 (3)0.23867 (14)1.1826 (12)0.0534 (17)
H4A0.07580.24381.32160.064*
H4B0.12800.25731.16970.064*
C50.1307 (2)0.20596 (13)1.2315 (17)0.0496 (14)
H5A0.15920.20241.10440.060*
H5B0.14980.20751.39090.060*
C60.0908 (2)0.17545 (11)1.2338 (15)0.0428 (12)
H6A0.06460.17761.37180.051*
H6B0.11210.15421.25570.051*
C70.04080 (18)0.10966 (10)1.0028 (13)0.0317 (9)
H70.06640.10681.14480.038*
C80.0077 (2)0.08534 (12)1.0283 (12)0.0442 (13)
H8A0.02720.08981.18390.053*
H8B0.03430.08920.89370.053*
C90.0117 (3)0.04860 (12)1.0227 (15)0.0514 (15)
H9A0.03630.04421.16370.062*
H9B0.02070.03331.03590.062*
C100.0429 (3)0.04108 (12)0.7870 (14)0.0489 (16)
H10A0.01730.04320.64690.059*
H10B0.05700.01750.79070.059*
C110.0911 (2)0.06546 (12)0.7555 (15)0.0438 (12)
H11A0.11850.06140.88640.053*
H11B0.10940.06090.59760.053*
C120.0729 (2)0.10264 (11)0.7628 (15)0.0404 (11)
H12A0.10580.11760.75360.048*
H12B0.04880.10760.62120.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0308 (2)0.0537 (3)0.0327 (2)0.0001 (2)0.0004 (2)0.0078 (2)
N10.0362 (18)0.0267 (16)0.0236 (17)0.0004 (13)0.003 (2)0.003 (2)
C10.038 (2)0.0261 (17)0.0277 (19)0.0028 (17)0.003 (2)0.007 (3)
C20.062 (3)0.028 (2)0.058 (4)0.002 (2)0.023 (3)0.002 (2)
C30.104 (5)0.031 (2)0.044 (4)0.008 (3)0.015 (4)0.002 (2)
C40.067 (4)0.038 (3)0.056 (4)0.010 (3)0.015 (3)0.010 (3)
C50.042 (3)0.042 (3)0.065 (4)0.007 (2)0.004 (4)0.013 (3)
C60.032 (2)0.030 (2)0.066 (4)0.0003 (17)0.014 (3)0.006 (3)
C70.037 (2)0.0227 (17)0.036 (2)0.0002 (15)0.000 (3)0.005 (2)
C80.052 (3)0.039 (2)0.042 (3)0.012 (2)0.023 (3)0.013 (3)
C90.070 (4)0.029 (2)0.055 (4)0.010 (2)0.025 (4)0.000 (3)
C100.055 (3)0.026 (2)0.066 (5)0.005 (2)0.020 (3)0.013 (3)
C110.046 (3)0.032 (2)0.053 (3)0.0006 (19)0.014 (4)0.013 (3)
C120.042 (2)0.027 (2)0.052 (3)0.0005 (18)0.018 (3)0.002 (3)
Geometric parameters (Å, º) top
N1—C11.497 (5)C6—H6A0.99
N1—C71.512 (5)C6—H6B0.99
N1—H110.88C7—C81.520 (7)
N1—H120.88C7—C121.552 (9)
C1—C61.517 (10)C7—H71.00
C1—C21.527 (6)C8—C91.522 (7)
C1—H11.00C8—H8A0.99
C2—C31.527 (8)C8—H8B0.99
C2—H2A0.99C9—C101.525 (10)
C2—H2B0.99C9—H9A0.99
C3—C41.508 (9)C9—H9B0.99
C3—H3A0.99C10—C111.517 (7)
C3—H3B0.99C10—H10A0.99
C4—C51.503 (9)C10—H10B0.99
C4—H4A0.99C11—C121.529 (6)
C4—H4B0.99C11—H11A0.99
C5—C61.540 (6)C11—H11B0.99
C5—H5A0.99C12—H12A0.99
C5—H5B0.99C12—H12B0.99
C1—N1—C7117.5 (3)C1—C6—H6B109.7
C1—N1—H11107.9C5—C6—H6B109.7
C7—N1—H11107.9H6A—C6—H6B108.2
C1—N1—H12107.9N1—C7—C8107.9 (4)
C7—N1—H12107.9N1—C7—C12109.9 (5)
H11—N1—H12107.2C8—C7—C12110.5 (4)
N1—C1—C6110.4 (5)N1—C7—H7109.5
N1—C1—C2108.3 (4)C8—C7—H7109.5
C6—C1—C2110.4 (4)C12—C7—H7109.5
N1—C1—H1109.2C7—C8—C9111.1 (4)
C6—C1—H1109.2C7—C8—H8A109.4
C2—C1—H1109.2C9—C8—H8A109.4
C1—C2—C3110.5 (5)C7—C8—H8B109.4
C1—C2—H2A109.5C9—C8—H8B109.4
C3—C2—H2A109.5H8A—C8—H8B108.0
C1—C2—H2B109.5C8—C9—C10110.7 (5)
C3—C2—H2B109.5C8—C9—H9A109.5
H2A—C2—H2B108.1C10—C9—H9A109.5
C4—C3—C2111.0 (5)C8—C9—H9B109.5
C4—C3—H3A109.4C10—C9—H9B109.5
C2—C3—H3A109.4H9A—C9—H9B108.1
C4—C3—H3B109.4C11—C10—C9110.6 (5)
C2—C3—H3B109.4C11—C10—H10A109.5
H3A—C3—H3B108.0C9—C10—H10A109.5
C5—C4—C3112.3 (5)C11—C10—H10B109.5
C5—C4—H4A109.1C9—C10—H10B109.5
C3—C4—H4A109.1H10A—C10—H10B108.1
C5—C4—H4B109.1C10—C11—C12112.6 (4)
C3—C4—H4B109.1C10—C11—H11A109.1
H4A—C4—H4B107.9C12—C11—H11A109.1
C4—C5—C6111.6 (5)C10—C11—H11B109.1
C4—C5—H5A109.3C12—C11—H11B109.1
C6—C5—H5A109.3H11A—C11—H11B107.8
C4—C5—H5B109.3C11—C12—C7109.6 (5)
C6—C5—H5B109.3C11—C12—H12A109.7
H5A—C5—H5B108.0C7—C12—H12A109.7
C1—C6—C5109.9 (6)C11—C12—H12B109.7
C1—C6—H6A109.7C7—C12—H12B109.7
C5—C6—H6A109.7H12A—C12—H12B108.2
C7—N1—C1—C667.5 (6)C1—N1—C7—C8175.4 (6)
C7—N1—C1—C2171.5 (6)C1—N1—C7—C1264.0 (6)
N1—C1—C2—C3179.5 (5)N1—C7—C8—C9177.9 (6)
C6—C1—C2—C358.5 (7)C12—C7—C8—C957.7 (7)
C1—C2—C3—C456.2 (8)C7—C8—C9—C1057.9 (8)
C2—C3—C4—C554.5 (8)C8—C9—C10—C1156.1 (8)
C3—C4—C5—C654.4 (9)C9—C10—C11—C1255.9 (9)
N1—C1—C6—C5177.4 (4)C10—C11—C12—C755.3 (8)
C2—C1—C6—C557.6 (6)N1—C7—C12—C11174.6 (4)
C4—C5—C6—C155.7 (8)C8—C7—C12—C1155.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···Br1i0.882.433.305 (5)177
N1—H12···Br10.882.433.310 (5)176
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H24N+·Br
Mr262.23
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)100
a, b, c (Å)24.1258 (4), 39.3926 (7), 5.4878 (1)
V3)5215.49 (16)
Z16
Radiation typeMo Kα
µ (mm1)3.12
Crystal size (mm)0.40 × 0.02 × 0.02
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.368, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
15058, 2961, 2483
Rint0.049
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.139, 0.98
No. of reflections2961
No. of parameters127
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.56
Absolute structureFlack (1983), with 1311 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···Br1i0.882.433.305 (5)177
N1—H12···Br10.882.433.310 (5)176
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (grant Nos. SF022/2007A and FS339/2008A) and also for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNg, S. W. (1995). Acta Cryst. C51, 2149–2150.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds