organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di­cyclo­hexyl-1-isonicotinoylurea monohydrate

aFaculty of Yang-Ming, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China, and bDepartment of Chemistry, Zaozhuang University, Zaozhuang, Shandong 277100, People's Republic of China
*Correspondence e-mail: wcklx@nbu.edu.cn

(Received 19 May 2008; accepted 26 June 2008; online 9 July 2008)

The title organic compound, C19H27N3O2·H2O, was synthesized from methyl­ene dicyclo­hexyl­amine, 4-pyridine­carboxylic acid and N,N′-dicyclo­hexyl­carbodiimide. The water molecule is involved in inter­molecular hydrogen bonds, linking symmetry-related urea mol­ecules into a two-dimensional supra­molecular ladder-like structure.

Related literature

For related literature, see: Iyer et al. (1971[Iyer, K. S. N., Iyer, B. H. & Sirsi, M. (1971). J. Indian Chem. Soc. 48, 182-184.]); Jew et al. (2003[Jew, S., Park, B., Lim, D., Kim, M. G., Chung, I. K., Kim, J. H., Hong, C. I., Kim, J.-K., Park, H.-J., Lee, J.-H. & Park, H. (2003). Bioorg. Med. Chem. Lett. 13, 609-612.]); Li et al. (2006[Li, G., Qian, X., Cui, J., Huang, Q., Zhang, R. & Guan, H. (2006). J. Agric. Food Chem. 54, 125-129.]); Mu & Qin (2003[Mu, C. & Qin, Z. (2003). Modern Agrochem. 2, 1-6.]); Wachter et al. (1998[Wachter, G. A., Davis, M. C., Martin, A. R. & Franzblau, S. G. (1998). J. Med. Chem. 41, 2436-2438.]).

[Scheme 1]

Experimental

Crystal data
  • C19H27N3O2·H2O

  • Mr = 347.45

  • Triclinic, [P \overline 1]

  • a = 6.6694 (13) Å

  • b = 11.106 (2) Å

  • c = 13.248 (3) Å

  • α = 98.55 (3)°

  • β = 94.11 (3)°

  • γ = 97.49 (3)°

  • V = 958.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.40 × 0.33 × 0.28 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.968, Tmax = 0.977

  • 9385 measured reflections

  • 4284 independent reflections

  • 2948 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.119

  • S = 1.04

  • 4284 reflections

  • 342 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H6⋯O1 0.89 (3) 1.95 (3) 2.7959 (18) 158 (2)
N2—H10⋯O3i 0.91 (2) 1.89 (2) 2.7949 (19) 170 (2)
O3—H12⋯O2ii 0.89 (2) 1.95 (3) 2.8319 (19) 171 (2)
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyridine derivatives are important intermediates widely used in the synthesis of drugs (Wachter et al., 1998; Jew et al., 2003) and pesticides (Li et al., 2006; Mu & Qin, 2003). The title organic compound, 1,3-dicyclohexyl-1-isonicotinoyl-urea, is an intermediate for the synthesis of an anti-tuberculosis drug (Iyer et al., 1971). We report here its synthesis and the crystal structure of its hydrate.

The title compound was synthesized from methylene dicyclohexylamine, 4-pyridinecarboxylic acid and N,N'-dicyclohexylcarbodiimide. Asymmetric unit of the crystal structure consists of the organic molecule and one H2O molecule, C19H27N3O2.H2O. As shown in Fig. 1 and Table 1, the cyclohexyl groups display chair-type conformation. Interestingly, there are some strong intermolecular hydrogen bonds between the organic molecules and the crystal water. Thus each water effectively links two molecules as O–H···O donor to their O=C groups and accepts one N–H···O hydrogen bridge from a third molecule into a novel two-dimensional supramolecular ladder-like structure through both O—H···O and N—H···O hydrogen bonds (Fig.2 and Table 2).

Related literature top

For related literature, see: Iyer et al. (1971); Jew et al. (2003); Li et al. (2006); Mu & Qin (2003); Wachter et al. (1998).

Experimental top

Methylene dicyclohexylamine (0.21 g, 1 mmol), 4-pyridinecarboxylic acid (0.12 g, 1 mmol) and N,N'-dicyclohexylcarbodiimide (0.25 g, 1.2 mmol) were added to a 50 ml round bottom flask, then added dichloromethane (25 ml). The mixture was stirred for 12 h at 298 K, after that the reaction mixture was washed with water (10 ml × 3). The organic layer was dried with anhydrous Na2SO4 and evaporated in vacuo to give a residue. The crude product was purified by column chromatography (SiO2–EtOAc and hexane, 1:10) to afford the title compound as a colorless solid (yield 69%). 1H NMR (400 MHz, CDCl3): d 8.57 (d, J = 5.6 Hz, 2 H), 7.37 (d, J = 5.6 Hz, 2 H), 4.16–4.11 (m, 1 H), 3.27–3.22 (m, 1 H), 1.81–1.64 (m, 8 H), 1.60–1.57 (m, 2 H), 1.51–1.22 (m, 4 H), 1.17–1.08 (m, 2 H), 1.00–0.94 (m, 2 H), 0.85–0.76 (m, 2 H).

Refinement top

All H atoms were located in difference Fourier maps and refined independently with isotropic displacement parameters.

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title complex with the atom-numbering scheme. Atomic displacement ellipsoids are shown at the 30% probability level.
[Figure 2] Fig. 2. View of the two-dimensional hydrogen-bonded supramolecular structure.
1,3-Dicyclohexyl-1-isonicotinoylurea monohydrate top
Crystal data top
C19H27N3O2·H2OZ = 2
Mr = 347.45F(000) = 376
Triclinic, P1Dx = 1.205 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6694 (13) ÅCell parameters from 3059 reflections
b = 11.106 (2) Åθ = 3.1–27.5°
c = 13.248 (3) ŵ = 0.08 mm1
α = 98.55 (3)°T = 298 K
β = 94.11 (3)°Block, colorless
γ = 97.49 (3)°0.40 × 0.33 × 0.28 mm
V = 958.0 (3) Å3
Data collection top
Bruker SMART CCD APEXII
diffractometer
4284 independent reflections
Radiation source: fine-focus sealed tube2948 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.40 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 87
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.968, Tmax = 0.977l = 1717
9385 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.054P)2 + 0.1047P]
where P = (Fo2 + 2Fc2)/3
4284 reflections(Δ/σ)max < 0.001
342 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C19H27N3O2·H2Oγ = 97.49 (3)°
Mr = 347.45V = 958.0 (3) Å3
Triclinic, P1Z = 2
a = 6.6694 (13) ÅMo Kα radiation
b = 11.106 (2) ŵ = 0.08 mm1
c = 13.248 (3) ÅT = 298 K
α = 98.55 (3)°0.40 × 0.33 × 0.28 mm
β = 94.11 (3)°
Data collection top
Bruker SMART CCD APEXII
diffractometer
4284 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2948 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.977Rint = 0.029
9385 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.14 e Å3
4284 reflectionsΔρmin = 0.19 e Å3
342 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25983 (16)0.03443 (9)0.01466 (8)0.0451 (3)
O20.57498 (15)0.02624 (10)0.32408 (8)0.0437 (3)
O30.11137 (18)0.00473 (13)0.19210 (11)0.0546 (3)
N10.2456 (3)0.40235 (13)0.05844 (13)0.0635 (4)
N20.23694 (19)0.04403 (11)0.29989 (9)0.0357 (3)
N30.38649 (17)0.06272 (10)0.18085 (8)0.0325 (3)
C10.6570 (4)0.39594 (16)0.21113 (19)0.0636 (5)
C20.3121 (3)0.39686 (17)0.2711 (2)0.0667 (6)
C30.0813 (4)0.32783 (19)0.47794 (19)0.0731 (6)
C40.0296 (4)0.2166 (2)0.48890 (18)0.0690 (6)
C50.0909 (3)0.34257 (17)0.03668 (17)0.0650 (5)
C60.5319 (3)0.45402 (16)0.29056 (16)0.0602 (5)
C70.2898 (3)0.25718 (15)0.26796 (16)0.0536 (5)
C80.6370 (3)0.25617 (14)0.20801 (17)0.0513 (4)
C90.3026 (3)0.29165 (18)0.46441 (15)0.0593 (5)
C100.4223 (3)0.33354 (15)0.09157 (14)0.0524 (4)
C110.1057 (3)0.21635 (15)0.04690 (14)0.0498 (4)
C120.0014 (3)0.1451 (2)0.40009 (15)0.0539 (4)
C130.3287 (3)0.22376 (17)0.37377 (14)0.0505 (4)
C140.4515 (3)0.20672 (14)0.10728 (12)0.0414 (4)
C150.2219 (2)0.11014 (14)0.38727 (11)0.0371 (3)
C160.4161 (2)0.19968 (12)0.18824 (12)0.0376 (3)
C170.4089 (2)0.01254 (12)0.27488 (10)0.0326 (3)
C180.2898 (2)0.14614 (12)0.08435 (10)0.0351 (3)
C190.3093 (2)0.00917 (12)0.09085 (10)0.0324 (3)
H10.289 (2)0.0558 (14)0.4476 (12)0.039 (4)*
H20.365 (2)0.2150 (14)0.1216 (13)0.045 (4)*
H30.579 (3)0.1618 (15)0.1334 (12)0.047 (4)*
H40.010 (3)0.1756 (17)0.0266 (14)0.064 (5)*
H50.260 (3)0.2770 (17)0.3092 (15)0.063 (5)*
H60.153 (4)0.014 (2)0.128 (2)0.093 (8)*
H70.061 (3)0.1957 (18)0.3374 (16)0.064 (6)*
H80.341 (3)0.2358 (16)0.3374 (15)0.060 (5)*
H90.542 (3)0.5415 (19)0.2889 (15)0.074 (6)*
H100.118 (3)0.0381 (17)0.2633 (15)0.063 (5)*
H110.686 (3)0.2370 (19)0.2787 (17)0.078 (6)*
H120.212 (4)0.019 (2)0.2310 (18)0.084 (7)*
H130.538 (3)0.3773 (17)0.1074 (14)0.063 (5)*
H140.599 (3)0.4149 (19)0.1418 (19)0.084 (7)*
H150.373 (3)0.2369 (19)0.5286 (17)0.075 (6)*
H160.706 (3)0.2202 (18)0.1530 (16)0.072 (6)*
H170.473 (3)0.1978 (17)0.3659 (14)0.065 (6)*
H180.587 (3)0.4396 (17)0.3617 (16)0.067 (6)*
H190.015 (3)0.387 (2)0.4148 (18)0.086 (7)*
H200.041 (3)0.3951 (19)0.0133 (16)0.078 (6)*
H210.258 (3)0.4170 (19)0.2025 (18)0.079 (7)*
H220.150 (3)0.2190 (17)0.2552 (14)0.066 (6)*
H230.067 (3)0.369 (2)0.5385 (18)0.087 (7)*
H240.018 (4)0.160 (2)0.554 (2)0.094 (8)*
H250.379 (3)0.3669 (19)0.4574 (15)0.072 (6)*
H260.235 (3)0.431 (2)0.3277 (19)0.093 (7)*
H270.064 (3)0.0673 (19)0.4108 (15)0.071 (6)*
H280.174 (4)0.239 (2)0.4927 (19)0.099 (8)*
H290.800 (4)0.430 (2)0.2219 (18)0.091 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0575 (7)0.0422 (6)0.0340 (6)0.0022 (5)0.0074 (5)0.0113 (5)
O20.0385 (6)0.0526 (6)0.0395 (6)0.0011 (5)0.0045 (5)0.0143 (5)
O30.0408 (6)0.0825 (9)0.0413 (7)0.0172 (6)0.0019 (5)0.0078 (6)
N10.0736 (11)0.0339 (7)0.0786 (11)0.0003 (8)0.0038 (9)0.0040 (7)
N20.0354 (7)0.0420 (7)0.0322 (6)0.0058 (5)0.0029 (5)0.0134 (5)
N30.0406 (7)0.0281 (6)0.0287 (6)0.0027 (5)0.0015 (5)0.0066 (4)
C10.0734 (14)0.0375 (9)0.0786 (15)0.0047 (9)0.0201 (11)0.0097 (9)
C20.0732 (14)0.0413 (10)0.0859 (16)0.0170 (10)0.0152 (12)0.0004 (10)
C30.1100 (19)0.0512 (11)0.0591 (13)0.0050 (12)0.0115 (12)0.0254 (10)
C40.0696 (14)0.0793 (15)0.0660 (14)0.0037 (12)0.0264 (11)0.0335 (12)
C50.0594 (12)0.0423 (10)0.0837 (14)0.0081 (9)0.0013 (10)0.0042 (9)
C60.0873 (15)0.0319 (9)0.0589 (12)0.0045 (9)0.0076 (10)0.0019 (8)
C70.0506 (11)0.0397 (9)0.0706 (13)0.0082 (8)0.0159 (9)0.0022 (8)
C80.0533 (10)0.0342 (8)0.0661 (12)0.0008 (7)0.0210 (9)0.0059 (8)
C90.0894 (15)0.0476 (10)0.0478 (11)0.0204 (10)0.0105 (10)0.0192 (8)
C100.0619 (11)0.0392 (9)0.0578 (11)0.0116 (9)0.0042 (9)0.0102 (8)
C110.0461 (9)0.0397 (9)0.0580 (11)0.0006 (8)0.0036 (8)0.0007 (7)
C120.0492 (10)0.0645 (12)0.0537 (11)0.0056 (9)0.0152 (9)0.0253 (9)
C130.0656 (12)0.0488 (9)0.0435 (10)0.0182 (9)0.0106 (9)0.0172 (8)
C140.0468 (9)0.0357 (8)0.0411 (8)0.0023 (7)0.0018 (7)0.0082 (6)
C150.0449 (8)0.0391 (8)0.0289 (7)0.0050 (7)0.0041 (6)0.0108 (6)
C160.0530 (9)0.0272 (7)0.0323 (8)0.0048 (6)0.0011 (6)0.0064 (6)
C170.0387 (8)0.0289 (7)0.0302 (7)0.0056 (6)0.0026 (6)0.0049 (5)
C180.0427 (8)0.0320 (7)0.0291 (7)0.0006 (6)0.0047 (6)0.0039 (5)
C190.0321 (7)0.0336 (7)0.0309 (7)0.0013 (6)0.0026 (6)0.0067 (6)
Geometric parameters (Å, º) top
O1—C191.2253 (16)C5—H200.99 (2)
O2—C171.2239 (17)C6—H90.97 (2)
O3—H60.89 (3)C6—H181.03 (2)
O3—H120.89 (2)C7—C161.516 (2)
N1—C101.325 (2)C7—H81.030 (19)
N1—C51.335 (3)C7—H220.96 (2)
N2—C171.3222 (19)C8—C161.513 (2)
N2—C151.4628 (18)C8—H111.03 (2)
N2—H100.91 (2)C8—H160.95 (2)
N3—C191.3587 (18)C9—C131.518 (2)
N3—C171.4443 (17)C9—H151.01 (2)
N3—C161.4957 (17)C9—H251.03 (2)
C1—C61.511 (3)C10—C141.379 (2)
C1—C81.535 (2)C10—H130.988 (19)
C1—H141.03 (2)C11—C181.382 (2)
C1—H290.97 (2)C11—H40.98 (2)
C2—C61.508 (3)C12—C151.518 (2)
C2—C71.533 (2)C12—H70.96 (2)
C2—H211.02 (2)C12—H271.00 (2)
C2—H260.99 (2)C13—C151.522 (2)
C3—C91.509 (3)C13—H51.008 (19)
C3—C41.515 (3)C13—H170.98 (2)
C3—H191.02 (2)C14—C181.382 (2)
C3—H230.99 (2)C14—H30.943 (17)
C4—C121.523 (3)C15—H10.969 (16)
C4—H240.99 (3)C16—H20.970 (17)
C4—H280.97 (3)C18—C191.4988 (19)
C5—C111.378 (2)
H6—O3—H12107 (2)C1—C8—H16109.9 (12)
C10—N1—C5116.45 (15)H11—C8—H16114.0 (16)
C17—N2—C15124.07 (13)C3—C9—C13111.55 (18)
C17—N2—H10118.8 (12)C3—C9—H15110.0 (12)
C15—N2—H10117.0 (12)C13—C9—H15108.9 (12)
C19—N3—C17121.70 (11)C3—C9—H25111.3 (11)
C19—N3—C16119.75 (11)C13—C9—H25110.8 (11)
C17—N3—C16117.70 (11)H15—C9—H25104.0 (16)
C6—C1—C8111.14 (16)N1—C10—C14124.03 (17)
C6—C1—H14105.6 (12)N1—C10—H13116.8 (11)
C8—C1—H14109.7 (12)C14—C10—H13119.1 (11)
C6—C1—H29113.1 (14)C5—C11—C18118.67 (17)
C8—C1—H29108.9 (14)C5—C11—H4121.7 (11)
H14—C1—H29108.3 (19)C18—C11—H4119.6 (11)
C6—C2—C7111.16 (17)C15—C12—C4111.31 (16)
C6—C2—H21107.2 (12)C15—C12—H7106.9 (12)
C7—C2—H21110.3 (12)C4—C12—H7109.6 (12)
C6—C2—H26109.6 (13)C15—C12—H27107.6 (11)
C7—C2—H26107.3 (13)C4—C12—H27111.5 (11)
H21—C2—H26111.3 (18)H7—C12—H27109.9 (16)
C9—C3—C4111.04 (17)C9—C13—C15110.16 (14)
C9—C3—H19109.2 (13)C9—C13—H5109.9 (11)
C4—C3—H19107.8 (12)C15—C13—H5105.7 (10)
C9—C3—H23110.5 (13)C9—C13—H17111.8 (11)
C4—C3—H23109.8 (13)C15—C13—H17108.5 (11)
H19—C3—H23108.4 (18)H5—C13—H17110.5 (16)
C3—C4—C12111.67 (18)C10—C14—C18118.81 (16)
C3—C4—H24111.1 (14)C10—C14—H3120.8 (10)
C12—C4—H24108.5 (14)C18—C14—H3120.3 (10)
C3—C4—H28112.3 (14)N2—C15—C12108.20 (13)
C12—C4—H28108.1 (15)N2—C15—C13112.09 (12)
H24—C4—H28105 (2)C12—C15—C13110.68 (15)
N1—C5—C11123.98 (18)N2—C15—H1108.0 (9)
N1—C5—H20115.5 (11)C12—C15—H1110.7 (9)
C11—C5—H20120.5 (12)C13—C15—H1107.1 (9)
C2—C6—C1110.99 (17)N3—C16—C8112.88 (13)
C2—C6—H9109.3 (12)N3—C16—C7110.71 (13)
C1—C6—H9109.7 (12)C8—C16—C7111.38 (14)
C2—C6—H18108.5 (11)N3—C16—H2105.2 (9)
C1—C6—H18108.6 (11)C8—C16—H2108.1 (9)
H9—C6—H18109.8 (16)C7—C16—H2108.2 (9)
C16—C7—C2110.43 (16)O2—C17—N2126.20 (13)
C16—C7—H8107.0 (10)O2—C17—N3120.23 (13)
C2—C7—H8111.0 (10)N2—C17—N3113.55 (12)
C16—C7—H22110.3 (11)C11—C18—C14118.01 (14)
C2—C7—H22112.4 (11)C11—C18—C19118.81 (14)
H8—C7—H22105.5 (15)C14—C18—C19123.02 (13)
C16—C8—C1110.19 (16)O1—C19—N3122.14 (13)
C16—C8—H11105.7 (12)O1—C19—C18119.26 (12)
C1—C8—H11109.8 (12)N3—C19—C18118.59 (12)
C16—C8—H16107.1 (12)
C9—C3—C4—C1254.2 (3)C1—C8—C16—N3178.11 (14)
C10—N1—C5—C110.1 (3)C1—C8—C16—C756.6 (2)
C7—C2—C6—C156.2 (3)C2—C7—C16—N3177.01 (16)
C8—C1—C6—C256.5 (3)C2—C7—C16—C856.5 (2)
C6—C2—C7—C1656.0 (3)C15—N2—C17—O26.0 (2)
C6—C1—C8—C1656.4 (2)C15—N2—C17—N3175.33 (11)
C4—C3—C9—C1356.0 (2)C19—N3—C17—O2123.81 (15)
C5—N1—C10—C142.1 (3)C16—N3—C17—O266.79 (17)
N1—C5—C11—C181.7 (3)C19—N3—C17—N257.40 (17)
C3—C4—C12—C1554.4 (3)C16—N3—C17—N2111.99 (14)
C3—C9—C13—C1557.5 (2)C5—C11—C18—C141.6 (2)
N1—C10—C14—C182.2 (3)C5—C11—C18—C19177.11 (16)
C17—N2—C15—C12171.48 (14)C10—C14—C18—C110.2 (2)
C17—N2—C15—C1366.20 (19)C10—C14—C18—C19175.11 (14)
C4—C12—C15—N2179.01 (16)C17—N3—C19—O1168.24 (12)
C4—C12—C15—C1355.8 (2)C16—N3—C19—O10.9 (2)
C9—C13—C15—N2178.00 (15)C17—N3—C19—C1813.44 (19)
C9—C13—C15—C1257.1 (2)C16—N3—C19—C18177.38 (12)
C19—N3—C16—C8115.27 (16)C11—C18—C19—O152.43 (19)
C17—N3—C16—C875.12 (17)C14—C18—C19—O1122.84 (16)
C19—N3—C16—C7119.10 (16)C11—C18—C19—N3129.19 (15)
C17—N3—C16—C750.51 (18)C14—C18—C19—N355.53 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H6···O10.89 (3)1.95 (3)2.7959 (18)158 (2)
N2—H10···O3i0.91 (2)1.89 (2)2.7949 (19)170 (2)
O3—H12···O2ii0.89 (2)1.95 (3)2.8319 (19)171 (2)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H27N3O2·H2O
Mr347.45
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.6694 (13), 11.106 (2), 13.248 (3)
α, β, γ (°)98.55 (3), 94.11 (3), 97.49 (3)
V3)958.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.33 × 0.28
Data collection
DiffractometerBruker SMART CCD APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.968, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
9385, 4284, 2948
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.119, 1.05
No. of reflections4284
No. of parameters342
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.19

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
O1—C191.2253 (16)N3—C191.3587 (18)
O2—C171.2239 (17)N3—C171.4443 (17)
N2—C171.3222 (19)N3—C161.4957 (17)
N2—C151.4628 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H6···O10.89 (3)1.95 (3)2.7959 (18)158 (2)
N2—H10···O3i0.91 (2)1.89 (2)2.7949 (19)170 (2)
O3—H12···O2ii0.89 (2)1.95 (3)2.8319 (19)171 (2)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z.
 

Acknowledgements

The authors are grateful to the K. C. Wong Magna Fund of Ningbo University.

References

First citationBruker (2003). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIyer, K. S. N., Iyer, B. H. & Sirsi, M. (1971). J. Indian Chem. Soc. 48, 182–184.  CAS Google Scholar
First citationJew, S., Park, B., Lim, D., Kim, M. G., Chung, I. K., Kim, J. H., Hong, C. I., Kim, J.-K., Park, H.-J., Lee, J.-H. & Park, H. (2003). Bioorg. Med. Chem. Lett. 13, 609–612.  CrossRef PubMed CAS Google Scholar
First citationLi, G., Qian, X., Cui, J., Huang, Q., Zhang, R. & Guan, H. (2006). J. Agric. Food Chem. 54, 125–129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMu, C. & Qin, Z. (2003). Modern Agrochem. 2, 1–6.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWachter, G. A., Davis, M. C., Martin, A. R. & Franzblau, S. G. (1998). J. Med. Chem. 41, 2436–2438.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds