metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Potassium 2-iodo­benzene­sulfonate monohydrate

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, bDepartment of Chemistry, University of Science and Technology, Bannu, Pakistan, and cInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
*Correspondence e-mail: mnachemist@hotmail.com, helen.stoeckli-evans@unine.ch

(Received 16 June 2008; accepted 26 June 2008; online 5 July 2008)

In the crystal structure of the title compound, K+·C6H4IO3S·H2O, the potasium cation is 2.693 (3)–2.933 (3) Å from the sulfonate and water O atoms (including symmetry-related atoms) and forms a two-dimensional sheet-like structure in the bc plane, with the iodo­benzene rings protruding above and below. The water mol­ecule of crystallization is hydrogen-bonded to sulfonate O atoms within this two-dimensional arrangement. Symmetry-related iodo­benzene rings are arranged perpendicular to one another with the I atom ca 4.1 Å from the centroid of the neighbouring benzene ring. In the crystal structure, these two-dimensional sheet-like supramolecular structures are arranged parallel to one another, stacked along the a-axis direction, with the benzene rings inter­digitated.

Related literature

For related literature see: Chau & Kice (1977[Chau, M. M. & Kice, J. L. (1977). J. Org. Chem. 42, 3265-3270.]); Re et al. (1999[Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Free Radic. Biol. Med. 26, 1231-1237.]); Yoshiizumi et al.(2004[Yoshiizumi, K., Nakajima, F., Dobashi, R., Nishimura, N. & Ikeda, S. (2004). Bioorg. Med. Chem. Lett. 14, 2791-2795.]); Siddiqui et al. (2006[Siddiqui, W. A., Ahmad, S., Khan, I. U. & Malik, A. (2006). J. Chem. Soc. Pak. 28, 583-589.], 2007[Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767-773.]); Gowda et al. (2007[Gowda, B. T., Babitha, K. S., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, m2222.]).

[Scheme 1]

Experimental

Crystal data
  • K+·C6H4IO3S·H2O

  • Mr = 340.17

  • Monoclinic, P 21 /c

  • a = 13.8993 (4) Å

  • b = 9.0678 (3) Å

  • c = 8.1654 (2) Å

  • β = 92.260 (2)°

  • V = 1028.33 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.70 mm−1

  • T = 296 (2) K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker Kappa-APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.543, Tmax = 0.754

  • 12144 measured reflections

  • 2804 independent reflections

  • 1961 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.113

  • S = 1.00

  • 2804 reflections

  • 118 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 1.43 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O1i 0.86 2.03 2.855 (5) 160
O1W—H1WA⋯O3ii 0.86 2.41 3.266 (5) 179
Symmetry codes: (i) x, y, z+1; (ii) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Sulfonic acids belong to an important class of organic compounds particularly the aromatics which have wide applications in different areas (Re et al., 1999). Derivatives of the sodium salt of benzene sulfonic acid were reported as being a scavenger receptor inhibitor (Yoshiizumi et al., 2004). Herein, we report on the crystal structure of the title compound, the potassium salt of 2-iodobenzenesulfoninc acid, in continuation of our research work on the synthesis of biologically active benzothiazine derivatives (Siddiqui et al., 2006, 2007).

The molecular stucture of the title compound is shown in Fig. 1. The bond lengths and angles are similar to those reported for other benzene sulfonates, for example, potassium 4-chlorobenzenesulfonate (Gowda et al., 2007). The potasium cation is between 2.693 (3) to 2.933 (3) Å from the sulfonate and water O atoms (including symmetry related O atoms) and forms a two-dimensional sheet-like structure in the bc plane, with the iodobenzene rings protruding above and below (Fig. 2). Symmetry related iodobenzene rings are arranged perpendicular to one another, with the iodine atom ca 4.1 Å from the centroid of the neighbouring benzene ring (Fig. 3). The water molecule of crystallization is hydrogen bonded to sulfonate O-atoms (one normal interaction to atom O1, and one rather long interaction to atom O3), within this two-dimensional arrangement (Table 1).

In the crystal structure these 2-D sheet-like supermolecular structures are arranged parallel to one another up the a direction, with the benzene rings interdigited (Fig. 3).

Related literature top

For related literature see: Chau & Kice (1977); Re et al. (1999); Yoshiizumi et al.(2004); Siddiqui et al. (2006, 2007); Gowda et al. (2007).

Experimental top

The title compound was prepared following the method used by Chau & Kice (1977), and suitable crystals for X-ray analysis were obtained from the reaction mixture.

Refinement top

The water H-atoms were located from a difference Fourier map and initially refined with distance restraints [O—H = 0.88 (2) Å and H···H = 1.45 (2) Å, with Uiso(H) = 1.5Ueq(O)]. In the final rounds of refinement they were held fixed. The C-bond H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C). The highest residual density peak, of 1.43 e Å-2, is ca 0.84 Å from the Iodine atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom numbering scheme and displacement ellipsoids drawn at the 50% probability level [The K···O contacts are shown as a dashed lines].
[Figure 2] Fig. 2. A view down the a axis of the formation of the two-dimensional sheet-like structure formed via the K···O contacts and the O—H···O hydrogen bonds [The hydrogen bonds are shown as dotted lines and the K···O contacts as open bonds. The iodobenzene moieties have been removed for clarity].
[Figure 3] Fig. 3. A view along the b axis of the crystal packing of the title compound [The C-bound H-atoms have been removed for clarity].
Potassium 2-iodobenzenesulfonate monohydrate top
Crystal data top
K+·C6H4IO3S·H2OF(000) = 648
Mr = 340.17Dx = 2.197 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2742 reflections
a = 13.8993 (4) Åθ = 2.7–24.5°
b = 9.0678 (3) ŵ = 3.70 mm1
c = 8.1654 (2) ÅT = 296 K
β = 92.260 (2)°Prismatic, green
V = 1028.33 (5) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2804 independent reflections
Radiation source: fine-focus sealed tube1961 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 29.3°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.544, Tmax = 0.754k = 1212
12144 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0572P)2 + 1.0399P]
where P = (Fo2 + 2Fc2)/3
2804 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 1.43 e Å3
3 restraintsΔρmin = 0.68 e Å3
Crystal data top
K+·C6H4IO3S·H2OV = 1028.33 (5) Å3
Mr = 340.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.8993 (4) ŵ = 3.70 mm1
b = 9.0678 (3) ÅT = 296 K
c = 8.1654 (2) Å0.12 × 0.10 × 0.08 mm
β = 92.260 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2804 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1961 reflections with I > 2σ(I)
Tmin = 0.544, Tmax = 0.754Rint = 0.039
12144 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0403 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.00Δρmax = 1.43 e Å3
2804 reflectionsΔρmin = 0.68 e Å3
118 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.31059 (3)0.31442 (5)0.46378 (5)0.0594 (1)
K10.01753 (8)0.29219 (13)0.97719 (13)0.0477 (4)
S10.13443 (7)0.52155 (13)0.66539 (13)0.0349 (3)
O10.1225 (2)0.5527 (4)0.4923 (4)0.0486 (13)
O1W0.1268 (3)0.5113 (5)1.1461 (4)0.0617 (16)
O20.1159 (3)0.3703 (4)0.7066 (5)0.0579 (13)
O30.0822 (2)0.6239 (5)0.7625 (4)0.0553 (14)
C10.2582 (3)0.5494 (5)0.7203 (5)0.0340 (12)
C20.3324 (3)0.4709 (5)0.6507 (5)0.0363 (12)
C30.4274 (3)0.4961 (6)0.7031 (6)0.0485 (16)
C40.4485 (4)0.5972 (7)0.8240 (7)0.061 (2)
C50.3762 (5)0.6753 (7)0.8924 (8)0.066 (2)
C60.2817 (4)0.6523 (6)0.8416 (7)0.0516 (17)
H1WA0.072100.474801.170600.0930*
H1WB0.139800.517201.249400.0930*
H30.476800.444100.655900.0580*
H40.512100.612600.859600.0730*
H50.390900.744400.973700.0780*
H60.233100.706200.889000.0620*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0543 (2)0.0664 (3)0.0573 (2)0.0127 (2)0.0010 (2)0.0236 (2)
K10.0522 (6)0.0492 (7)0.0419 (6)0.0032 (5)0.0056 (5)0.0034 (5)
S10.0299 (5)0.0414 (6)0.0337 (5)0.0004 (4)0.0041 (4)0.0009 (4)
O10.0388 (17)0.074 (3)0.0328 (16)0.0053 (16)0.0004 (13)0.0044 (15)
O1W0.071 (3)0.071 (3)0.043 (2)0.003 (2)0.0001 (17)0.0019 (19)
O20.0394 (18)0.053 (2)0.081 (3)0.0131 (16)0.0005 (17)0.018 (2)
O30.0424 (19)0.075 (3)0.049 (2)0.0126 (18)0.0087 (15)0.0112 (18)
C10.033 (2)0.035 (2)0.034 (2)0.0023 (17)0.0020 (16)0.0002 (17)
C20.037 (2)0.037 (2)0.035 (2)0.0006 (18)0.0011 (17)0.0011 (18)
C30.035 (2)0.053 (3)0.058 (3)0.001 (2)0.007 (2)0.005 (2)
C40.041 (3)0.069 (4)0.072 (4)0.016 (3)0.014 (3)0.000 (3)
C50.063 (4)0.068 (4)0.065 (4)0.021 (3)0.010 (3)0.020 (3)
C60.049 (3)0.056 (3)0.050 (3)0.003 (2)0.004 (2)0.014 (2)
Geometric parameters (Å, º) top
I1—C22.097 (4)O1W—H1WB0.8600
K1—O1W2.827 (4)O1W—H1WA0.8600
K1—O22.737 (4)C1—C61.390 (7)
K1—S1i3.4125 (16)C1—C21.393 (6)
K1—O1i2.933 (3)C2—C31.391 (6)
K1—O3i2.805 (4)C3—C41.371 (8)
K1—O1Wii2.838 (4)C4—C51.367 (9)
K1—O3ii2.693 (3)C5—C61.378 (9)
K1—O2iii2.711 (4)C3—H30.9300
S1—O11.444 (3)C4—H40.9300
S1—O21.438 (4)C5—H50.9300
S1—O31.436 (4)C6—H60.9300
S1—C11.779 (4)
I1···O13.407 (3)O3···H62.4200
I1···O23.455 (4)O3···H1WAii2.4100
I1···K1iv4.1921 (12)C2···I1iii3.658 (4)
I1···C2iv3.658 (4)C2···H5viii3.0800
I1···H4v3.3500C3···H5viii3.0400
K1···I1iii4.1921 (12)H1WA···O1vii2.7800
O1···I13.407 (3)H1WB···O1vii2.0300
O1···O1Wvi2.855 (5)H4···I1ix3.3500
O1W···O1vii2.855 (5)H5···C2x3.0800
O2···I13.455 (4)H5···C3x3.0400
O1···H6viii2.8200H6···O32.4200
O1···H1WAvi2.7800H6···O1x2.8200
O1···H1WBvi2.0300
O1W—K1—O286.34 (11)O3—S1—C1105.9 (2)
S1i—K1—O1W170.16 (8)K1xi—S1—O353.42 (14)
O1i—K1—O1W145.53 (10)K1xi—S1—C1124.29 (16)
O1W—K1—O3i164.60 (12)K1xi—O1—S196.47 (16)
O1W—K1—O1Wii95.19 (13)K1—O1W—K1ii84.81 (11)
O1W—K1—O3ii72.52 (11)K1—O2—S1122.4 (2)
O1W—K1—O2iii78.36 (12)K1—O2—K1iv99.37 (13)
S1i—K1—O2103.47 (9)K1iv—O2—S1116.5 (2)
O1i—K1—O2127.91 (11)K1xi—O3—S1102.30 (17)
O2—K1—O3i80.00 (11)K1ii—O3—S1154.9 (3)
O1Wii—K1—O285.40 (12)K1xi—O3—K1ii98.13 (12)
O2—K1—O3ii148.56 (13)K1ii—O1W—H1WB115.00
O2—K1—O2iii116.37 (13)K1—O1W—H1WB128.00
S1i—K1—O1i24.87 (7)H1WA—O1W—H1WB87.00
S1i—K1—O3i24.28 (8)K1—O1W—H1WA52.00
S1i—K1—O1Wii84.90 (9)K1ii—O1W—H1WA73.00
S1i—K1—O3ii98.14 (9)S1—C1—C6118.2 (4)
S1i—K1—O2iii97.67 (9)C2—C1—C6118.5 (4)
O1i—K1—O3i49.09 (10)S1—C1—C2123.3 (3)
O1i—K1—O1Wii91.88 (11)I1—C2—C3116.3 (3)
O1i—K1—O3ii77.19 (11)C1—C2—C3120.0 (4)
O1i—K1—O2iii81.79 (11)I1—C2—C1123.7 (3)
O1Wii—K1—O3i76.77 (12)C2—C3—C4120.3 (4)
O3i—K1—O3ii116.67 (10)C3—C4—C5120.1 (5)
O2iii—K1—O3i114.11 (12)C4—C5—C6120.4 (6)
O1Wii—K1—O3ii73.97 (11)C1—C6—C5120.7 (5)
O1Wii—K1—O2iii156.45 (12)C2—C3—H3120.00
O2iii—K1—O3ii82.50 (12)C4—C3—H3120.00
O1—S1—O2113.6 (2)C3—C4—H4120.00
O1—S1—O3111.9 (2)C5—C4—H4120.00
O1—S1—C1106.95 (18)C4—C5—H5120.00
K1xi—S1—O158.66 (14)C6—C5—H5120.00
O2—S1—O3112.8 (2)C1—C6—H6120.00
O2—S1—C1104.9 (2)C5—C6—H6120.00
K1xi—S1—O2130.67 (17)
O2—K1—O1W—K1ii85.04 (11)O2—S1—O1—K1xi124.5 (2)
O1i—K1—O1W—K1ii100.99 (19)O3—S1—O1—K1xi4.7 (2)
O1Wii—K1—O1W—K1ii0.00 (10)C1—S1—O1—K1xi120.27 (17)
O3ii—K1—O1W—K1ii71.38 (11)O1—S1—O2—K1139.0 (2)
O2iii—K1—O1W—K1ii157.09 (12)O1—S1—O2—K1iv16.9 (3)
O1W—K1—O2—S142.7 (3)O3—S1—O2—K110.3 (3)
O1W—K1—O2—K1iv172.53 (14)O3—S1—O2—K1iv111.9 (2)
S1i—K1—O2—S1136.5 (2)C1—S1—O2—K1104.5 (2)
S1i—K1—O2—K1iv6.62 (12)C1—S1—O2—K1iv133.3 (2)
O1i—K1—O2—S1141.7 (2)K1xi—S1—O2—K170.9 (3)
O1i—K1—O2—K1iv11.79 (19)K1xi—S1—O2—K1iv51.3 (3)
O3i—K1—O2—S1130.2 (3)O1—S1—O3—K1xi5.0 (2)
O3i—K1—O2—K1iv0.34 (12)O1—S1—O3—K1ii148.8 (4)
O1Wii—K1—O2—S152.9 (3)O2—S1—O3—K1xi124.6 (2)
O1Wii—K1—O2—K1iv77.01 (13)O2—S1—O3—K1ii19.2 (5)
O3ii—K1—O2—S14.4 (4)C1—S1—O3—K1xi121.20 (17)
O3ii—K1—O2—K1iv125.51 (18)C1—S1—O3—K1ii95.0 (5)
O2iii—K1—O2—S1117.8 (3)K1xi—S1—O3—K1ii143.8 (5)
O2iii—K1—O2—K1iv112.39 (14)O1—S1—C1—C259.9 (4)
O2—K1—S1i—O1i170.27 (18)O1—S1—C1—C6121.7 (4)
O2—K1—S1i—O2i74.8 (2)O2—S1—C1—C261.1 (4)
O2—K1—S1i—O3i15.2 (2)O2—S1—C1—C6117.4 (4)
O2—K1—S1i—C1i99.86 (19)O3—S1—C1—C2179.4 (4)
O1W—K1—O1i—S1i175.60 (18)O3—S1—C1—C62.2 (4)
O2—K1—O1i—S1i12.0 (2)K1xi—S1—C1—C2123.1 (3)
O2—K1—O3i—S1i165.0 (2)K1xi—S1—C1—C658.5 (4)
O2—K1—O3i—K1iv0.34 (12)S1—C1—C2—I12.7 (6)
O1W—K1—O1Wii—K1ii0.00 (11)S1—C1—C2—C3178.3 (4)
O2—K1—O1Wii—K1ii85.89 (11)C6—C1—C2—I1178.9 (4)
O1W—K1—O3ii—S1ii63.9 (4)C6—C1—C2—C30.1 (7)
O1W—K1—O3ii—K1iii80.44 (12)S1—C1—C6—C5178.1 (4)
O2—K1—O3ii—S1ii13.9 (6)C2—C1—C6—C50.4 (8)
O2—K1—O3ii—K1iii130.4 (2)I1—C2—C3—C4179.6 (4)
O1W—K1—O2iii—K1iii73.96 (12)C1—C2—C3—C40.5 (7)
O1W—K1—O2iii—S1iii152.5 (3)C2—C3—C4—C50.8 (9)
O2—K1—O2iii—K1iii153.89 (12)C3—C4—C5—C60.6 (9)
O2—K1—O2iii—S1iii72.6 (3)C4—C5—C6—C10.1 (9)
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+1, z+2; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x+1, y1/2, z+3/2; (vi) x, y, z1; (vii) x, y, z+1; (viii) x, y+3/2, z1/2; (ix) x+1, y+1/2, z+3/2; (x) x, y+3/2, z+1/2; (xi) x, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O1vii0.862.032.855 (5)160
O1W—H1WA···O3ii0.862.413.266 (5)179
C6—H6···O30.932.422.834 (6)107
Symmetry codes: (ii) x, y+1, z+2; (vii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaK+·C6H4IO3S·H2O
Mr340.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.8993 (4), 9.0678 (3), 8.1654 (2)
β (°) 92.260 (2)
V3)1028.33 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.70
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.544, 0.754
No. of measured, independent and
observed [I > 2σ(I)] reflections
12144, 2804, 1961
Rint0.039
(sin θ/λ)max1)0.688
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.113, 1.00
No. of reflections2804
No. of parameters118
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.43, 0.68

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O1i0.862.032.855 (5)160
O1W—H1WA···O3ii0.862.413.266 (5)179
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+2.
 

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for funding under its Indigenous 5000 PhD Scholarship Scheme, Batch II (PIN 042-120607-Ps2-183).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChau, M. M. & Kice, J. L. (1977). J. Org. Chem. 42, 3265–3270.  CrossRef CAS Web of Science Google Scholar
First citationGowda, B. T., Babitha, K. S., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, m2222.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRe, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Free Radic. Biol. Med. 26, 1231–1237.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Khan, I. U. & Malik, A. (2006). J. Chem. Soc. Pak. 28, 583–589.  Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767–773.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoshiizumi, K., Nakajima, F., Dobashi, R., Nishimura, N. & Ikeda, S. (2004). Bioorg. Med. Chem. Lett. 14, 2791–2795.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds