organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-[(E)-(4-nitro­phen­yl)hydrazono]-3-oxobutyrate

aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, and bTechnology Center, Jiuquan Iron and Steel (Group) Co. Ltd., Jiayuguan 735100, People's Republic of China
*Correspondence e-mail: yhliuyzu@yahoo.com.cn

(Received 23 June 2008; accepted 22 July 2008; online 26 July 2008)

The mol­ecule of the title compound, C11H11N3O5, exists as the E isomer as it is stabilized by an intra­molecular hydrogen bond. Except for the methyl H atoms, all atoms lie in special positions on a mirror plane and form a large conjugated system; the methyl H atoms are disordered about the mirror plane. In the crystalline state, bifurcated intra- and inter­molecular N—H⋯O hydrogen bonds and four inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into large perfectly planar sheets. Along the c axis, the N—N bond center approaches the phenyl-ring centroids of its neighbouring mol­ecules above and below to give ππ overlap (at a distance of ca 3.57 Å), thus fusing the mol­ecules into a three-dimensional framework.

Related literature

For related literature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Lewis et al. (1999[Lewis, M., Barnes, C. L., Hathaway, B. A. & Glaser, R. (1999). Acta Cryst. C55, 975-978.]); Liu et al. (2007[Liu, Y.-H., Zhao, Y., Liu, X.-L., Tong, B.-W. & Ye, J. (2007). Acta Cryst. E63, o4072.], 2008[Liu, X.-L., Zhao, Y., Li, Z.-G. & Liu, Y.-H. (2008). Acta Cryst. E64, o152.]); Mague et al. (1997[Mague, J. T., Vang, S., Berge, D. G. & Wacholtz, W. F. (1997). Acta Cryst. C53, 973-979.]); Mahy et al. (1993[Mahy, J. P., Gaspard, S. & Mansuy, D. (1993). Biochemistry, 32, 4014-4021.]); Serbutoviez et al. (1995[Serbutoviez, C., Bosshard, C., Knöpfle, G., Wyss, P., Prêtre, P., Gunter, P., Schenk, K., Solari, E. & Chapuis, G. (1995). Chem. Mater. 7, 1198-1206.]); Thami et al. (1992[Thami, T., Bassoul, P., Petit, M., Simon, J., Fort, A., Barzoukas, M. & Villaeys, A. (1992). J. Am. Chem. Soc. 114, 915-921.]); Wang et al. (2005[Wang, J.-P., Chen, X.-X. & Zhang, Y.-Q. (2005). Huaxue Yanjiu, 16, 29-31.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11N3O5

  • Mr = 265.2

  • Orthorhombic, P b c m

  • a = 12.880 (3) Å

  • b = 14.299 (3) Å

  • c = 6.6328 (14) Å

  • V = 1221.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 (2) K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker, (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.977

  • 10245 measured reflections

  • 1546 independent reflections

  • 968 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.121

  • S = 1.03

  • 1546 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.86 1.98 2.618 (3) 130
C2—H2⋯O3i 0.93 2.55 3.279 (3) 135
C11—H11B⋯O1ii 0.96 2.57 3.128 (3) 117
N1—H1⋯O2iii 0.86 2.64 3.439 (3) 154
C5—H5⋯O2iii 0.93 2.62 3.467 (4) 153
C4iii—H4iii⋯O4 0.93 2.61 3.518 (3) 167
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker, (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker, (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Phenylhydrazone and its derivatives show remarkable stability and high tendency to form non-centrosymmetric crystal packing (Lewis et al., 1999; Mague et al., 1997) and exceptional electronic, bioactive and chemical properties useful for analytic purposes (Mahy et al., 1993), for biological chemistry (Thami et al., 1992) and also for optical materials (Serbutoviez et al., 1995). As a part of our ongoing research (Liu et al., 2007; Liu et al., 2008), the crystal structure of the title compound was solved.

The molecule of the title compound exists in the (E)-isomer configuration, not as the generally more stable (Z)-isomer (Schemes 1 and 2). The (E)-isomer exists here because of the N—H···O intra-molecular hydrogen bond stabilizes it by forming a pseudo-ring S(6) (Bernstein et al., 1995) motif (Fig. 1, Table 1 and 2). The N1—C6 bond distance at 1.397 (3) Å is longer than the expected CN double bond (1.32 Å) but is shorter than a C—N single bond (1.47 Å) because of the classic sp2-hybrid nitrogen atom, as also found in our earlier work (Liu et al., 2007, 2008). All these effects may help all non-hydrogen atoms to form a perfect plane which coincides with the mirror plane of the space group, less for the hydrogen atoms of the two methyl groups whose six H atoms are disordered over two orientations.

In the crystal packing the molecules are linked into larger perfectly planar sheets via by four C—H···O inter-molecular hydrogen bonds and one N—H···O intra-molecular hydrogen bond running parallel to the [001] plane (Fig. 2, Table 2). H1 atom of the N1 atom is a part of a bifurcated system and makes both intra- and intermolecular H-bridges, with angles around the H1 adding up to 360°. Finally, along the c axis the N1—N2 bond centers of molecules combine its up and down neighbours' phenyl rings into three dimensional framework (Fig. 2). Consecutive bond centers···phenyl ring centers are at a distance of ca. 3.57 Å and an incline at an angle of ca. 137° (Fig. 3).

Related literature top

For related literature, see: Bernstein et al. (1995); Lewis et al. (1999); Liu et al. (2007, 2008); Mague et al. (1997); Mahy et al. (1993); Serbutoviez et al. (1995); Thami et al. (1992); Wang et al. (2005).

Experimental top

The title compound was synthesized according to literature procedure (Wang et al. 2005; Liu et al. 2008). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in dichloromethane at room temperature over a period of 6 d.

Refinement top

After their location in a difference map, all H atoms were fixed geometrically at ideal positions and allowed to ride on the parent C atoms, with C—H distances of 0.93 (aromatic) or 0.97 Å (methyl), and with Uiso(H) values of 1.2Ueq (C, N).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Disorder of the two methyl groups are indicated and the N–H···O intra-molecular hydrogen bond shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing the formation of a hydrogen bonded plane parallel to [001], which is built by one N—H···O and four C—H···O inter-molecular hydrogen bonds (dashed lines). For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted.
[Figure 3] Fig. 3. Excerpt of the crystal structure of the title compound, showing that along the c axis the N1—N2 bond center of one molecule combines its up and down phenyl rings in the other two molecules into a three dimensional framework. H atoms not involved in hydrogen bonding have been omitted.
[Figure 4] Fig. 4. The E and Z isomers of the title compound.
(Z)-3-Ferrocenyl-2-(4-pyridyl)propenenitrile top
Crystal data top
C11H11N3O5Dx = 1.442 Mg m3
Mr = 265.2Melting point: 400 K
Orthorhombic, PbcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2c 2bCell parameters from 1996 reflections
a = 12.880 (3) Åθ = 2.8–25.4°
b = 14.299 (3) ŵ = 0.12 mm1
c = 6.6328 (14) ÅT = 296 K
V = 1221.6 (5) Å3Block, yellow
Z = 40.30 × 0.30 × 0.20 mm
F(000) = 552
Data collection top
Bruker SMART 1000 CCD
diffractometer
1546 independent reflections
Radiation source: fine-focus sealed tube968 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Thin–slice ω scansθmax = 27.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1616
Tmin = 0.966, Tmax = 0.977k = 1718
10245 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.2977P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1546 reflectionsΔρmax = 0.20 e Å3
118 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0036 (9)
Crystal data top
C11H11N3O5V = 1221.6 (5) Å3
Mr = 265.2Z = 4
Orthorhombic, PbcmMo Kα radiation
a = 12.880 (3) ŵ = 0.12 mm1
b = 14.299 (3) ÅT = 296 K
c = 6.6328 (14) Å0.30 × 0.30 × 0.20 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
1546 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
968 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.977Rint = 0.041
10245 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
1546 reflectionsΔρmin = 0.13 e Å3
118 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O40.68298 (15)0.51128 (12)0.25000.0726 (6)
O31.00596 (16)0.52888 (14)0.25000.0896 (8)
O10.68240 (17)0.10594 (13)0.25000.0887 (8)
O20.52310 (17)0.06963 (13)0.25000.1081 (10)
N30.61352 (18)0.04820 (14)0.25000.0582 (6)
N10.72021 (14)0.33126 (12)0.25000.0422 (5)
H10.67210.37300.25000.051*
N20.81817 (14)0.35582 (13)0.25000.0435 (5)
C100.7757 (2)0.52229 (16)0.25000.0489 (6)
C60.69506 (16)0.23623 (15)0.25000.0379 (5)
C80.9648 (2)0.45339 (18)0.25000.0597 (7)
C50.59053 (17)0.21060 (14)0.25000.0436 (6)
H50.53920.25630.25000.052*
C20.74469 (18)0.07505 (15)0.25000.0447 (6)
H20.79570.02900.25000.054*
C40.56352 (18)0.11723 (15)0.25000.0475 (6)
H40.49410.09930.25000.057*
O50.81917 (15)0.60575 (12)0.25000.0768 (7)
C30.64146 (18)0.05094 (15)0.25000.0423 (5)
C10.77167 (17)0.16807 (15)0.25000.0431 (6)
H1A0.84130.18530.25000.052*
C90.84922 (18)0.44293 (16)0.25000.0453 (6)
C71.0288 (2)0.3663 (2)0.25000.0906 (12)
H7A1.03180.34120.11580.136*0.50
H7B0.99800.32110.33870.136*0.50
H7C1.09780.38060.29540.136*0.50
C110.7477 (3)0.68338 (19)0.25000.0908 (11)
H11A0.71530.68820.12010.136*0.50
H11B0.78470.74010.27880.136*0.50
H11C0.69550.67350.35110.136*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0474 (12)0.0424 (10)0.1281 (19)0.0013 (8)0.0000.000
O30.0517 (12)0.0553 (13)0.162 (2)0.0184 (10)0.0000.000
O10.0783 (14)0.0355 (10)0.152 (2)0.0124 (10)0.0000.000
O20.0591 (13)0.0402 (11)0.225 (3)0.0140 (10)0.0000.000
N30.0587 (14)0.0335 (11)0.0824 (16)0.0003 (11)0.0000.000
N10.0398 (10)0.0318 (10)0.0551 (12)0.0030 (8)0.0000.000
N20.0430 (11)0.0392 (10)0.0482 (12)0.0067 (9)0.0000.000
C100.0524 (16)0.0355 (13)0.0588 (16)0.0074 (11)0.0000.000
C60.0426 (12)0.0333 (11)0.0377 (12)0.0018 (10)0.0000.000
C80.0493 (15)0.0478 (15)0.0821 (19)0.0102 (13)0.0000.000
C50.0417 (12)0.0317 (12)0.0575 (14)0.0039 (9)0.0000.000
C20.0434 (13)0.0358 (12)0.0547 (14)0.0065 (10)0.0000.000
C40.0392 (12)0.0369 (12)0.0664 (16)0.0023 (10)0.0000.000
O50.0622 (12)0.0348 (10)0.1333 (19)0.0092 (9)0.0000.000
C30.0456 (13)0.0283 (11)0.0530 (14)0.0000 (10)0.0000.000
C10.0381 (12)0.0404 (13)0.0507 (14)0.0020 (10)0.0000.000
C90.0460 (13)0.0360 (12)0.0537 (14)0.0081 (10)0.0000.000
C70.0511 (17)0.0568 (17)0.164 (4)0.0011 (14)0.0000.000
C110.088 (2)0.0336 (14)0.150 (3)0.0002 (16)0.0000.000
Geometric parameters (Å, º) top
O4—C101.204 (3)C5—C41.380 (3)
O3—C81.203 (3)C5—H50.9300
O1—N31.212 (3)C2—C31.374 (3)
O2—N31.204 (3)C2—C11.375 (3)
N3—C31.463 (3)C2—H20.9300
N1—N21.310 (2)C4—C31.381 (3)
N1—C61.397 (3)C4—H40.9300
N1—H10.8600O5—C111.442 (3)
N2—C91.308 (3)C1—H1A0.9300
C10—O51.318 (3)C7—H7A0.9600
C10—C91.478 (3)C7—H7B0.9600
C6—C11.387 (3)C7—H7C0.9600
C6—C51.395 (3)C11—H11A0.9600
C8—C71.494 (4)C11—H11B0.9600
C8—C91.496 (3)C11—H11C0.9600
O2—N3—O1122.3 (2)C3—C4—H4120.6
O2—N3—C3119.0 (2)C10—O5—C11115.2 (2)
O1—N3—C3118.7 (2)C2—C3—C4122.1 (2)
N2—N1—C6118.96 (18)C2—C3—N3118.8 (2)
N2—N1—H1120.5C4—C3—N3119.1 (2)
C6—N1—H1120.5C2—C1—C6120.0 (2)
C9—N2—N1123.4 (2)C2—C1—H1A120.0
O4—C10—O5122.7 (2)C6—C1—H1A120.0
O4—C10—C9122.3 (2)N2—C9—C10122.4 (2)
O5—C10—C9115.0 (2)N2—C9—C8113.5 (2)
C1—C6—C5120.1 (2)C10—C9—C8124.1 (2)
C1—C6—N1121.24 (19)C8—C7—H7A109.5
C5—C6—N1118.64 (19)C8—C7—H7B109.5
O3—C8—C7120.3 (2)H7A—C7—H7B109.5
O3—C8—C9121.9 (2)C8—C7—H7C109.5
C7—C8—C9117.8 (2)H7A—C7—H7C109.5
C4—C5—C6119.8 (2)H7B—C7—H7C109.5
C4—C5—H5120.1O5—C11—H11A109.5
C6—C5—H5120.1O5—C11—H11B109.5
C3—C2—C1119.2 (2)H11A—C11—H11B109.5
C3—C2—H2120.4O5—C11—H11C109.5
C1—C2—H2120.4H11A—C11—H11C109.5
C5—C4—C3118.8 (2)H11B—C11—H11C109.5
C5—C4—H4120.6
C6—N1—N2—C9180.0O1—N3—C3—C4180.0
N2—N1—C6—C10.0C3—C2—C1—C60.0
N2—N1—C6—C5180.0C5—C6—C1—C20.0
C1—C6—C5—C40.0N1—C6—C1—C2180.0
N1—C6—C5—C4180.0N1—N2—C9—C100.0
C6—C5—C4—C30.0N1—N2—C9—C8180.0
O4—C10—O5—C110.0O4—C10—C9—N20.0
C9—C10—O5—C11180.0O5—C10—C9—N2180.0
C1—C2—C3—C40.0O4—C10—C9—C8180.0
C1—C2—C3—N3180.0O5—C10—C9—C80.0
C5—C4—C3—C20.0O3—C8—C9—N2180.0
C5—C4—C3—N3180.0C7—C8—C9—N20.0
O2—N3—C3—C2180.0O3—C8—C9—C100.0
O1—N3—C3—C20.0C7—C8—C9—C10180.0
O2—N3—C3—C40.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.861.982.618 (3)130
C2—H2···O3i0.932.553.279 (3)135
C11—H11B···O1ii0.962.573.128 (3)117
N1—H1···O2iii0.862.643.439 (3)154
C5—H5···O2iii0.932.623.467 (4)153
C4iii—H4iii···O40.932.613.518 (3)167
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H11N3O5
Mr265.2
Crystal system, space groupOrthorhombic, Pbcm
Temperature (K)296
a, b, c (Å)12.880 (3), 14.299 (3), 6.6328 (14)
V3)1221.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.966, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
10245, 1546, 968
Rint0.041
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.121, 1.03
No. of reflections1546
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.13

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
O4—C101.204 (3)N2—C91.308 (3)
O3—C81.203 (3)C10—O51.318 (3)
O1—N31.212 (3)C10—C91.478 (3)
O2—N31.204 (3)C8—C71.494 (4)
N3—C31.463 (3)C8—C91.496 (3)
N1—N21.310 (2)O5—C111.442 (3)
N1—C61.397 (3)
O2—N3—O1122.3 (2)C5—C6—N1118.64 (19)
O2—N3—C3119.0 (2)O3—C8—C7120.3 (2)
O1—N3—C3118.7 (2)O3—C8—C9121.9 (2)
C9—N2—N1123.4 (2)C7—C8—C9117.8 (2)
O4—C10—O5122.7 (2)C10—O5—C11115.2 (2)
O4—C10—C9122.3 (2)N2—C9—C10122.4 (2)
O5—C10—C9115.0 (2)N2—C9—C8113.5 (2)
C1—C6—N1121.24 (19)C10—C9—C8124.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.861.982.618 (3)130
C2—H2···O3i0.932.553.279 (3)135
C11—H11B···O1ii0.962.573.128 (3)117
N1—H1···O2iii0.862.643.439 (3)154
C5—H5···O2iii0.932.623.467 (4)153
C4iii—H4iii···O40.932.613.518 (3)167
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of Yangzhou University (grant No. 2006XJJ03) for financial support of this work.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker, (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLewis, M., Barnes, C. L., Hathaway, B. A. & Glaser, R. (1999). Acta Cryst. C55, 975–978.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, X.-L., Zhao, Y., Li, Z.-G. & Liu, Y.-H. (2008). Acta Cryst. E64, o152.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y.-H., Zhao, Y., Liu, X.-L., Tong, B.-W. & Ye, J. (2007). Acta Cryst. E63, o4072.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMague, J. T., Vang, S., Berge, D. G. & Wacholtz, W. F. (1997). Acta Cryst. C53, 973–979.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMahy, J. P., Gaspard, S. & Mansuy, D. (1993). Biochemistry, 32, 4014–4021.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSerbutoviez, C., Bosshard, C., Knöpfle, G., Wyss, P., Prêtre, P., Gunter, P., Schenk, K., Solari, E. & Chapuis, G. (1995). Chem. Mater. 7, 1198–1206.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThami, T., Bassoul, P., Petit, M., Simon, J., Fort, A., Barzoukas, M. & Villaeys, A. (1992). J. Am. Chem. Soc. 114, 915–921.  CSD CrossRef CAS Web of Science Google Scholar
First citationWang, J.-P., Chen, X.-X. & Zhang, Y.-Q. (2005). Huaxue Yanjiu, 16, 29–31.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds