organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-(Butane-1,4-diyl)di-1H-imidazole–benzene-1,3,5-triol–water (1/1/1)

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 11 June 2008; accepted 17 July 2008; online 19 July 2008)

The asymmetric unit of the title compound, C10H14N4·C6H6O3·H2O, contains one mol­ecule of benzene-1,3,5-triol, two half-molecules of 1,1′-butane-1,4-diyldi-1H-imidazole (each molecule is centrosymmetric) and one solvent water mol­ecule. In the crystal structure, inter­molecular O—H⋯O and O—H⋯N hydrogen bonds link all mol­ecules into a three-dimensional supra­molecular network.

Related literature

For background and details of the synthesis of 1,1′-(1,4-butanedi­yl)diimidazole, see: Ma et al. (2003[Ma, J.-F., Yang, J., Zheng, G.-L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531-7534.]). For the related crystal structure of 1,1′-(1,4-butanedi­yl)diimidazole, see: Yu et al. (2008[Yu, Y.-H., Shi, A.-E., Su, Y., Hou, G.-F. & Gao, J.-S. (2008). Acta Cryst. E64, m628.]).

[Scheme 1]

Experimental

Crystal data
  • C10H14N4·C6H6O3·H2O

  • Mr = 334.38

  • Triclinic, [P \overline 1]

  • a = 7.964 (5) Å

  • b = 8.405 (7) Å

  • c = 14.800 (9) Å

  • α = 98.40 (3)°

  • β = 92.93 (2)°

  • γ = 117.47 (3)°

  • V = 861.5 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 (2) K

  • 0.31 × 0.31 × 0.19 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.971, Tmax = 0.982

  • 8527 measured reflections

  • 3911 independent reflections

  • 2370 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.195

  • S = 1.05

  • 3911 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H22⋯O2 0.85 1.94 2.789 (3) 176
O4—H21⋯O1i 0.85 2.02 2.751 (3) 143
O3—H2⋯O4ii 0.82 1.84 2.658 (3) 173
O2—H6⋯N2iii 0.82 1.84 2.636 (3) 164
O1—H4⋯N4iv 0.82 1.79 2.596 (3) 170
Symmetry codes: (i) x, y+1, z; (ii) x-1, y-1, z; (iii) -x+2, -y+1, -z+1; (iv) x, y-1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The 1,1'-(1,4-butanediyl)diimidazole can be used as a flexible ligand to construct coordination polymer materials (Ma et al., 2003; Yu et al., 2008). In this paper, we report the new title compound, (I), synthesized by the reaction of 1,1'-(1,4-butanediyl)diimidazole and m-trihydroxybenzene in an methanol solution.

The asymmetric unit of the title compound, C10H14N4.C6H6O3.H2O, contains one molecule of benzene-1,3,5-triol, two halfs of two independent centrosymmetric molecules of 1,1'-butane-1,4-diyldi-1H-imidazole and one crystalline water molecule (Figure 1). The two 1,1'-(1,4-butanediyl)diimidazole molecules both lie on inversion center.

There are five symmetry independent 'active' H atoms in the crystal structure; all of them participate in hydrogen bonds, which link the 1,1'-(1,4-butanediyl)diimidazole molecules, m-trihydroxybenzene molecule and water solvent molecule into an infinite three-dimensional network (Table 1, Figure 2).

Related literature top

For background and details of the synthesis of 1,1'-(1,4-butanediyl)diimidazole, see Ma et al. (2003). For the related crystal structure of 1,1'-(1,4-butanediyl)diimidazole, see Yu et al., (2008).

Experimental top

1,1'-(1,4-Butanediyl)diimidazole was prepared from imidazole and 1,4-dibromobutane in dimethylsulfoxide solution (Ma et al., 2003). m-trihydroxybenzene (0.126 g, 1 mmol) and 1,1'-(1,4-butanediyl)diimidazole (0.380 g, 2 mmol) were dissolved in hot methanol solution (15 ml) then a clear solution was obtained. The resulting solution was allowed to stand in a desiccator at room temperature for several days. Red crystals of (I) were obtained.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic); C—H = 0.97 Å (methylene) and with Uiso(H) = 1.2Ueq(C). The hydroxy H atoms were placed in calculated positions and treated as riding on their parent atoms, with O—H = 0.82 Å and with Uiso(H) = 1.5Ueq(O). Water H atoms were initially located in a difference Fourier map, but they were treated as riding on their parent atoms with O—H = 0.85 Å and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the crystal structure of (I), showing the atomic numbering and 30% probability displacement ellipsoids [symmetry code: (I) -x, -y, -z + 1; (II) -x, -y, -z]. Dashed line indicates the hydrogen-bonding interaction.
[Figure 2] Fig. 2. A partial packing view, showing the three-dimensional hydrogen-bonding network. Dashed lines indicate the hydrogen-bonding interactions. H atoms have been omitted for clarity.
1,1'-(Butane-1,4-diyl)di-1H-imidazole–benzene-1,3,5-triol–water (1/1/1) top
Crystal data top
C10H14N4·C6H6O3·H2OZ = 2
Mr = 334.38F(000) = 356
Triclinic, P1Dx = 1.289 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.964 (5) ÅCell parameters from 5362 reflections
b = 8.405 (7) Åθ = 3.1–27.6°
c = 14.800 (9) ŵ = 0.09 mm1
α = 98.40 (3)°T = 291 K
β = 92.93 (2)°Block, red
γ = 117.47 (3)°0.31 × 0.31 × 0.19 mm
V = 861.5 (10) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3911 independent reflections
Radiation source: fine-focus sealed tube2370 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.971, Tmax = 0.982k = 1010
8527 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1078P)2 + 0.0441P]
where P = (Fo2 + 2Fc2)/3
3911 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C10H14N4·C6H6O3·H2Oγ = 117.47 (3)°
Mr = 334.38V = 861.5 (10) Å3
Triclinic, P1Z = 2
a = 7.964 (5) ÅMo Kα radiation
b = 8.405 (7) ŵ = 0.09 mm1
c = 14.800 (9) ÅT = 291 K
α = 98.40 (3)°0.31 × 0.31 × 0.19 mm
β = 92.93 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3911 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2370 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.982Rint = 0.028
8527 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.195H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
3911 reflectionsΔρmin = 0.27 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6082 (3)0.4322 (3)0.27525 (15)0.0495 (5)
H10.59350.53590.29070.059*
C20.4512 (3)0.2634 (3)0.24735 (14)0.0463 (5)
C30.4707 (3)0.1074 (3)0.22121 (14)0.0440 (5)
H30.36390.00600.20090.053*
C40.6534 (3)0.1248 (3)0.22616 (14)0.0431 (5)
C50.8124 (3)0.2923 (3)0.25642 (14)0.0445 (5)
H50.93400.30240.26090.053*
C60.7880 (3)0.4458 (3)0.28012 (14)0.0461 (5)
C70.5669 (4)0.2164 (4)0.62310 (17)0.0599 (6)
H70.53880.15500.67220.072*
C80.7113 (4)0.4008 (4)0.5372 (2)0.0807 (9)
H80.80610.49520.51440.097*
C90.5333 (4)0.2938 (5)0.4948 (2)0.0814 (9)
H90.48270.29970.43810.098*
C100.2441 (4)0.0249 (4)0.5326 (2)0.0770 (8)
H100.21440.02700.58780.092*
H110.23600.06980.48370.092*
C110.0998 (3)0.0796 (4)0.50659 (19)0.0655 (7)
H120.12480.12630.44980.079*
H130.10940.17680.55430.079*
C120.2720 (3)0.5418 (3)0.10952 (16)0.0561 (6)
H160.25200.51720.16840.067*
C130.3851 (4)0.6740 (4)0.00145 (17)0.0606 (6)
H140.45950.76180.03440.073*
C140.2445 (4)0.5074 (4)0.03878 (17)0.0613 (6)
H150.20520.45820.10130.074*
C150.0159 (3)0.2379 (3)0.02391 (18)0.0572 (6)
H170.08060.21340.02650.069*
H180.04290.22770.08010.069*
C160.0830 (3)0.0959 (3)0.00706 (15)0.0502 (6)
H190.17310.11470.05930.060*
H200.14850.11020.04710.060*
N10.4412 (3)0.1758 (3)0.54990 (13)0.0574 (5)
N20.7338 (3)0.3514 (3)0.61894 (15)0.0661 (6)
N30.1703 (3)0.4238 (2)0.03210 (12)0.0497 (5)
N40.4031 (3)0.6959 (3)0.09239 (14)0.0573 (5)
O10.6793 (2)0.0244 (2)0.20167 (12)0.0587 (5)
H40.58470.10540.16770.088*
O20.9405 (2)0.6159 (2)0.30773 (14)0.0675 (5)
H61.03480.60680.32470.101*
O30.2755 (2)0.2535 (2)0.24808 (13)0.0643 (5)
H20.19390.14640.24260.096*
O40.9883 (2)0.9172 (3)0.23236 (15)0.0838 (6)
H210.89520.93280.24850.101*
H220.97160.82250.25300.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0515 (13)0.0396 (12)0.0590 (13)0.0239 (11)0.0033 (10)0.0078 (10)
C20.0425 (11)0.0467 (13)0.0518 (12)0.0225 (10)0.0043 (9)0.0113 (9)
C30.0374 (10)0.0401 (12)0.0503 (11)0.0165 (9)0.0001 (9)0.0055 (9)
C40.0432 (11)0.0403 (12)0.0464 (11)0.0210 (10)0.0037 (9)0.0067 (9)
C50.0380 (11)0.0443 (13)0.0502 (11)0.0192 (10)0.0014 (9)0.0090 (9)
C60.0416 (11)0.0352 (12)0.0532 (12)0.0118 (10)0.0007 (9)0.0086 (9)
C70.0559 (14)0.0609 (16)0.0589 (14)0.0246 (13)0.0035 (11)0.0120 (12)
C80.0605 (17)0.069 (2)0.117 (2)0.0253 (16)0.0187 (17)0.0479 (18)
C90.074 (2)0.096 (2)0.0739 (17)0.0352 (19)0.0028 (15)0.0350 (16)
C100.0540 (16)0.0608 (18)0.104 (2)0.0216 (14)0.0041 (15)0.0053 (15)
C110.0538 (14)0.0644 (17)0.0701 (15)0.0261 (13)0.0046 (12)0.0007 (13)
C120.0588 (14)0.0445 (14)0.0537 (13)0.0177 (12)0.0049 (11)0.0011 (10)
C130.0570 (14)0.0543 (16)0.0706 (16)0.0231 (13)0.0136 (12)0.0216 (12)
C140.0626 (15)0.0632 (17)0.0537 (13)0.0266 (14)0.0070 (12)0.0095 (12)
C150.0451 (12)0.0400 (13)0.0717 (15)0.0117 (10)0.0073 (11)0.0024 (11)
C160.0418 (12)0.0415 (13)0.0559 (12)0.0134 (10)0.0030 (10)0.0000 (10)
N10.0483 (11)0.0548 (13)0.0616 (12)0.0200 (10)0.0006 (9)0.0080 (10)
N20.0545 (13)0.0524 (13)0.0832 (15)0.0220 (11)0.0070 (11)0.0064 (11)
N30.0477 (10)0.0376 (11)0.0563 (11)0.0159 (9)0.0070 (9)0.0026 (8)
N40.0512 (11)0.0358 (11)0.0724 (13)0.0131 (9)0.0036 (10)0.0020 (9)
O10.0444 (9)0.0438 (9)0.0818 (12)0.0222 (8)0.0023 (8)0.0069 (8)
O20.0494 (10)0.0371 (9)0.1014 (13)0.0126 (8)0.0109 (9)0.0056 (9)
O30.0432 (9)0.0548 (11)0.0984 (13)0.0274 (8)0.0079 (9)0.0107 (10)
O40.0461 (10)0.0723 (14)0.1375 (18)0.0247 (10)0.0120 (11)0.0456 (12)
Geometric parameters (Å, º) top
C1—C21.373 (3)C11—C11i1.512 (5)
C1—C61.380 (3)C11—H120.9700
C1—H10.9300C11—H130.9700
C2—O31.364 (3)C12—N41.306 (3)
C2—C31.392 (3)C12—N31.336 (3)
C3—C41.390 (3)C12—H160.9300
C3—H30.9300C13—C141.335 (4)
C4—O11.364 (3)C13—N41.365 (3)
C4—C51.378 (3)C13—H140.9300
C5—C61.390 (3)C14—N31.356 (3)
C5—H50.9300C14—H150.9300
C6—O21.365 (3)C15—N31.458 (3)
C7—N21.302 (3)C15—C161.512 (3)
C7—N11.326 (3)C15—H170.9700
C7—H70.9300C15—H180.9700
C8—C91.334 (4)C16—C16ii1.516 (4)
C8—N21.364 (4)C16—H190.9700
C8—H80.9300C16—H200.9700
C9—N11.347 (4)O1—H40.8200
C9—H90.9300O2—H60.8200
C10—N11.471 (3)O3—H20.8200
C10—C111.475 (4)O4—H210.8501
C10—H100.9700O4—H220.8500
C10—H110.9700
C2—C1—C6119.1 (2)C10—C11—H13109.4
C2—C1—H1120.4C11i—C11—H13109.4
C6—C1—H1120.4H12—C11—H13108.0
O3—C2—C1117.6 (2)N4—C12—N3111.8 (2)
O3—C2—C3121.2 (2)N4—C12—H16124.1
C1—C2—C3121.2 (2)N3—C12—H16124.1
C4—C3—C2118.5 (2)C14—C13—N4109.7 (2)
C4—C3—H3120.7C14—C13—H14125.1
C2—C3—H3120.7N4—C13—H14125.1
O1—C4—C5118.36 (19)C13—C14—N3106.8 (2)
O1—C4—C3120.58 (19)C13—C14—H15126.6
C5—C4—C3121.07 (19)N3—C14—H15126.6
C4—C5—C6118.88 (19)N3—C15—C16112.84 (19)
C4—C5—H5120.6N3—C15—H17109.0
C6—C5—H5120.6C16—C15—H17109.0
O2—C6—C1117.4 (2)N3—C15—H18109.0
O2—C6—C5121.5 (2)C16—C15—H18109.0
C1—C6—C5121.1 (2)H17—C15—H18107.8
N2—C7—N1112.9 (2)C15—C16—C16ii111.3 (2)
N2—C7—H7123.6C15—C16—H19109.4
N1—C7—H7123.6C16ii—C16—H19109.4
C9—C8—N2110.0 (3)C15—C16—H20109.4
C9—C8—H8125.0C16ii—C16—H20109.4
N2—C8—H8125.0H19—C16—H20108.0
C8—C9—N1106.8 (3)C7—N1—C9106.2 (2)
C8—C9—H9126.6C7—N1—C10125.6 (2)
N1—C9—H9126.6C9—N1—C10128.2 (2)
N1—C10—C11113.9 (2)C7—N2—C8104.1 (2)
N1—C10—H10108.8C12—N3—C14106.6 (2)
C11—C10—H10108.8C12—N3—C15127.4 (2)
N1—C10—H11108.8C14—N3—C15126.0 (2)
C11—C10—H11108.8C12—N4—C13105.2 (2)
H10—C10—H11107.7C4—O1—H4109.5
C10—C11—C11i111.3 (3)C6—O2—H6109.5
C10—C11—H12109.4C2—O3—H2109.5
C11i—C11—H12109.4H21—O4—H22102.9
Symmetry codes: (i) x, y, z+1; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H22···O20.851.942.789 (3)176
O4—H21···O1iii0.852.022.751 (3)143
O3—H2···O4iv0.821.842.658 (3)173
O2—H6···N2v0.821.842.636 (3)164
O1—H4···N4vi0.821.792.596 (3)170
Symmetry codes: (iii) x, y+1, z; (iv) x1, y1, z; (v) x+2, y+1, z+1; (vi) x, y1, z.

Experimental details

Crystal data
Chemical formulaC10H14N4·C6H6O3·H2O
Mr334.38
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)7.964 (5), 8.405 (7), 14.800 (9)
α, β, γ (°)98.40 (3), 92.93 (2), 117.47 (3)
V3)861.5 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.31 × 0.31 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.971, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
8527, 3911, 2370
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.195, 1.05
No. of reflections3911
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.27

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H22···O20.851.942.789 (3)176.4
O4—H21···O1i0.852.022.751 (3)143.3
O3—H2···O4ii0.821.842.658 (3)172.6
O2—H6···N2iii0.821.842.636 (3)164.3
O1—H4···N4iv0.821.792.596 (3)169.5
Symmetry codes: (i) x, y+1, z; (ii) x1, y1, z; (iii) x+2, y+1, z+1; (iv) x, y1, z.
 

Acknowledgements

The authors thank Heilongjiang University for supporting this study.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMa, J.-F., Yang, J., Zheng, G.-L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531–7534.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, Y.-H., Shi, A.-E., Su, Y., Hou, G.-F. & Gao, J.-S. (2008). Acta Cryst. E64, m628.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds