organic compounds
Benzaldehyde thiosemicarbazone monohydrate
aCollege of Pharmacy, Guilin Medical University, Guilin 541004, People's Republic of China
*Correspondence e-mail: gushengjiu2008@163.com
In the title compound, C8H9N3S·H2O, intramolecular N—H⋯N hydrogen bonding contributes to the molecular conformation. Water molecules are involved in intermolecular N—H⋯O and O—H⋯S hydrogen bonds, which link the molecules into ribbons extended along the a axis. Weak intermolecular N—H⋯S hydrogen bonds link these ribbons into layers parallel to the ab plane with the phenyl rings pointing up and down.
Related literature
For related crystal structures, see Beraldo et al. (2004); Bondock et al. (2007); Jing et al. (2006).
Experimental
Crystal data
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808022769/cv2428sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808022769/cv2428Isup2.hkl
Benzaldehyde (0.3 mmol) and thiosemicarbazide (0.3 mmol) were mixed in 50 ml flash in the presence of aqueous medium. After stirring 30 min at 373 K, the mixture then cooling slowly to room temperature and affording the title compound, then recrystallized from ethanol, affording the title compound as a colorless crystalline solid. Elemental analysis: calculated for C8H11N3OS: C 48.71, H 5.62, N 21.30%; found: C 48.58, H 5.65, N 21.24%.
All H atoms were placed in geometrically idealized positions (N—H 0.86, O—H 0.85 and C—H 0.93 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C) (C,O,N).
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The content of asymmetric unit of the title compound showing the atomic numbering scheme and 30% probability displacement ellipsoids. |
C8H9N3S·H2O | Dx = 1.310 Mg m−3 |
Mr = 197.26 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 1572 reflections |
a = 6.1685 (10) Å | θ = 2.8–22.5° |
b = 7.6733 (12) Å | µ = 0.29 mm−1 |
c = 21.131 (2) Å | T = 298 K |
V = 1000.2 (2) Å3 | Block, orange |
Z = 4 | 0.49 × 0.30 × 0.28 mm |
F(000) = 416 |
Bruker SMART CCD area-detector diffractometer | 1764 independent reflections |
Radiation source: fine-focus sealed tube | 1438 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.065 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −7→7 |
Tmin = 0.871, Tmax = 0.924 | k = −9→6 |
4749 measured reflections | l = −25→24 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.105 | w = 1/[σ2(Fo2) + (0.0438P)2 + 0.0825P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
1764 reflections | Δρmax = 0.25 e Å−3 |
118 parameters | Δρmin = −0.17 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 689 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.05 (13) |
C8H9N3S·H2O | V = 1000.2 (2) Å3 |
Mr = 197.26 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 6.1685 (10) Å | µ = 0.29 mm−1 |
b = 7.6733 (12) Å | T = 298 K |
c = 21.131 (2) Å | 0.49 × 0.30 × 0.28 mm |
Bruker SMART CCD area-detector diffractometer | 1764 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1438 reflections with I > 2σ(I) |
Tmin = 0.871, Tmax = 0.924 | Rint = 0.065 |
4749 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.105 | Δρmax = 0.25 e Å−3 |
S = 1.08 | Δρmin = −0.17 e Å−3 |
1764 reflections | Absolute structure: Flack (1983), 689 Friedel pairs |
118 parameters | Absolute structure parameter: −0.05 (13) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.5077 (4) | 0.4006 (3) | 0.35842 (11) | 0.0430 (6) | |
N2 | 0.4610 (4) | 0.4442 (3) | 0.42017 (10) | 0.0402 (6) | |
H2 | 0.5473 | 0.5107 | 0.4412 | 0.048* | |
N3 | 0.1572 (5) | 0.2820 (4) | 0.41293 (12) | 0.0616 (9) | |
H3A | 0.1923 | 0.2576 | 0.3746 | 0.074* | |
H3B | 0.0400 | 0.2401 | 0.4289 | 0.074* | |
O1 | 0.2807 (3) | 0.8582 (3) | 0.51847 (12) | 0.0681 (7) | |
H1A | 0.2874 | 0.7483 | 0.5138 | 0.082* | |
H1B | 0.4026 | 0.9030 | 0.5091 | 0.082* | |
S1 | 0.22368 (12) | 0.43397 (10) | 0.52322 (3) | 0.0473 (3) | |
C1 | 0.2821 (5) | 0.3831 (3) | 0.44708 (14) | 0.0398 (7) | |
C2 | 0.6891 (5) | 0.4535 (4) | 0.33743 (13) | 0.0436 (7) | |
H2A | 0.7840 | 0.5112 | 0.3645 | 0.052* | |
C3 | 0.7511 (4) | 0.4251 (4) | 0.27170 (12) | 0.0412 (7) | |
C4 | 0.6111 (6) | 0.3517 (4) | 0.22810 (15) | 0.0534 (9) | |
H4 | 0.4745 | 0.3146 | 0.2409 | 0.064* | |
C5 | 0.6728 (7) | 0.3333 (5) | 0.16566 (16) | 0.0640 (11) | |
H5 | 0.5766 | 0.2870 | 0.1362 | 0.077* | |
C6 | 0.8751 (7) | 0.3834 (5) | 0.14733 (17) | 0.0636 (11) | |
H6 | 0.9180 | 0.3671 | 0.1056 | 0.076* | |
C7 | 1.0158 (6) | 0.4572 (5) | 0.18932 (16) | 0.0630 (10) | |
H7 | 1.1523 | 0.4940 | 0.1762 | 0.076* | |
C8 | 0.9527 (5) | 0.4761 (4) | 0.25132 (15) | 0.0536 (9) | |
H8 | 1.0490 | 0.5248 | 0.2802 | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0480 (15) | 0.0477 (15) | 0.0332 (13) | 0.0000 (13) | 0.0012 (12) | −0.0020 (11) |
N2 | 0.0443 (14) | 0.0422 (14) | 0.0342 (12) | −0.0074 (14) | −0.0004 (11) | −0.0034 (12) |
N3 | 0.061 (2) | 0.079 (2) | 0.0456 (17) | −0.0290 (17) | 0.0118 (14) | −0.0121 (15) |
O1 | 0.0524 (15) | 0.0609 (13) | 0.0910 (19) | 0.0017 (12) | 0.0204 (15) | −0.0130 (13) |
S1 | 0.0467 (5) | 0.0576 (5) | 0.0376 (4) | 0.0009 (4) | 0.0015 (4) | −0.0018 (4) |
C1 | 0.0402 (17) | 0.0381 (16) | 0.0411 (16) | 0.0008 (15) | −0.0035 (15) | 0.0036 (12) |
C2 | 0.0415 (17) | 0.0469 (17) | 0.0422 (16) | 0.0035 (17) | −0.0009 (14) | −0.0018 (14) |
C3 | 0.0421 (17) | 0.0433 (14) | 0.0383 (15) | 0.0013 (18) | 0.0036 (14) | 0.0015 (14) |
C4 | 0.056 (2) | 0.061 (2) | 0.0429 (19) | −0.0134 (17) | 0.0061 (17) | −0.0012 (17) |
C5 | 0.083 (3) | 0.065 (2) | 0.044 (2) | −0.013 (2) | 0.0033 (19) | −0.0067 (18) |
C6 | 0.086 (3) | 0.061 (2) | 0.043 (2) | 0.005 (2) | 0.017 (2) | 0.0038 (18) |
C7 | 0.053 (2) | 0.080 (3) | 0.057 (2) | −0.002 (2) | 0.0154 (18) | 0.010 (2) |
C8 | 0.050 (2) | 0.066 (2) | 0.0446 (17) | −0.0061 (17) | 0.0023 (16) | 0.0054 (16) |
N1—C2 | 1.270 (3) | C3—C8 | 1.373 (4) |
N1—N2 | 1.378 (3) | C3—C4 | 1.382 (4) |
N2—C1 | 1.327 (3) | C4—C5 | 1.380 (4) |
N2—H2 | 0.8600 | C4—H4 | 0.9300 |
N3—C1 | 1.310 (4) | C5—C6 | 1.362 (5) |
N3—H3A | 0.8600 | C5—H5 | 0.9300 |
N3—H3B | 0.8600 | C6—C7 | 1.364 (5) |
O1—H1A | 0.8499 | C6—H6 | 0.9300 |
O1—H1B | 0.8499 | C7—C8 | 1.375 (5) |
S1—C1 | 1.695 (3) | C7—H7 | 0.9300 |
C2—C3 | 1.457 (4) | C8—H8 | 0.9300 |
C2—H2A | 0.9300 | ||
C2—N1—N2 | 115.9 (3) | C4—C3—C2 | 122.2 (3) |
C1—N2—N1 | 119.6 (2) | C5—C4—C3 | 120.4 (3) |
C1—N2—H2 | 120.2 | C5—C4—H4 | 119.8 |
N1—N2—H2 | 120.2 | C3—C4—H4 | 119.8 |
C1—N3—H3A | 120.0 | C6—C5—C4 | 119.7 (4) |
C1—N3—H3B | 120.0 | C6—C5—H5 | 120.2 |
H3A—N3—H3B | 120.0 | C4—C5—H5 | 120.2 |
H1A—O1—H1B | 109.4 | C5—C6—C7 | 121.0 (3) |
N3—C1—N2 | 117.6 (3) | C5—C6—H6 | 119.5 |
N3—C1—S1 | 122.3 (2) | C7—C6—H6 | 119.5 |
N2—C1—S1 | 120.1 (2) | C6—C7—C8 | 118.9 (3) |
N1—C2—C3 | 121.1 (3) | C6—C7—H7 | 120.5 |
N1—C2—H2A | 119.5 | C8—C7—H7 | 120.5 |
C3—C2—H2A | 119.5 | C3—C8—C7 | 121.7 (3) |
C8—C3—C4 | 118.2 (3) | C3—C8—H8 | 119.2 |
C8—C3—C2 | 119.6 (3) | C7—C8—H8 | 119.2 |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···N1 | 0.86 | 2.26 | 2.613 (4) | 105 |
N2—H2···O1i | 0.86 | 1.95 | 2.805 (3) | 171 |
N3—H3B···S1ii | 0.86 | 2.57 | 3.423 (3) | 170 |
O1—H1A···S1 | 0.85 | 2.45 | 3.276 (2) | 164 |
O1—H1B···S1i | 0.85 | 2.44 | 3.284 (2) | 172 |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) x−1/2, −y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C8H9N3S·H2O |
Mr | 197.26 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 298 |
a, b, c (Å) | 6.1685 (10), 7.6733 (12), 21.131 (2) |
V (Å3) | 1000.2 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.29 |
Crystal size (mm) | 0.49 × 0.30 × 0.28 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.871, 0.924 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4749, 1764, 1438 |
Rint | 0.065 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.105, 1.08 |
No. of reflections | 1764 |
No. of parameters | 118 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.17 |
Absolute structure | Flack (1983), 689 Friedel pairs |
Absolute structure parameter | −0.05 (13) |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···N1 | 0.86 | 2.26 | 2.613 (4) | 104.7 |
N2—H2···O1i | 0.86 | 1.95 | 2.805 (3) | 170.7 |
N3—H3B···S1ii | 0.86 | 2.57 | 3.423 (3) | 170.4 |
O1—H1A···S1 | 0.85 | 2.45 | 3.276 (2) | 163.5 |
O1—H1B···S1i | 0.85 | 2.44 | 3.284 (2) | 172.0 |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) x−1/2, −y+1/2, −z+1. |
Acknowledgements
The authors thank the Nature Science Foundation of Guangxi (No. 0640190 and No. 0728229), the Tackle Key Problem Foundation of Guangxi (No. 0815005-1-17), the Nature Science Foundation of Guilin (No. 20070305 and No. 20080103-5) and the Education Foundation of Guangxi (No. 200710MS144) for financial support.
References
Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31–39. Web of Science CrossRef PubMed CAS Google Scholar
Bondock, S., Khalifa, W. & Fadda, A. A. (2007). Eur. J. Med. Chem. 42, 948–954. Web of Science CrossRef PubMed CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Jing, Z.-L., Zhang, Q.-Z., Yu, M. & Chen, X. (2006). Acta Cryst. E62, o4489–o4490. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Aryl-hydrazones, such as semicarbazones, thiosemicarbazones and guanyl hydrazones, exhibit strong biological activity. Therefor,they are important for drug design (Beraldo et al., 2004), organocatalysis and for the preparation of heterocyclic rings (Bondock et al., 2007). In this paper, we present the title compound, (I).
In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in the reported compounds (Jing et al., 2006). Intramolecular N—H···O hydrogen bond (Table 1) contributes to the molecular conformation. Crystalline water molecules are involved in the intermolecular N—H···O and O—H···S hydrogen bonds (Table 1), which link the molecules into ribbons extended along a axis. Weak intermolecular N—H···S hydrogen bonds (Table 1) link further these ribbons into layers parallel to ab plane with the up and down protruding phenyl rings.