organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzaldehyde thio­semicarbazone monohydrate

aCollege of Pharmacy, Guilin Medical University, Guilin 541004, People's Republic of China
*Correspondence e-mail: gushengjiu2008@163.com

(Received 2 July 2008; accepted 20 July 2008; online 26 July 2008)

In the title compound, C8H9N3S·H2O, intra­molecular N—H⋯N hydrogen bonding contributes to the mol­ecular conformation. Water mol­ecules are involved in inter­molecular N—H⋯O and O—H⋯S hydrogen bonds, which link the mol­ecules into ribbons extended along the a axis. Weak inter­molecular N—H⋯S hydrogen bonds link these ribbons into layers parallel to the ab plane with the phenyl rings pointing up and down.

Related literature

For related crystal structures, see Beraldo et al. (2004[Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31-39.]); Bondock et al. (2007[Bondock, S., Khalifa, W. & Fadda, A. A. (2007). Eur. J. Med. Chem. 42, 948-954.]); Jing et al. (2006[Jing, Z.-L., Zhang, Q.-Z., Yu, M. & Chen, X. (2006). Acta Cryst. E62, o4489-o4490.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9N3S·H2O

  • Mr = 197.26

  • Orthorhombic, P 21 21 21

  • a = 6.1685 (10) Å

  • b = 7.6733 (12) Å

  • c = 21.131 (2) Å

  • V = 1000.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 (2) K

  • 0.49 × 0.30 × 0.28 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.871, Tmax = 0.923

  • 4749 measured reflections

  • 1764 independent reflections

  • 1438 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.105

  • S = 1.07

  • 1764 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 689 Friedel pairs

  • Flack parameter: −0.05 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N1 0.86 2.26 2.613 (4) 105
N2—H2⋯O1i 0.86 1.95 2.805 (3) 171
N3—H3B⋯S1ii 0.86 2.57 3.423 (3) 170
O1—H1A⋯S1 0.85 2.45 3.276 (2) 164
O1—H1B⋯S1i 0.85 2.44 3.284 (2) 172
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Aryl-hydrazones, such as semicarbazones, thiosemicarbazones and guanyl hydrazones, exhibit strong biological activity. Therefor,they are important for drug design (Beraldo et al., 2004), organocatalysis and for the preparation of heterocyclic rings (Bondock et al., 2007). In this paper, we present the title compound, (I).

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in the reported compounds (Jing et al., 2006). Intramolecular N—H···O hydrogen bond (Table 1) contributes to the molecular conformation. Crystalline water molecules are involved in the intermolecular N—H···O and O—H···S hydrogen bonds (Table 1), which link the molecules into ribbons extended along a axis. Weak intermolecular N—H···S hydrogen bonds (Table 1) link further these ribbons into layers parallel to ab plane with the up and down protruding phenyl rings.

Related literature top

For related crystal structures, see Beraldo et al. (2004); Bondock et al. (2007); Jing et al. (2006).

Experimental top

Benzaldehyde (0.3 mmol) and thiosemicarbazide (0.3 mmol) were mixed in 50 ml flash in the presence of aqueous medium. After stirring 30 min at 373 K, the mixture then cooling slowly to room temperature and affording the title compound, then recrystallized from ethanol, affording the title compound as a colorless crystalline solid. Elemental analysis: calculated for C8H11N3OS: C 48.71, H 5.62, N 21.30%; found: C 48.58, H 5.65, N 21.24%.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H 0.86, O—H 0.85 and C—H 0.93 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C) (C,O,N).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of the title compound showing the atomic numbering scheme and 30% probability displacement ellipsoids.
Benzaldehyde thiosemicarbazone monohydrate top
Crystal data top
C8H9N3S·H2ODx = 1.310 Mg m3
Mr = 197.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1572 reflections
a = 6.1685 (10) Åθ = 2.8–22.5°
b = 7.6733 (12) ŵ = 0.29 mm1
c = 21.131 (2) ÅT = 298 K
V = 1000.2 (2) Å3Block, orange
Z = 40.49 × 0.30 × 0.28 mm
F(000) = 416
Data collection top
Bruker SMART CCD area-detector
diffractometer
1764 independent reflections
Radiation source: fine-focus sealed tube1438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.871, Tmax = 0.924k = 96
4749 measured reflectionsl = 2524
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.0825P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1764 reflectionsΔρmax = 0.25 e Å3
118 parametersΔρmin = 0.17 e Å3
0 restraintsAbsolute structure: Flack (1983), 689 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (13)
Crystal data top
C8H9N3S·H2OV = 1000.2 (2) Å3
Mr = 197.26Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.1685 (10) ŵ = 0.29 mm1
b = 7.6733 (12) ÅT = 298 K
c = 21.131 (2) Å0.49 × 0.30 × 0.28 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1764 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1438 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.924Rint = 0.065
4749 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.105Δρmax = 0.25 e Å3
S = 1.08Δρmin = 0.17 e Å3
1764 reflectionsAbsolute structure: Flack (1983), 689 Friedel pairs
118 parametersAbsolute structure parameter: 0.05 (13)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5077 (4)0.4006 (3)0.35842 (11)0.0430 (6)
N20.4610 (4)0.4442 (3)0.42017 (10)0.0402 (6)
H20.54730.51070.44120.048*
N30.1572 (5)0.2820 (4)0.41293 (12)0.0616 (9)
H3A0.19230.25760.37460.074*
H3B0.04000.24010.42890.074*
O10.2807 (3)0.8582 (3)0.51847 (12)0.0681 (7)
H1A0.28740.74830.51380.082*
H1B0.40260.90300.50910.082*
S10.22368 (12)0.43397 (10)0.52322 (3)0.0473 (3)
C10.2821 (5)0.3831 (3)0.44708 (14)0.0398 (7)
C20.6891 (5)0.4535 (4)0.33743 (13)0.0436 (7)
H2A0.78400.51120.36450.052*
C30.7511 (4)0.4251 (4)0.27170 (12)0.0412 (7)
C40.6111 (6)0.3517 (4)0.22810 (15)0.0534 (9)
H40.47450.31460.24090.064*
C50.6728 (7)0.3333 (5)0.16566 (16)0.0640 (11)
H50.57660.28700.13620.077*
C60.8751 (7)0.3834 (5)0.14733 (17)0.0636 (11)
H60.91800.36710.10560.076*
C71.0158 (6)0.4572 (5)0.18932 (16)0.0630 (10)
H71.15230.49400.17620.076*
C80.9527 (5)0.4761 (4)0.25132 (15)0.0536 (9)
H81.04900.52480.28020.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0480 (15)0.0477 (15)0.0332 (13)0.0000 (13)0.0012 (12)0.0020 (11)
N20.0443 (14)0.0422 (14)0.0342 (12)0.0074 (14)0.0004 (11)0.0034 (12)
N30.061 (2)0.079 (2)0.0456 (17)0.0290 (17)0.0118 (14)0.0121 (15)
O10.0524 (15)0.0609 (13)0.0910 (19)0.0017 (12)0.0204 (15)0.0130 (13)
S10.0467 (5)0.0576 (5)0.0376 (4)0.0009 (4)0.0015 (4)0.0018 (4)
C10.0402 (17)0.0381 (16)0.0411 (16)0.0008 (15)0.0035 (15)0.0036 (12)
C20.0415 (17)0.0469 (17)0.0422 (16)0.0035 (17)0.0009 (14)0.0018 (14)
C30.0421 (17)0.0433 (14)0.0383 (15)0.0013 (18)0.0036 (14)0.0015 (14)
C40.056 (2)0.061 (2)0.0429 (19)0.0134 (17)0.0061 (17)0.0012 (17)
C50.083 (3)0.065 (2)0.044 (2)0.013 (2)0.0033 (19)0.0067 (18)
C60.086 (3)0.061 (2)0.043 (2)0.005 (2)0.017 (2)0.0038 (18)
C70.053 (2)0.080 (3)0.057 (2)0.002 (2)0.0154 (18)0.010 (2)
C80.050 (2)0.066 (2)0.0446 (17)0.0061 (17)0.0023 (16)0.0054 (16)
Geometric parameters (Å, º) top
N1—C21.270 (3)C3—C81.373 (4)
N1—N21.378 (3)C3—C41.382 (4)
N2—C11.327 (3)C4—C51.380 (4)
N2—H20.8600C4—H40.9300
N3—C11.310 (4)C5—C61.362 (5)
N3—H3A0.8600C5—H50.9300
N3—H3B0.8600C6—C71.364 (5)
O1—H1A0.8499C6—H60.9300
O1—H1B0.8499C7—C81.375 (5)
S1—C11.695 (3)C7—H70.9300
C2—C31.457 (4)C8—H80.9300
C2—H2A0.9300
C2—N1—N2115.9 (3)C4—C3—C2122.2 (3)
C1—N2—N1119.6 (2)C5—C4—C3120.4 (3)
C1—N2—H2120.2C5—C4—H4119.8
N1—N2—H2120.2C3—C4—H4119.8
C1—N3—H3A120.0C6—C5—C4119.7 (4)
C1—N3—H3B120.0C6—C5—H5120.2
H3A—N3—H3B120.0C4—C5—H5120.2
H1A—O1—H1B109.4C5—C6—C7121.0 (3)
N3—C1—N2117.6 (3)C5—C6—H6119.5
N3—C1—S1122.3 (2)C7—C6—H6119.5
N2—C1—S1120.1 (2)C6—C7—C8118.9 (3)
N1—C2—C3121.1 (3)C6—C7—H7120.5
N1—C2—H2A119.5C8—C7—H7120.5
C3—C2—H2A119.5C3—C8—C7121.7 (3)
C8—C3—C4118.2 (3)C3—C8—H8119.2
C8—C3—C2119.6 (3)C7—C8—H8119.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N10.862.262.613 (4)105
N2—H2···O1i0.861.952.805 (3)171
N3—H3B···S1ii0.862.573.423 (3)170
O1—H1A···S10.852.453.276 (2)164
O1—H1B···S1i0.852.443.284 (2)172
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC8H9N3S·H2O
Mr197.26
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)6.1685 (10), 7.6733 (12), 21.131 (2)
V3)1000.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.49 × 0.30 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.871, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
4749, 1764, 1438
Rint0.065
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.105, 1.08
No. of reflections1764
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.17
Absolute structureFlack (1983), 689 Friedel pairs
Absolute structure parameter0.05 (13)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N10.862.262.613 (4)104.7
N2—H2···O1i0.861.952.805 (3)170.7
N3—H3B···S1ii0.862.573.423 (3)170.4
O1—H1A···S10.852.453.276 (2)163.5
O1—H1B···S1i0.852.443.284 (2)172.0
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank the Nature Science Foundation of Guangxi (No. 0640190 and No. 0728229), the Tackle Key Problem Foundation of Guangxi (No. 0815005-1-17), the Nature Science Foundation of Guilin (No. 20070305 and No. 20080103-5) and the Education Foundation of Guangxi (No. 200710MS144) for financial support.

References

First citationBeraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31–39.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBondock, S., Khalifa, W. & Fadda, A. A. (2007). Eur. J. Med. Chem. 42, 948–954.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJing, Z.-L., Zhang, Q.-Z., Yu, M. & Chen, X. (2006). Acta Cryst. E62, o4489–o4490.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds