organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{4-[5-(3-Pyrid­yl)-2H-tetra­zol-2-ylmeth­yl]phen­yl}benzo­nitrile

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 7 June 2008; accepted 12 June 2008; online 9 July 2008)

In the title compound, C20H14N6, there are two mol­ecules with similar conformations in the asymmetric unit. The pyridine and tetra­zole rings are nearly coplanar; they are twisted from each other by dihedral angles of only 8.7 (2) and 7.4 (2)°. The nearer benzene ring makes dihedral angles of 69.9 (2) and 88.5 (2)° with the tetra­zole ring in the two mol­ecules.

Related literature

For the use of tetra­zole derivatives in coordination chemistry, see: Arp et al. (2000[Arp, H. P. H., Decken, A., Passmore, J. & Wood, D. J. (2000). Inorg. Chem. 39, 1840-1848.]); Hu et al. (2007[Hu, B., Xu, X.-B., Li, Y.-X. & Ye, H.-Y. (2007). Acta Cryst. E63, m2698.]); Wang et al. (2005[Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.]); Xiong et al. (2002[Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800-3803.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14N6

  • Mr = 338.37

  • Triclinic, [P \overline 1]

  • a = 10.2096 (9) Å

  • b = 13.3071 (16) Å

  • c = 13.709 (2) Å

  • α = 77.24 (2)°

  • β = 69.08 (2)°

  • γ = 83.52 (3)°

  • V = 1695.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.4 × 0.35 × 0.35 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.958, Tmax = 0.969

  • 18012 measured reflections

  • 8011 independent reflections

  • 3834 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.239

  • S = 1.02

  • 8011 reflections

  • 469 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past five years, our work have been focused on the chemistry of tetrazole derivatives because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Wang, et al. 2005; Xiong, et al. 2002). We report here the crystal structure of the title compound, 4-(4-((5-(pyridin-3-yl)-2H-tetrazol-2-yl)methyl)phenyl)benzonitrile.

The title compound contains two molecules with similar conformation in the asymmetrric unit. Each molecule is built up by four different rings (Fig.1). The pyridine and tetrazole rings are nearly coplanar and are only twisted from each other by a dihedral angle of 8.7 (2)° [7.4 (2)° for the second molecule]. The benzene ring makes a dihedral angle of 69.9 (2)° [88.5 (2)°] with the tetrazole ring owing to the methylene bridge which forces the two rings to be twisted from each other. The benzonitrile and the phenyl ring attached to it are twisted and make a dihedral angle of 46.5 (1)° [48.1 (2)°]. The C1—N1 and C21—N7 bond length of 1.153Å and 1.124Å conforms to the value for a CN bond. The bond distances and bond angles of the tetrazole rings are in the usual ranges (Wang et al., 2005; Arp et al., 2000; Hu et al., 2007).

Related literature top

For tuse of tetrazole derivatives in coordination chemisty, see: Arp et al. (2000); Hu et al. (2007); Wang et al. (2005); Xiong et al. (2002).

Experimental top

4-(4-((5-(Pyridin-3-yl)-2H-tetrazol-2-yl)methyl) phenyl)benzonitrile (3 mmol) was dissolved in ethanol (20 ml) and evaporated in the air affording colorless block crystals of this compound suitable for X-ray analysis were obtained.

Refinement top

All H atoms were fixed geometrically and treated as riding with C–H = 0.93Å (methine), 0.97 Å(methylene), with Uiso(H) =1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. H atoms were omitted for clarity.
2-{4-[5-(3-pyridyl)-2H-tetrazol-2-ylmethyl]phenyl}benzonitrile top
Crystal data top
C20H14N6Z = 4
Mr = 338.37F(000) = 704
Triclinic, P1Dx = 1.325 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2096 (9) ÅCell parameters from 3792 reflections
b = 13.3071 (16) Åθ = 3.4–27.5°
c = 13.709 (2) ŵ = 0.08 mm1
α = 77.24 (2)°T = 293 K
β = 69.08 (2)°Block, colourless
γ = 83.52 (3)°0.4 × 0.35 × 0.35 mm
V = 1695.6 (4) Å3
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
8011 independent reflections
Radiation source: fine-focus sealed tube3834 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 13.6612 pixels mm-1θmax = 27.9°, θmin = 2.5°
ω scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1717
Tmin = 0.958, Tmax = 0.969l = 1718
18012 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.239H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1033P)2 + 0.086P]
where P = (Fo2 + 2Fc2)/3
8011 reflections(Δ/σ)max = 0.033
469 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C20H14N6γ = 83.52 (3)°
Mr = 338.37V = 1695.6 (4) Å3
Triclinic, P1Z = 4
a = 10.2096 (9) ÅMo Kα radiation
b = 13.3071 (16) ŵ = 0.08 mm1
c = 13.709 (2) ÅT = 293 K
α = 77.24 (2)°0.4 × 0.35 × 0.35 mm
β = 69.08 (2)°
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
8011 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3834 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.969Rint = 0.060
18012 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.239H-atom parameters constrained
S = 1.02Δρmax = 0.22 e Å3
8011 reflectionsΔρmin = 0.21 e Å3
469 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2892 (3)0.4722 (3)0.0251 (3)0.0493 (8)
C20.1973 (3)0.5487 (2)0.0616 (3)0.0468 (8)
C30.1710 (4)0.5407 (3)0.1523 (3)0.0607 (9)
H30.21880.49010.19060.073*
C40.0765 (4)0.6058 (3)0.1859 (3)0.0666 (10)
H40.06100.60060.24740.080*
C50.0034 (4)0.6799 (3)0.1279 (3)0.0651 (10)
H50.06440.72280.14870.078*
C60.0313 (4)0.6901 (3)0.0390 (3)0.0573 (9)
H60.01720.74100.00150.069*
C70.1297 (3)0.6266 (2)0.0042 (3)0.0452 (8)
C80.1637 (3)0.6414 (2)0.0893 (3)0.0454 (8)
C90.3033 (3)0.6420 (2)0.0825 (3)0.0457 (8)
H90.37480.63430.01930.055*
C100.3369 (3)0.6542 (2)0.1689 (3)0.0487 (8)
H100.43060.65380.16270.058*
C110.2337 (3)0.6667 (2)0.2634 (3)0.0461 (8)
C120.0941 (4)0.6678 (3)0.2696 (3)0.0547 (9)
H120.02270.67760.33210.066*
C130.0601 (3)0.6544 (3)0.1838 (3)0.0522 (8)
H130.03370.65420.19010.063*
C140.2711 (4)0.6775 (3)0.3571 (3)0.0555 (9)
H14A0.36180.70850.33110.067*
H14B0.20250.72390.39630.067*
C150.3401 (4)0.4363 (3)0.4950 (3)0.0514 (8)
C160.4180 (4)0.3383 (3)0.5131 (3)0.0513 (8)
C170.5540 (4)0.3219 (3)0.4464 (3)0.0570 (9)
H170.59500.37570.39100.068*
C180.5658 (5)0.1567 (3)0.5374 (4)0.0750 (12)
H180.61520.09400.54520.090*
C190.4333 (5)0.1661 (3)0.6073 (3)0.0731 (11)
H190.39410.11120.66190.088*
C200.3579 (4)0.2580 (3)0.5961 (3)0.0635 (10)
H200.26780.26620.64380.076*
C210.6865 (4)0.8056 (3)0.0890 (3)0.0586 (9)
C220.6915 (3)0.8914 (3)0.0020 (3)0.0507 (8)
C230.6572 (4)0.8719 (3)0.0823 (3)0.0639 (10)
H230.63670.80580.08310.077*
C240.6545 (4)0.9530 (3)0.1641 (3)0.0659 (10)
H240.63510.94120.22180.079*
C250.6802 (4)1.0505 (3)0.1611 (3)0.0653 (10)
H250.67481.10470.21560.078*
C260.7141 (4)1.0698 (3)0.0781 (3)0.0577 (9)
H260.73221.13660.07780.069*
C270.7215 (3)0.9901 (3)0.0050 (3)0.0465 (8)
C280.7665 (3)1.0123 (2)0.0908 (2)0.0457 (8)
C290.7080 (3)1.0970 (3)0.1394 (3)0.0510 (8)
H290.63911.13930.11950.061*
C300.7528 (3)1.1180 (2)0.2172 (3)0.0477 (8)
H300.71151.17320.25030.057*
C310.8579 (3)1.0579 (2)0.2462 (3)0.0478 (8)
C320.9173 (4)0.9740 (3)0.1969 (3)0.0523 (8)
H320.98820.93300.21530.063*
C330.8711 (4)0.9519 (3)0.1210 (3)0.0534 (9)
H330.91070.89540.08950.064*
C340.9099 (4)1.0827 (2)0.3284 (3)0.0540 (9)
H34A1.00231.11120.29350.065*
H34B0.84691.13370.36430.065*
C350.8588 (4)0.8580 (2)0.5220 (3)0.0466 (8)
C360.7784 (4)0.7789 (2)0.6086 (2)0.0457 (8)
C370.8411 (4)0.6860 (3)0.6409 (3)0.0571 (9)
H370.93640.67260.60830.068*
C380.7600 (4)0.6138 (3)0.7220 (3)0.0641 (10)
H380.80000.55120.74590.077*
C390.6189 (4)0.6359 (3)0.7673 (3)0.0646 (10)
H390.56460.58570.82040.078*
C400.6352 (4)0.7937 (3)0.6600 (3)0.0538 (9)
H400.59270.85550.63730.065*
N10.3591 (3)0.4065 (3)0.0031 (3)0.0677 (9)
N20.3825 (3)0.5112 (2)0.4104 (2)0.0522 (7)
N30.2766 (3)0.5798 (2)0.4296 (2)0.0531 (7)
N40.1736 (3)0.5504 (3)0.5198 (3)0.0775 (10)
N50.2121 (3)0.4598 (3)0.5637 (3)0.0717 (9)
N60.6296 (4)0.2346 (3)0.4563 (3)0.0729 (9)
N70.6834 (4)0.7392 (3)0.1563 (3)0.0806 (10)
N80.8039 (3)0.9433 (2)0.4788 (2)0.0511 (7)
N90.9167 (3)0.9889 (2)0.4062 (2)0.0499 (7)
N101.0358 (3)0.9351 (2)0.4026 (2)0.0596 (8)
N111.0016 (3)0.8513 (2)0.4766 (2)0.0554 (7)
N120.5550 (3)0.7260 (2)0.7389 (2)0.0621 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0432 (18)0.058 (2)0.052 (2)0.0010 (16)0.0159 (17)0.0213 (17)
C20.0494 (19)0.0420 (17)0.049 (2)0.0119 (15)0.0147 (16)0.0065 (14)
C30.060 (2)0.072 (2)0.054 (2)0.0023 (19)0.0214 (19)0.0159 (18)
C40.075 (3)0.071 (3)0.062 (2)0.016 (2)0.034 (2)0.004 (2)
C50.063 (2)0.063 (2)0.073 (3)0.014 (2)0.037 (2)0.011 (2)
C60.057 (2)0.048 (2)0.069 (2)0.0036 (17)0.026 (2)0.0077 (17)
C70.0377 (17)0.0425 (17)0.054 (2)0.0041 (14)0.0156 (16)0.0054 (15)
C80.0473 (18)0.0410 (17)0.050 (2)0.0017 (14)0.0193 (16)0.0112 (14)
C90.0398 (17)0.0434 (18)0.051 (2)0.0025 (14)0.0103 (15)0.0126 (15)
C100.0397 (17)0.0470 (18)0.059 (2)0.0007 (14)0.0155 (17)0.0130 (16)
C110.0501 (19)0.0379 (17)0.051 (2)0.0005 (15)0.0190 (17)0.0081 (14)
C120.048 (2)0.061 (2)0.052 (2)0.0051 (17)0.0118 (17)0.0169 (17)
C130.0389 (18)0.058 (2)0.062 (2)0.0042 (15)0.0169 (17)0.0194 (17)
C140.065 (2)0.0469 (19)0.058 (2)0.0020 (17)0.0252 (19)0.0119 (16)
C150.052 (2)0.059 (2)0.046 (2)0.0031 (17)0.0192 (17)0.0123 (16)
C160.054 (2)0.058 (2)0.049 (2)0.0033 (17)0.0238 (18)0.0173 (16)
C170.056 (2)0.056 (2)0.064 (2)0.0023 (18)0.023 (2)0.0172 (18)
C180.086 (3)0.061 (3)0.082 (3)0.010 (2)0.034 (3)0.019 (2)
C190.089 (3)0.057 (2)0.070 (3)0.001 (2)0.029 (3)0.005 (2)
C200.067 (2)0.060 (2)0.059 (2)0.0051 (19)0.016 (2)0.0085 (18)
C210.068 (2)0.049 (2)0.064 (2)0.0112 (19)0.025 (2)0.0147 (19)
C220.0447 (19)0.056 (2)0.052 (2)0.0004 (16)0.0148 (16)0.0159 (16)
C230.067 (2)0.065 (2)0.069 (3)0.009 (2)0.025 (2)0.027 (2)
C240.070 (3)0.078 (3)0.061 (2)0.002 (2)0.031 (2)0.023 (2)
C250.075 (3)0.068 (3)0.059 (2)0.002 (2)0.032 (2)0.0097 (19)
C260.064 (2)0.053 (2)0.060 (2)0.0039 (18)0.027 (2)0.0118 (17)
C270.0409 (17)0.054 (2)0.048 (2)0.0014 (15)0.0146 (16)0.0164 (15)
C280.0450 (18)0.0449 (18)0.0462 (19)0.0030 (15)0.0126 (16)0.0112 (14)
C290.0481 (19)0.052 (2)0.055 (2)0.0070 (16)0.0214 (17)0.0124 (16)
C300.055 (2)0.0371 (17)0.051 (2)0.0034 (15)0.0159 (17)0.0136 (14)
C310.0505 (19)0.0456 (18)0.0461 (19)0.0065 (15)0.0158 (16)0.0051 (15)
C320.051 (2)0.0496 (19)0.061 (2)0.0011 (16)0.0245 (18)0.0132 (16)
C330.053 (2)0.050 (2)0.062 (2)0.0094 (16)0.0221 (18)0.0230 (17)
C340.068 (2)0.0457 (19)0.052 (2)0.0100 (17)0.0259 (19)0.0027 (15)
C350.054 (2)0.0444 (18)0.050 (2)0.0071 (16)0.0264 (17)0.0157 (15)
C360.057 (2)0.0447 (18)0.0433 (19)0.0008 (15)0.0248 (17)0.0133 (14)
C370.059 (2)0.053 (2)0.062 (2)0.0093 (18)0.0262 (19)0.0112 (18)
C380.079 (3)0.048 (2)0.070 (3)0.007 (2)0.037 (2)0.0068 (18)
C390.075 (3)0.062 (2)0.058 (2)0.006 (2)0.027 (2)0.0074 (18)
C400.062 (2)0.050 (2)0.053 (2)0.0082 (17)0.0256 (19)0.0136 (16)
N10.061 (2)0.078 (2)0.074 (2)0.0183 (17)0.0294 (18)0.0337 (18)
N20.0522 (17)0.0555 (17)0.0503 (18)0.0062 (14)0.0181 (14)0.0168 (14)
N30.0519 (17)0.0600 (18)0.0489 (18)0.0058 (15)0.0190 (15)0.0148 (14)
N40.061 (2)0.083 (2)0.067 (2)0.0175 (18)0.0082 (19)0.0046 (18)
N50.057 (2)0.072 (2)0.066 (2)0.0097 (17)0.0089 (17)0.0003 (17)
N60.074 (2)0.073 (2)0.075 (2)0.0214 (19)0.0280 (19)0.0305 (19)
N70.112 (3)0.062 (2)0.076 (2)0.022 (2)0.039 (2)0.0089 (18)
N80.0549 (17)0.0446 (15)0.0557 (18)0.0006 (13)0.0225 (15)0.0089 (13)
N90.0531 (17)0.0520 (16)0.0482 (17)0.0003 (14)0.0219 (15)0.0105 (13)
N100.0548 (18)0.072 (2)0.0533 (18)0.0049 (16)0.0218 (15)0.0122 (16)
N110.0589 (19)0.0517 (17)0.0562 (19)0.0051 (14)0.0252 (16)0.0062 (14)
N120.0614 (19)0.062 (2)0.058 (2)0.0027 (16)0.0157 (17)0.0101 (16)
Geometric parameters (Å, º) top
C1—N11.153 (4)C22—C231.404 (5)
C1—C21.437 (5)C23—C241.379 (5)
C2—C31.391 (4)C23—H230.9300
C2—C71.407 (4)C24—C251.364 (5)
C3—C41.359 (5)C24—H240.9300
C3—H30.9300C25—C261.382 (5)
C4—C51.385 (5)C25—H250.9300
C4—H40.9300C26—C271.392 (4)
C5—C61.384 (5)C26—H260.9300
C5—H50.9300C27—C281.501 (4)
C6—C71.387 (4)C28—C331.391 (4)
C6—H60.9300C28—C291.402 (4)
C7—C81.499 (4)C29—C301.391 (4)
C8—C131.381 (4)C29—H290.9300
C8—C91.395 (4)C30—C311.385 (4)
C9—C101.391 (4)C30—H300.9300
C9—H90.9300C31—C321.400 (4)
C10—C111.377 (4)C31—C341.513 (4)
C10—H100.9300C32—C331.382 (4)
C11—C121.395 (4)C32—H320.9300
C11—C141.505 (4)C33—H330.9300
C12—C131.391 (4)C34—N91.465 (4)
C12—H120.9300C34—H34A0.9700
C13—H130.9300C34—H34B0.9700
C14—N31.460 (4)C35—N81.324 (4)
C14—H14A0.9700C35—N111.366 (4)
C14—H14B0.9700C35—C361.462 (5)
C15—N21.324 (4)C36—C371.385 (4)
C15—N51.361 (4)C36—C401.390 (5)
C15—C161.469 (5)C37—C381.376 (5)
C16—C201.387 (5)C37—H370.9300
C16—C171.387 (5)C38—C391.376 (5)
C17—N61.329 (4)C38—H380.9300
C17—H170.9300C39—N121.346 (4)
C18—C191.361 (6)C39—H390.9300
C18—N61.364 (5)C40—N121.326 (4)
C18—H180.9300C40—H400.9300
C19—C201.379 (5)N2—N31.323 (3)
C19—H190.9300N3—N41.319 (4)
C20—H200.9300N4—N51.308 (4)
C21—N71.122 (4)N8—N91.326 (4)
C21—C221.448 (5)N9—N101.330 (4)
C22—C271.394 (4)N10—N111.316 (4)
N1—C1—C2176.0 (3)C25—C24—C23120.6 (4)
C3—C2—C7120.7 (3)C25—C24—H24119.7
C3—C2—C1118.2 (3)C23—C24—H24119.7
C7—C2—C1121.0 (3)C24—C25—C26120.9 (4)
C4—C3—C2120.9 (4)C24—C25—H25119.5
C4—C3—H3119.6C26—C25—H25119.5
C2—C3—H3119.6C25—C26—C27120.6 (3)
C3—C4—C5119.6 (4)C25—C26—H26119.7
C3—C4—H4120.2C27—C26—H26119.7
C5—C4—H4120.2C26—C27—C22117.7 (3)
C6—C5—C4119.9 (4)C26—C27—C28119.4 (3)
C6—C5—H5120.0C22—C27—C28122.9 (3)
C4—C5—H5120.0C33—C28—C29118.4 (3)
C5—C6—C7121.9 (4)C33—C28—C27120.8 (3)
C5—C6—H6119.0C29—C28—C27120.7 (3)
C7—C6—H6119.0C30—C29—C28120.1 (3)
C6—C7—C2116.9 (3)C30—C29—H29119.9
C6—C7—C8121.5 (3)C28—C29—H29119.9
C2—C7—C8121.7 (3)C31—C30—C29121.1 (3)
C13—C8—C9118.1 (3)C31—C30—H30119.5
C13—C8—C7121.8 (3)C29—C30—H30119.5
C9—C8—C7120.1 (3)C30—C31—C32118.7 (3)
C10—C9—C8120.9 (3)C30—C31—C34121.1 (3)
C10—C9—H9119.6C32—C31—C34120.1 (3)
C8—C9—H9119.6C33—C32—C31120.3 (3)
C11—C10—C9121.1 (3)C33—C32—H32119.9
C11—C10—H10119.4C31—C32—H32119.9
C9—C10—H10119.4C32—C33—C28121.3 (3)
C10—C11—C12118.0 (3)C32—C33—H33119.3
C10—C11—C14120.7 (3)C28—C33—H33119.3
C12—C11—C14121.3 (3)N9—C34—C31109.9 (3)
C13—C12—C11121.1 (3)N9—C34—H34A109.7
C13—C12—H12119.5C31—C34—H34A109.7
C11—C12—H12119.5N9—C34—H34B109.7
C8—C13—C12120.8 (3)C31—C34—H34B109.7
C8—C13—H13119.6H34A—C34—H34B108.2
C12—C13—H13119.6N8—C35—N11112.3 (3)
N3—C14—C11113.6 (3)N8—C35—C36124.8 (3)
N3—C14—H14A108.8N11—C35—C36122.9 (3)
C11—C14—H14A108.8C37—C36—C40117.6 (3)
N3—C14—H14B108.8C37—C36—C35121.4 (3)
C11—C14—H14B108.8C40—C36—C35121.0 (3)
H14A—C14—H14B107.7C38—C37—C36119.0 (3)
N2—C15—N5111.6 (3)C38—C37—H37120.5
N2—C15—C16125.2 (3)C36—C37—H37120.5
N5—C15—C16123.2 (3)C39—C38—C37118.8 (3)
C20—C16—C17117.4 (3)C39—C38—H38120.6
C20—C16—C15121.5 (3)C37—C38—H38120.6
C17—C16—C15121.1 (3)N12—C39—C38123.7 (4)
N6—C17—C16124.4 (4)N12—C39—H39118.1
N6—C17—H17117.8C38—C39—H39118.1
C16—C17—H17117.8N12—C40—C36124.7 (3)
C19—C18—N6123.2 (4)N12—C40—H40117.7
C19—C18—H18118.4C36—C40—H40117.6
N6—C18—H18118.4C15—N2—N3102.3 (3)
C18—C19—C20119.2 (4)N4—N3—N2113.4 (3)
C18—C19—H19120.4N4—N3—C14122.7 (3)
C20—C19—H19120.4N2—N3—C14123.8 (3)
C19—C20—C16119.3 (4)N5—N4—N3106.7 (3)
C19—C20—H20120.3N4—N5—C15106.0 (3)
C16—C20—H20120.3C17—N6—C18116.4 (4)
N7—C21—C22179.6 (4)C35—N8—N9102.1 (3)
C27—C22—C23121.6 (3)N8—N9—N10113.6 (3)
C27—C22—C21121.3 (3)N8—N9—C34123.2 (3)
C23—C22—C21117.0 (3)N10—N9—C34122.8 (3)
C24—C23—C22118.5 (3)N11—N10—N9106.5 (3)
C24—C23—H23120.7N10—N11—C35105.6 (3)
C22—C23—H23120.7C40—N12—C39116.1 (3)

Experimental details

Crystal data
Chemical formulaC20H14N6
Mr338.37
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.2096 (9), 13.3071 (16), 13.709 (2)
α, β, γ (°)77.24 (2), 69.08 (2), 83.52 (3)
V3)1695.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.4 × 0.35 × 0.35
Data collection
DiffractometerRigaku Mercury2 (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.958, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
18012, 8011, 3834
Rint0.060
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.239, 1.02
No. of reflections8011
No. of parameters469
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong, and by the Excellent Doctor Degree Foundation from Southeast University to D-WF.

References

First citationArp, H. P. H., Decken, A., Passmore, J. & Wood, D. J. (2000). Inorg. Chem. 39, 1840–1848.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHu, B., Xu, X.-B., Li, Y.-X. & Ye, H.-Y. (2007). Acta Cryst. E63, m2698.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800–3803.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds