organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Methyl-3-nitro­phen­yl)-1H-tetra­zole

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 20 June 2008; accepted 21 June 2008; online 9 July 2008)

In the title compound, C8H7N5O2, the benzene ring makes a dihedral angle of 38.27 (11)° with the tetra­zole ring. The crystal structure is stabilized by N—H⋯N hydrogen bonds, forming an infinite one-dimensional chain parallel to the a axis.

Related literature

For the use of tetra­zole derivatives in coordination chemisty, see: Arp et al. (2000[Arp, H. P. H., Decken, A., Passmore, J. & Wood, D. J. (2000). Inorg. Chem. 39, 1840-1848.]); Hu et al. (2007[Hu, B., Xu, X.-B., Li, Y.-X. & Ye, H.-Y. (2007). Acta Cryst. E63, m2698.]); Wang et al. (2005[Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.]); Xiong et al. (2002[Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800-3803.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7N5O2

  • Mr = 205.19

  • Monoclinic, P 21 /c

  • a = 4.9642 (10) Å

  • b = 16.982 (3) Å

  • c = 10.804 (2) Å

  • β = 100.71 (3)°

  • V = 894.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 (2) K

  • 0.25 × 0.18 × 0.15 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.971, Tmax = 0.977

  • 7013 measured reflections

  • 2039 independent reflections

  • 1330 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.190

  • S = 1.08

  • 2039 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N4i 0.86 2.01 2.832 (3) 160
Symmetry code: (i) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past five years, our work have been focused on the chemistry of tetrazole derivatives because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Wang et al., 2005; Xiong et al., 2002). We report here the crystal structure of the title compound, 5-(4-methyl-3-nitrophenyl)-2H-tetrazole, (Fig.1).

The benzene ring makes a dihedral angle of 38.27 (0.11) ° with the tetrazole ring owing to the C–C bond bridge which force the two rings to be twisted from each other. The bond distances and bond angles of the tetrazole rings are in the usual ranges (Wang et al., 2005; Arp et al. , 2000; Hu et al., 2007). The crystal packing is stabilized by N—H···N hydrogen bonds to form an infinite one-dimensional chain parallel to the a axis. (Table 1, Fig. 2).

Related literature top

For the use of tetrazole derivatives in coordination chemisty, see: Arp et al. (2000); Hu et al. (2007); Wang et al. (2005); Xiong et al. (2002).

Experimental top

5-(4-methyl-3-nitrophenyl)-2H-tetrazole (3 mmol) was dissolved in ethanol (20 ml) and evaporated in the air affording colorless block crystals of this compound suitable for X-ray analysis were obtained.

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C–H = 0.9 Å (aromatic),0.96 Å(methyl) and N–H = 0.86 Å with Uiso(H) =1.2Ueq(C or N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing of the title compound showing the one dimensionnal hydrogen bondings network. Hydrogen atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity. [Symmetry code : (i) x-1, y, z]
5-(4-Methyl-3-nitrophenyl)-1H-tetrazole top
Crystal data top
C8H7N5O2F(000) = 424
Mr = 205.19Dx = 1.523 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2043 reflections
a = 4.9642 (10) Åθ = 3.1–27.5°
b = 16.982 (3) ŵ = 0.12 mm1
c = 10.804 (2) ÅT = 298 K
β = 100.71 (3)°Block, colorless
V = 894.9 (3) Å30.25 × 0.18 × 0.15 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
2039 independent reflections
Radiation source: fine-focus sealed tube1330 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2221
Tmin = 0.971, Tmax = 0.977l = 1314
7013 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.190 w = 1/[σ2(Fo2) + (0.0844P)2 + 0.0553P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2039 reflectionsΔρmax = 0.32 e Å3
137 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.037 (7)
Crystal data top
C8H7N5O2V = 894.9 (3) Å3
Mr = 205.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.9642 (10) ŵ = 0.12 mm1
b = 16.982 (3) ÅT = 298 K
c = 10.804 (2) Å0.25 × 0.18 × 0.15 mm
β = 100.71 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2039 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1330 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.977Rint = 0.093
7013 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.190H-atom parameters constrained
S = 1.08Δρmax = 0.32 e Å3
2039 reflectionsΔρmin = 0.26 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0809 (4)0.47072 (13)0.8636 (2)0.0355 (6)
H1A0.08240.45790.87190.043*
N40.5077 (4)0.46190 (13)0.8535 (2)0.0375 (6)
C10.2914 (5)0.42106 (15)0.8715 (2)0.0300 (6)
C20.2791 (5)0.33663 (15)0.8959 (2)0.0316 (6)
N20.1626 (5)0.54380 (12)0.8406 (2)0.0429 (6)
N30.4204 (5)0.53814 (13)0.8340 (2)0.0445 (6)
C30.1202 (5)0.30784 (15)0.9784 (2)0.0346 (6)
H3A0.02400.34231.02110.041*
C40.1057 (5)0.22713 (16)0.9969 (2)0.0360 (7)
C70.4202 (6)0.28333 (16)0.8331 (3)0.0380 (6)
H7A0.52880.30160.77770.046*
C60.3991 (6)0.20365 (16)0.8530 (3)0.0448 (7)
H6A0.49270.16940.80890.054*
C50.2449 (6)0.17202 (15)0.9358 (3)0.0423 (7)
O10.1907 (5)0.25440 (14)1.1326 (2)0.0687 (8)
O20.0896 (5)0.13387 (15)1.1108 (2)0.0781 (9)
N50.0701 (5)0.20355 (16)1.0866 (2)0.0468 (7)
C80.2416 (8)0.08409 (18)0.9527 (4)0.0681 (10)
H8A0.35510.05990.90060.102*
H8B0.05710.06500.92890.102*
H8C0.31030.07131.03930.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0248 (12)0.0353 (12)0.0489 (14)0.0016 (9)0.0130 (9)0.0005 (9)
N40.0280 (12)0.0381 (13)0.0489 (15)0.0015 (9)0.0138 (9)0.0055 (10)
C10.0237 (13)0.0375 (14)0.0308 (13)0.0009 (10)0.0101 (9)0.0005 (10)
C20.0231 (13)0.0376 (14)0.0350 (15)0.0014 (10)0.0076 (10)0.0001 (10)
N20.0352 (13)0.0384 (14)0.0569 (16)0.0006 (10)0.0135 (11)0.0049 (11)
N30.0366 (14)0.0415 (14)0.0587 (16)0.0041 (10)0.0172 (11)0.0038 (11)
C30.0295 (15)0.0390 (15)0.0374 (16)0.0000 (11)0.0120 (11)0.0006 (11)
C40.0320 (15)0.0399 (15)0.0363 (15)0.0035 (11)0.0065 (11)0.0057 (11)
C70.0349 (15)0.0411 (15)0.0406 (16)0.0059 (11)0.0141 (12)0.0002 (12)
C60.0464 (18)0.0422 (17)0.0466 (18)0.0123 (13)0.0106 (13)0.0044 (12)
C50.0426 (17)0.0371 (16)0.0442 (17)0.0017 (12)0.0005 (13)0.0024 (12)
O10.0701 (17)0.0762 (17)0.0721 (17)0.0033 (13)0.0451 (13)0.0098 (13)
O20.096 (2)0.0572 (16)0.087 (2)0.0154 (12)0.0304 (16)0.0263 (13)
N50.0377 (15)0.0574 (17)0.0444 (15)0.0108 (11)0.0053 (11)0.0132 (12)
C80.091 (3)0.0377 (18)0.074 (3)0.0006 (17)0.011 (2)0.0031 (16)
Geometric parameters (Å, º) top
N1—C11.333 (3)C4—N51.475 (3)
N1—N21.343 (3)C7—C61.377 (4)
N1—H1A0.8600C7—H7A0.9300
N4—C11.323 (3)C6—C51.388 (4)
N4—N31.369 (3)C6—H6A0.9300
C1—C21.461 (3)C5—C81.505 (4)
C2—C31.385 (3)O1—N51.209 (3)
C2—C71.395 (3)O2—N51.220 (3)
N2—N31.299 (3)C8—H8A0.9600
C3—C41.389 (4)C8—H8B0.9600
C3—H3A0.9300C8—H8C0.9600
C4—C51.400 (4)
C1—N1—N2109.7 (2)C6—C7—C2120.1 (2)
C1—N1—H1A125.2C6—C7—H7A119.9
N2—N1—H1A125.2C2—C7—H7A119.9
C1—N4—N3106.0 (2)C7—C6—C5123.2 (3)
N4—C1—N1107.9 (2)C7—C6—H6A118.4
N4—C1—C2127.1 (2)C5—C6—H6A118.4
N1—C1—C2125.0 (2)C6—C5—C4115.1 (2)
C3—C2—C7118.8 (2)C6—C5—C8118.8 (3)
C3—C2—C1120.7 (2)C4—C5—C8126.0 (3)
C7—C2—C1120.5 (2)O1—N5—O2122.7 (3)
N3—N2—N1106.0 (2)O1—N5—C4118.4 (2)
N2—N3—N4110.4 (2)O2—N5—C4119.0 (3)
C2—C3—C4119.5 (2)C5—C8—H8A109.5
C2—C3—H3A120.3C5—C8—H8B109.5
C4—C3—H3A120.3H8A—C8—H8B109.5
C5—C4—C3123.3 (2)C5—C8—H8C109.5
C5—C4—N5122.2 (3)H8A—C8—H8C109.5
C3—C4—N5114.5 (2)H8B—C8—H8C109.5
N3—N4—C1—N10.1 (3)C2—C3—C4—N5179.9 (2)
N3—N4—C1—C2179.8 (2)C3—C2—C7—C60.4 (4)
N2—N1—C1—N40.2 (3)C1—C2—C7—C6177.5 (2)
N2—N1—C1—C2179.9 (2)C2—C7—C6—C51.1 (4)
N4—C1—C2—C3142.9 (3)C7—C6—C5—C41.2 (4)
N1—C1—C2—C337.2 (4)C7—C6—C5—C8178.5 (3)
N4—C1—C2—C739.2 (4)C3—C4—C5—C60.6 (4)
N1—C1—C2—C7140.7 (3)N5—C4—C5—C6179.2 (2)
C1—N1—N2—N30.4 (3)C3—C4—C5—C8179.1 (3)
N1—N2—N3—N40.5 (3)N5—C4—C5—C81.1 (4)
C1—N4—N3—N20.4 (3)C5—C4—N5—O1177.7 (3)
C7—C2—C3—C40.1 (4)C3—C4—N5—O12.2 (4)
C1—C2—C3—C4178.1 (2)C5—C4—N5—O21.9 (4)
C2—C3—C4—C50.0 (4)C3—C4—N5—O2178.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N4i0.862.012.832 (3)160
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC8H7N5O2
Mr205.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)4.9642 (10), 16.982 (3), 10.804 (2)
β (°) 100.71 (3)
V3)894.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.25 × 0.18 × 0.15
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.971, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
7013, 2039, 1330
Rint0.093
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.190, 1.08
No. of reflections2039
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.26

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N4i0.862.012.832 (3)159.8
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationArp, H. P. H., Decken, A., Passmore, J. & Wood, D. J. (2000). Inorg. Chem. 39, 1840–1848.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHu, B., Xu, X.-B., Li, Y.-X. & Ye, H.-Y. (2007). Acta Cryst. E63, m2698.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800–3803.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds