organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzo[a]fluoren-11-one

aDepartment of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China, and bState Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People's Republic of China
*Correspondence e-mail: rbhuang@xmu.edu.cn

(Received 2 July 2008; accepted 7 July 2008; online 12 July 2008)

The mol­ecule of the title compound, C17H10O, is nearly planar, the largest deviation from the mean plane being 0.06 Å. The crystal structure is governed by ππ inter­actions, with centroid–centroid distances ranging from .559 to 3.730 Å.

Related literature

For related literature, see: Banik et al. (2006[Banik, B. K., Cordoba, M. & Marquez, J. (2006). Chemistry (Rajkot, India), 3, 72-75.]); Huang et al. (1997[Huang, R.-B., Huang, W.-J., Wang, Y.-H., Tang, Z.-C. & Zheng, L.-S. (1997). J. Am. Chem. Soc. 117, 5954-5955.]); Peng et al. (2001[Peng, Y., Xie, S.-Y., Huang, R.-B. & Zheng, L.-S. (2001). Acta Cryst. E57, o617-o618.]); Streitweiser & Brown (1988[Streitweiser, A. Jr & Brown, S. M. (1988). J. Org. Chem. 53, 904-906.]); Xie et al. (2001[Xie, S.-Y., Deng, S.-L., Yu, L.-J., Huang, R.-B. & Zheng, L.-S. (2001). J. Phys. Chem. B, 105, 1734-1738.]).

[Scheme 1]

Experimental

Crystal data
  • C17H10O

  • Mr = 230.25

  • Monoclinic, P 21 /c

  • a = 9.3852 (4) Å

  • b = 7.1165 (3) Å

  • c = 16.8809 (7) Å

  • β = 99.278 (5)°

  • V = 1112.72 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 (2) K

  • 0.55 × 0.20 × 0.20 mm

Data collection
  • Oxford Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.955, Tmax = 0.983

  • 4736 measured reflections

  • 2134 independent reflections

  • 1433 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.094

  • S = 1.01

  • 2134 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
ππ Interactions (Å)

  Centroid–centroid Interplanar distance Slippage
Cg1⋯Cg1i 3.683 3.46 1.26
Cg1⋯Cg2i 3.627 3.48 0.98
Cg1⋯Cg4ii 3.559 3.38 1.06
Cg2⋯Cg3i 3.730 3.49 1.23
Cg3⋯Cg4ii 3.667 3.38 1.31
Symmetry codes: (i) -x, 1-y, -z; (ii) 1-x, 1-y, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzo[a]fluoren-11-one, C17H10O, (Scheme), can be readily synthesed by oxidation of the corresponding hydrocarbon with different oxidants, such as NaBiO3 (Banik et al., 2006), or by Friedel-Crafts ring closure reaction(Streitwieser et al., 1988). But its crystal structure determination has not been carried out yet. During the past decade, our group has used various non-organic methods, such as high-voltage electric discharge in liquid (Huang et al., 1997), vaporized (Xie et al., 2001) chloroform and CCl4 and solvothermal reaction (Peng et al., 2001) to generate and trap a family of perchlorinated fullerene fragments. Recently in our low pressure premixed benzene-oxygen combustion system, we generated the compound, C17H10O, and isolated it. We report here the synthesis and crystal structure of the compound.

The title compound, C17H10O, is built up from four fused rings. The whole molecule is nearly planar with the largest deviations from the mean plane being 0.06Å (Fig. 1). The crystal packing is governed by π-π interactions (Table 1).

Related literature top

For related literature, see: Banik et al. (2006); Huang et al. (1997); Peng et al. (2001); Streitwieser & Brown (1988); Xie et al. (2001).

Experimental top

The compound was prepared in low pressure pre-mixed benzene-oxygen flames. The premixed flames conditions for the soot production as the following range: atom C/O ratio:1–2; combustion chamber pressure: 350torr. The soot collected from the water-cooled coping was extracted with toluene using an ultrasonic bath under room temperature, the resulting dark-brown solution was separated and purified by multi-stage high-preformance liquid chromatography(HPLC), finally we obtained one of fractions contained pure C17H10O. The red single crystals suitable for X-ray diffraction crystallized from toluene at room temperature. The product was analyzed by Atmospheric-Pressure Chemical Ionization(APCI) mass spectrometry(negative mode). The molecular peak appeared at a mass/charge ratio of 230.

Refinement top

All H atoms were placed geometrically and treated as riding with C—H distances of 0.95 Å and Uiso= 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP Molecular view of compound I. Thermal ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Benzo[a]fluoren-11-one top
Crystal data top
C17H10OF(000) = 480
Mr = 230.25Dx = 1.374 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1792 reflections
a = 9.3852 (4) Åθ = 2.7–32.6°
b = 7.1165 (3) ŵ = 0.08 mm1
c = 16.8809 (7) ÅT = 173 K
β = 99.278 (5)°Prism, red
V = 1112.72 (8) Å30.55 × 0.20 × 0.20 mm
Z = 4
Data collection top
Oxford Gemini S Ultra
diffractometer
2134 independent reflections
Radiation source: fine-focus sealed tube1433 reflections with > 2σ
Graphite monochromatorRint = 0.034
ω scansθmax = 26.0°, θmin = 3.6°
Absorption correction: empirical (using intensity measurements)
(CrysAlis RED; Oxford Diffraction, 2007)
h = 1110
Tmin = 0.955, Tmax = 0.983k = 88
4736 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0409P)2]
where P = (Fo2 + 2Fc2)/3
2134 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C17H10OV = 1112.72 (8) Å3
Mr = 230.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3852 (4) ŵ = 0.08 mm1
b = 7.1165 (3) ÅT = 173 K
c = 16.8809 (7) Å0.55 × 0.20 × 0.20 mm
β = 99.278 (5)°
Data collection top
Oxford Gemini S Ultra
diffractometer
2134 independent reflections
Absorption correction: empirical (using intensity measurements)
(CrysAlis RED; Oxford Diffraction, 2007)
1433 reflections with > 2σ
Tmin = 0.955, Tmax = 0.983Rint = 0.034
4736 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.01Δρmax = 0.15 e Å3
2134 reflectionsΔρmin = 0.17 e Å3
163 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlis RED (Oxford Diffraction, 2007)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20866 (13)0.18498 (17)0.07292 (8)0.0441 (4)
C10.02937 (18)0.4405 (3)0.16653 (10)0.0378 (5)
H1A0.03960.31890.19000.045*
C20.11989 (19)0.5866 (3)0.19725 (11)0.0438 (5)
H2A0.19300.56510.24220.053*
C30.10410 (18)0.7630 (3)0.16279 (11)0.0411 (5)
H3A0.16680.86140.18460.049*
C40.00180 (17)0.7996 (3)0.09676 (11)0.0356 (4)
H4A0.01250.92140.07350.043*
C50.26877 (16)0.7875 (2)0.05511 (10)0.0302 (4)
H5A0.22800.91000.05120.036*
C60.38358 (17)0.7465 (2)0.11267 (10)0.0333 (4)
H6A0.42200.84220.14920.040*
C70.56835 (17)0.5255 (3)0.17902 (10)0.0368 (5)
H7A0.60540.62010.21640.044*
C80.63221 (18)0.3530 (3)0.18308 (11)0.0395 (5)
H8A0.71380.32880.22290.047*
C90.57847 (17)0.2119 (3)0.12911 (11)0.0397 (5)
H9A0.62460.09270.13210.048*
C100.46019 (17)0.2432 (3)0.07188 (11)0.0346 (4)
H10A0.42380.14500.03610.041*
C110.18804 (17)0.3497 (2)0.05773 (10)0.0313 (4)
C120.07505 (15)0.4757 (2)0.10158 (9)0.0291 (4)
C130.09063 (15)0.6536 (2)0.06621 (10)0.0282 (4)
C140.21217 (16)0.6458 (2)0.00190 (9)0.0272 (4)
C150.27059 (16)0.4674 (2)0.00659 (9)0.0275 (4)
C160.39179 (16)0.4204 (2)0.06560 (9)0.0278 (4)
C170.44778 (16)0.5651 (3)0.11987 (10)0.0304 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0524 (8)0.0301 (8)0.0491 (8)0.0072 (6)0.0059 (6)0.0097 (7)
C10.0367 (9)0.0464 (12)0.0317 (9)0.0128 (9)0.0093 (8)0.0059 (10)
C20.0361 (10)0.0628 (15)0.0302 (9)0.0109 (10)0.0011 (8)0.0009 (11)
C30.0332 (9)0.0504 (13)0.0389 (10)0.0002 (9)0.0032 (9)0.0091 (11)
C40.0329 (9)0.0376 (10)0.0369 (10)0.0036 (8)0.0076 (8)0.0004 (9)
C50.0322 (8)0.0281 (9)0.0315 (9)0.0046 (8)0.0090 (8)0.0040 (9)
C60.0380 (9)0.0355 (10)0.0271 (9)0.0106 (8)0.0072 (8)0.0086 (9)
C70.0354 (9)0.0485 (12)0.0271 (9)0.0076 (9)0.0070 (8)0.0004 (10)
C80.0317 (9)0.0562 (14)0.0297 (10)0.0007 (9)0.0021 (8)0.0106 (10)
C90.0378 (10)0.0390 (11)0.0445 (11)0.0035 (9)0.0130 (9)0.0117 (10)
C100.0354 (9)0.0340 (11)0.0366 (10)0.0079 (8)0.0128 (8)0.0000 (9)
C110.0331 (9)0.0311 (10)0.0319 (9)0.0098 (8)0.0113 (8)0.0029 (9)
C120.0288 (8)0.0343 (10)0.0257 (9)0.0069 (8)0.0092 (8)0.0011 (9)
C130.0244 (8)0.0370 (11)0.0245 (8)0.0073 (8)0.0078 (7)0.0012 (9)
C140.0256 (8)0.0316 (10)0.0260 (9)0.0074 (7)0.0087 (7)0.0007 (9)
C150.0294 (8)0.0276 (9)0.0277 (9)0.0080 (8)0.0111 (7)0.0011 (9)
C160.0261 (8)0.0320 (10)0.0272 (9)0.0047 (7)0.0095 (7)0.0041 (9)
C170.0282 (9)0.0385 (11)0.0258 (9)0.0061 (8)0.0083 (8)0.0015 (9)
Geometric parameters (Å, º) top
O1—C111.222 (2)C7—C171.412 (2)
C1—C121.371 (2)C7—H7A0.9500
C1—C21.389 (3)C8—C91.395 (3)
C1—H1A0.9500C8—H8A0.9500
C2—C31.381 (3)C9—C101.367 (2)
C2—H2A0.9500C9—H9A0.9500
C3—C41.393 (2)C10—C161.411 (2)
C3—H3A0.9500C10—H10A0.9500
C4—C131.380 (2)C11—C151.486 (2)
C4—H4A0.9500C11—C121.491 (2)
C5—C61.361 (2)C12—C131.397 (2)
C5—C141.397 (2)C13—C141.484 (2)
C5—H5A0.9500C14—C151.380 (2)
C6—C171.421 (2)C15—C161.426 (2)
C6—H6A0.9500C16—C171.422 (2)
C7—C81.362 (3)
C12—C1—C2118.49 (18)C8—C9—H9A119.6
C12—C1—H1A120.8C9—C10—C16120.40 (17)
C2—C1—H1A120.8C9—C10—H10A119.8
C3—C2—C1120.36 (17)C16—C10—H10A119.8
C3—C2—H2A119.8O1—C11—C15127.75 (16)
C1—C2—H2A119.8O1—C11—C12126.62 (16)
C2—C3—C4121.42 (18)C15—C11—C12105.62 (14)
C2—C3—H3A119.3C1—C12—C13121.30 (16)
C4—C3—H3A119.3C1—C12—C11130.30 (16)
C13—C4—C3117.91 (17)C13—C12—C11108.39 (13)
C13—C4—H4A121.0C4—C13—C12120.51 (15)
C3—C4—H4A121.0C4—C13—C14131.32 (16)
C6—C5—C14118.63 (16)C12—C13—C14108.15 (15)
C6—C5—H5A120.7C15—C14—C5121.40 (15)
C14—C5—H5A120.7C15—C14—C13109.10 (15)
C5—C6—C17122.13 (16)C5—C14—C13129.49 (16)
C5—C6—H6A118.9C14—C15—C16121.37 (15)
C17—C6—H6A118.9C14—C15—C11108.72 (14)
C8—C7—C17120.77 (17)C16—C15—C11129.91 (15)
C8—C7—H7A119.6C10—C16—C17118.86 (15)
C17—C7—H7A119.6C10—C16—C15124.34 (15)
C7—C8—C9120.38 (16)C17—C16—C15116.79 (15)
C7—C8—H8A119.8C7—C17—C6121.51 (16)
C9—C8—H8A119.8C7—C17—C16118.79 (16)
C10—C9—C8120.77 (17)C6—C17—C16119.69 (14)
C10—C9—H9A119.6

Experimental details

Crystal data
Chemical formulaC17H10O
Mr230.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)9.3852 (4), 7.1165 (3), 16.8809 (7)
β (°) 99.278 (5)
V3)1112.72 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.55 × 0.20 × 0.20
Data collection
DiffractometerOxford Gemini S Ultra
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.955, 0.983
No. of measured, independent and
observed ( > 2σ) reflections
4736, 2134, 1433
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.094, 1.01
No. of reflections2134
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.17

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

ππ Interactions (Å) top
Centroid–centroidInterplanar distanceSlippage
Cg1···Cg1i3.6833.461.26
Cg1···Cg2i3.6273.480.98
Cg1···Cg4ii3.5593.381.06
Cg2···Cg3i3.7303.491.23
Cg3···Cg4ii3.6673.381.31
Symmetry codes: (i) -x, 1-y, -z; (ii) 1-x, 1-y, -z.
 

References

First citationBanik, B. K., Cordoba, M. & Marquez, J. (2006). Chemistry (Rajkot, India), 3, 72–75.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHuang, R.-B., Huang, W.-J., Wang, Y.-H., Tang, Z.-C. & Zheng, L.-S. (1997). J. Am. Chem. Soc. 117, 5954–5955.  CrossRef Web of Science Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPeng, Y., Xie, S.-Y., Huang, R.-B. & Zheng, L.-S. (2001). Acta Cryst. E57, o617–o618.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStreitweiser, A. Jr & Brown, S. M. (1988). J. Org. Chem. 53, 904–906.  Google Scholar
First citationXie, S.-Y., Deng, S.-L., Yu, L.-J., Huang, R.-B. & Zheng, L.-S. (2001). J. Phys. Chem. B, 105, 1734–1738.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds