metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(O,O′-diphenethyl di­thio­phosphato-κ2S,S′)bis­­(4-methyl­pyridine-κN)nickel(II)

aCollege of Chemistry and Pharmaceutical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, People's Republic of China
*Correspondence e-mail: zoulike@yahoo.com.cn

(Received 6 July 2008; accepted 7 July 2008; online 12 July 2008)

The title complex, [Ni(C16H18O2PS2)2(C6H7N)2], exhibits a roughly octa­hedral coordination geometry. The NiII atom lies on an inversion centre and is coordinated by four S atoms of O,O′-diphenethyl dithio­phosphate mol­ecules and two N atoms of 4-methyl­pyridine mol­ecules. Important geometric data include Ni—N = 2.100 (3) Å, and Ni—S = 2.5101 (10) and 2.4772 (11) Å.

Related literature

For related literature, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Drew et al. (1987[Drew, M. G. B., Hobson, R. J., Mumba, P. P. E. M. & Rice, D. A. (1987). J. Chem. Soc. Dalton Trans. pp. 1569-1571.]); Harrison et al. (1987[Harrison, P. G. & Kikabhai, K. (1987). J. Chem. Soc. Dalton Trans. pp. 807-814.]); Liu et al. (1997[Liu, C. W., Pitts, J. T. & Fackler, J. P. (1997). Polyhedron, 16, 3899-3909.]); Li et al. (2006[Li, Z., Li, J. & Du, S. (2006). J. Mol. Struct. 783, 116-121.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C16H18O2PS2)2(C6H7N)2]

  • Mr = 919.77

  • Monoclinic, P 21 /c

  • a = 12.920 (4) Å

  • b = 17.498 (4) Å

  • c = 10.979 (3) Å

  • β = 113.05 (3)°

  • V = 2283.9 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 294 (2) K

  • 0.50 × 0.48 × 0.33 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: spherical (WinGX; Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) Tmin = 0.715, Tmax = 0.797

  • 4524 measured reflections

  • 4263 independent reflections

  • 2538 reflections with I > 2σ(I)

  • Rint = 0.004

  • 3 standard reflections every 300 reflections intensity decay: 0.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.125

  • S = 0.98

  • 4263 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Interest in the chemistry of metal complexes of O,O'- dialkyldithiophosphates continues to grow due to extensively employed as anti-oxidants, additives to lubricating oils, flotation reagents, insecticides(Harrison et al.,1987; Liu et al., 1997;Li et al.,2006). O,O'-Dialkyldithiophosphates exhibit remarkable variety of forms of coordination to metal (Drew et al.,1987). These systems can adopt a variety of molecular and crystal structures, mono-,bi-,tetra-,and polynuclear. We report here the synthesis and crystal structure of Ni[S2P(OCH2CH2Ph)2]2(NC5H4CH3-4)2.

The NiII atom exhibits a roughly octahedral geometry,and lies on an inversion center (Fig.1). The bond lengths and angles within the complex may be considered normal in comparison with the Cambridge Structural Database results (Allen, 2002).

Related literature top

For related literature, see: Allen (2002); Drew et al. (1987); Harrison et al. (1987); Liu et al. (1997); Li et al. (2006).

Experimental top

90 ml hot aqueous solution of Ni(OAc)2.4 H2O (1.87 g, 7.5 mmol) was added to 90 ml boiling methanol solution of [(PhCH2CH2O)2PS2]NH2(CH2CH3)2(6.42 g, 15.75 mmol). The mixture was refluxed and stirred for 30 minutes.After cooling to room temperature, the resulting Ni[S2P(OCH2CH2Ph)2]2 precipitate was collected by filtration and washed with methanol.

0.56 g 4-methylpyridine was added to a solution of Ni[S2P(OCH2CH2Ph)2]2 (0.72 g, 1 mmol) in 30 ml acetone and 60 ml petroleum ether, then the reaction mixture was concentrated to about 30 ml with a vacuum rotary evaporator. After cooling to room temperature, the pale green precipitate was collected by filtration and washed with petroleum ether.The block crystal was dissovled in a solution of 0.6 g 4-methylpyridine in 30 ml acetone and 20 ml petroleum ether, and the solution was kept at room temperature, green block crystals of Ni[S2P(OCH2CH2Ph)2]2(NC5H4CH3-4)2 were obtained in four weeks.

Refinement top

All H atoms attached to C atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.97 Å (methylene), 0.96 Å (methyl) and Uiso(H) =1.2Ueq(C, aromatic and methylene) or 1.5Ueq (C, methyl).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A View of the title complexe showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for the sake of clarity.[Symmetry code: (i) -x + 1, -y, -z].
Bis(O,O'-diphenethyl dithiophosphato-κ2S,S')bis(4-methylpyridine-κN)nickel(II) top
Crystal data top
[Ni(C16H18O2PS2)2(C6H7N)2]F(000) = 964
Mr = 919.77Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 12.920 (4) Åθ = 4.7–7.8°
b = 17.498 (4) ŵ = 0.72 mm1
c = 10.979 (3) ÅT = 294 K
β = 113.05 (3)°Block, green
V = 2283.9 (12) Å30.50 × 0.48 × 0.33 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
2538 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.004
Graphite monochromatorθmax = 25.6°, θmin = 1.7°
ω/2θ scansh = 156
Absorption correction: for a sphere
(WinGX; Farrugia, 1999)
k = 210
Tmin = 0.715, Tmax = 0.797l = 1213
4524 measured reflections3 standard reflections every 300 reflections
4263 independent reflections intensity decay: 0.3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.072P)2]
where P = (Fo2 + 2Fc2)/3
4263 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Ni(C16H18O2PS2)2(C6H7N)2]V = 2283.9 (12) Å3
Mr = 919.77Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.920 (4) ŵ = 0.72 mm1
b = 17.498 (4) ÅT = 294 K
c = 10.979 (3) Å0.50 × 0.48 × 0.33 mm
β = 113.05 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2538 reflections with I > 2σ(I)
Absorption correction: for a sphere
(WinGX; Farrugia, 1999)
Rint = 0.004
Tmin = 0.715, Tmax = 0.7973 standard reflections every 300 reflections
4524 measured reflections intensity decay: 0.3%
4263 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 0.99Δρmax = 0.40 e Å3
4263 reflectionsΔρmin = 0.42 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.00000.04415 (18)
S10.37867 (8)0.09900 (5)0.04468 (9)0.0600 (3)
S20.68569 (7)0.06097 (5)0.11775 (9)0.0560 (3)
P10.74567 (7)0.03034 (6)0.06089 (9)0.0566 (3)
O10.8408 (2)0.07200 (17)0.1803 (2)0.0721 (8)
O20.82597 (19)0.00827 (16)0.0117 (2)0.0738 (8)
N10.4851 (2)0.05930 (16)0.1723 (3)0.0471 (6)
C10.8201 (3)0.0924 (2)0.2958 (3)0.0643 (10)
H1A0.75700.12740.27200.077*
H1B0.80240.04710.33500.077*
C20.9244 (3)0.1296 (3)0.3921 (4)0.0693 (11)
H2A0.93590.17800.35640.083*
H2B0.98870.09720.40490.083*
C30.9159 (3)0.1428 (2)0.5224 (4)0.0599 (9)
C40.9828 (4)0.1032 (3)0.6319 (4)0.0779 (12)
H41.03540.06900.62520.094*
C50.9745 (5)0.1126 (3)0.7503 (5)0.1013 (16)
H51.02130.08510.82370.122*
C60.8984 (5)0.1618 (4)0.7619 (5)0.1083 (19)
H60.89160.16740.84270.130*
C70.8314 (4)0.2035 (3)0.6549 (6)0.111 (2)
H70.77910.23760.66270.133*
C80.8416 (4)0.1947 (3)0.5345 (4)0.0880 (14)
H80.79780.22410.46210.106*
C90.7811 (3)0.0340 (3)0.1333 (4)0.0786 (13)
H9A0.72600.07070.13000.094*
H9B0.74430.00050.20680.094*
C100.8743 (3)0.0741 (3)0.1521 (4)0.0792 (12)
H10A0.93050.03710.15090.095*
H10B0.90940.10920.07900.095*
C110.8351 (3)0.1179 (2)0.2803 (3)0.0565 (9)
C120.7967 (3)0.0800 (2)0.3984 (4)0.0656 (10)
H120.79310.02690.39950.079*
C130.7637 (3)0.1192 (3)0.5139 (4)0.0856 (14)
H130.73880.09220.59310.103*
C140.7658 (4)0.1953 (4)0.5172 (6)0.1012 (19)
H140.74280.22080.59780.121*
C150.8018 (4)0.2354 (3)0.4018 (7)0.1067 (19)
H150.80260.28860.40260.128*
C160.8375 (4)0.1958 (3)0.2827 (5)0.0807 (13)
H160.86330.22280.20340.097*
C170.4546 (3)0.0236 (2)0.2882 (3)0.0552 (9)
H170.43860.02840.29190.066*
C180.4457 (3)0.0600 (2)0.4025 (4)0.0642 (10)
H180.42290.03290.48150.077*
C190.4706 (3)0.1367 (3)0.4005 (4)0.0674 (11)
C200.5011 (3)0.1735 (2)0.2822 (4)0.0691 (11)
H200.51770.22540.27640.083*
C210.5072 (3)0.1338 (2)0.1714 (4)0.0588 (9)
H210.52780.16020.09190.071*
C220.4675 (4)0.1771 (3)0.5222 (5)0.1025 (17)
H22A0.43010.22540.53010.154*
H22B0.42750.14640.59870.154*
H22C0.54300.18540.51560.154*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0442 (3)0.0490 (3)0.0422 (3)0.0013 (3)0.0201 (3)0.0022 (3)
S10.0643 (6)0.0611 (6)0.0612 (6)0.0078 (5)0.0317 (5)0.0007 (5)
S20.0515 (5)0.0646 (6)0.0510 (5)0.0106 (4)0.0190 (4)0.0018 (4)
P10.0450 (5)0.0802 (7)0.0490 (5)0.0067 (5)0.0233 (4)0.0164 (5)
O10.0545 (14)0.111 (2)0.0570 (15)0.0208 (14)0.0285 (12)0.0289 (14)
O20.0479 (13)0.123 (2)0.0581 (15)0.0103 (14)0.0287 (12)0.0319 (15)
N10.0449 (15)0.0522 (17)0.0490 (16)0.0003 (13)0.0234 (13)0.0049 (13)
C10.053 (2)0.089 (3)0.056 (2)0.0092 (19)0.0264 (18)0.023 (2)
C20.051 (2)0.094 (3)0.059 (2)0.013 (2)0.0184 (19)0.021 (2)
C30.049 (2)0.069 (2)0.055 (2)0.0095 (19)0.0131 (17)0.0187 (19)
C40.073 (3)0.089 (3)0.065 (3)0.002 (2)0.021 (2)0.011 (2)
C50.119 (4)0.110 (4)0.062 (3)0.007 (3)0.021 (3)0.005 (3)
C60.106 (4)0.157 (5)0.067 (3)0.021 (4)0.040 (3)0.040 (4)
C70.075 (3)0.154 (5)0.097 (4)0.013 (3)0.028 (3)0.058 (4)
C80.078 (3)0.112 (4)0.062 (3)0.020 (3)0.015 (2)0.023 (3)
C90.056 (2)0.127 (4)0.057 (2)0.003 (2)0.0274 (19)0.035 (2)
C100.063 (2)0.120 (4)0.056 (2)0.005 (2)0.025 (2)0.020 (2)
C110.0480 (19)0.079 (3)0.051 (2)0.0007 (18)0.0296 (17)0.0078 (19)
C120.057 (2)0.080 (3)0.061 (2)0.0134 (19)0.0246 (19)0.007 (2)
C130.064 (3)0.139 (5)0.053 (3)0.014 (3)0.023 (2)0.004 (3)
C140.064 (3)0.156 (6)0.086 (4)0.005 (3)0.033 (3)0.056 (4)
C150.101 (4)0.074 (3)0.170 (6)0.022 (3)0.080 (4)0.042 (4)
C160.085 (3)0.084 (3)0.088 (3)0.010 (3)0.050 (3)0.023 (3)
C170.054 (2)0.063 (2)0.051 (2)0.0008 (17)0.0234 (17)0.0012 (18)
C180.058 (2)0.092 (3)0.048 (2)0.007 (2)0.0268 (18)0.007 (2)
C190.055 (2)0.086 (3)0.069 (3)0.012 (2)0.033 (2)0.025 (2)
C200.071 (3)0.063 (2)0.078 (3)0.002 (2)0.033 (2)0.020 (2)
C210.061 (2)0.058 (2)0.061 (2)0.0007 (18)0.0280 (19)0.0034 (19)
C220.098 (3)0.134 (4)0.090 (3)0.019 (3)0.052 (3)0.056 (3)
Geometric parameters (Å, º) top
Ni1—N1i2.100 (3)C8—H80.9300
Ni1—N12.100 (3)C9—C101.476 (5)
Ni1—S22.4772 (11)C9—H9A0.9700
Ni1—S2i2.4772 (11)C9—H9B0.9700
Ni1—S12.5101 (10)C10—C111.507 (5)
Ni1—S1i2.5101 (10)C10—H10A0.9700
S1—P1i1.9772 (15)C10—H10B0.9700
S2—P11.9803 (15)C11—C161.363 (6)
P1—O11.581 (3)C11—C121.365 (5)
P1—O21.584 (2)C12—C131.355 (6)
P1—S1i1.9772 (15)C12—H120.9300
O1—C11.440 (4)C13—C141.332 (7)
O2—C91.435 (4)C13—H130.9300
N1—C171.332 (4)C14—C151.362 (7)
N1—C211.333 (4)C14—H140.9300
C1—C21.497 (5)C15—C161.390 (7)
C1—H1A0.9700C15—H150.9300
C1—H1B0.9700C16—H160.9300
C2—C31.495 (5)C17—C181.371 (5)
C2—H2A0.9700C17—H170.9300
C2—H2B0.9700C18—C191.378 (5)
C3—C41.363 (5)C18—H180.9300
C3—C81.365 (5)C19—C201.362 (5)
C4—C51.356 (6)C19—C221.498 (5)
C4—H40.9300C20—C211.376 (5)
C5—C61.350 (7)C20—H200.9300
C5—H50.9300C21—H210.9300
C6—C71.365 (7)C22—H22A0.9600
C6—H60.9300C22—H22B0.9600
C7—C81.387 (6)C22—H22C0.9600
C7—H70.9300
N1i—Ni1—N1180.0C3—C8—C7120.0 (5)
N1i—Ni1—S290.83 (8)C3—C8—H8120.0
N1—Ni1—S289.17 (8)C7—C8—H8120.0
N1i—Ni1—S2i89.17 (8)O2—C9—C10108.7 (3)
N1—Ni1—S2i90.83 (8)O2—C9—H9A110.0
S2—Ni1—S2i180.0C10—C9—H9A110.0
N1i—Ni1—S190.50 (8)O2—C9—H9B110.0
N1—Ni1—S189.50 (8)C10—C9—H9B110.0
S2—Ni1—S198.75 (4)H9A—C9—H9B108.3
S2i—Ni1—S181.25 (4)C9—C10—C11112.3 (3)
N1i—Ni1—S1i89.50 (8)C9—C10—H10A109.2
N1—Ni1—S1i90.50 (8)C11—C10—H10A109.2
S2—Ni1—S1i81.25 (4)C9—C10—H10B109.2
S2i—Ni1—S1i98.75 (4)C11—C10—H10B109.2
S1—Ni1—S1i180.0H10A—C10—H10B107.9
P1i—S1—Ni183.82 (5)C16—C11—C12118.1 (4)
P1—S2—Ni184.64 (4)C16—C11—C10121.7 (4)
O1—P1—O294.61 (13)C12—C11—C10120.3 (4)
O1—P1—S1i113.28 (13)C13—C12—C11120.4 (4)
O2—P1—S1i113.27 (12)C13—C12—H12119.8
O1—P1—S2112.56 (12)C11—C12—H12119.8
O2—P1—S2112.10 (12)C14—C13—C12121.9 (5)
S1i—P1—S2110.28 (6)C14—C13—H13119.0
C1—O1—P1119.5 (2)C12—C13—H13119.0
C9—O2—P1119.2 (2)C13—C14—C15119.5 (5)
C17—N1—C21116.6 (3)C13—C14—H14120.2
C17—N1—Ni1121.2 (2)C15—C14—H14120.2
C21—N1—Ni1122.2 (2)C14—C15—C16119.0 (5)
O1—C1—C2107.7 (3)C14—C15—H15120.5
O1—C1—H1A110.2C16—C15—H15120.5
C2—C1—H1A110.2C11—C16—C15121.0 (4)
O1—C1—H1B110.2C11—C16—H16119.5
C2—C1—H1B110.2C15—C16—H16119.5
H1A—C1—H1B108.5N1—C17—C18122.9 (4)
C3—C2—C1111.1 (3)N1—C17—H17118.5
C3—C2—H2A109.4C18—C17—H17118.5
C1—C2—H2A109.4C17—C18—C19120.2 (4)
C3—C2—H2B109.4C17—C18—H18119.9
C1—C2—H2B109.4C19—C18—H18119.9
H2A—C2—H2B108.0C20—C19—C18117.0 (4)
C4—C3—C8118.7 (4)C20—C19—C22121.6 (4)
C4—C3—C2120.4 (4)C18—C19—C22121.4 (4)
C8—C3—C2120.9 (4)C19—C20—C21120.0 (4)
C5—C4—C3121.5 (5)C19—C20—H20120.0
C5—C4—H4119.2C21—C20—H20120.0
C3—C4—H4119.2N1—C21—C20123.3 (4)
C6—C5—C4120.1 (5)N1—C21—H21118.4
C6—C5—H5120.0C20—C21—H21118.4
C4—C5—H5120.0C19—C22—H22A109.5
C5—C6—C7120.0 (5)C19—C22—H22B109.5
C5—C6—H6120.0H22A—C22—H22B109.5
C7—C6—H6120.0C19—C22—H22C109.5
C6—C7—C8119.7 (5)H22A—C22—H22C109.5
C6—C7—H7120.1H22B—C22—H22C109.5
C8—C7—H7120.1
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C16H18O2PS2)2(C6H7N)2]
Mr919.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)12.920 (4), 17.498 (4), 10.979 (3)
β (°) 113.05 (3)
V3)2283.9 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.50 × 0.48 × 0.33
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionFor a sphere
(WinGX; Farrugia, 1999)
Tmin, Tmax0.715, 0.797
No. of measured, independent and
observed [I > 2σ(I)] reflections
4524, 4263, 2538
Rint0.004
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 0.99
No. of reflections4263
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.42

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

The authors acknowledge financial assistance from the Education Committee of Sichuan Province of China (project No. 2006 A110, 07ZA161) and the Science and Technology Office of Zigong City, China (project No. 07GX008).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDrew, M. G. B., Hobson, R. J., Mumba, P. P. E. M. & Rice, D. A. (1987). J. Chem. Soc. Dalton Trans. pp. 1569–1571.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHarrison, P. G. & Kikabhai, K. (1987). J. Chem. Soc. Dalton Trans. pp. 807–814.  CrossRef Web of Science Google Scholar
First citationLi, Z., Li, J. & Du, S. (2006). J. Mol. Struct. 783, 116–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, C. W., Pitts, J. T. & Fackler, J. P. (1997). Polyhedron, 16, 3899–3909.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds