metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[3]Ferrocenophan-1-one

aDepartment of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic
*Correspondence e-mail: stepnic@natur.cuni.cz

(Received 7 July 2008; accepted 21 July 2008; online 23 July 2008)

The crystal structure of [3]ferrocenophan-1-one, [Fe(C13H12O)], has been redetermined at 150 K. The tethered cyclo­penta­dienyl (Cp) rings are tilted by 9.39 (18)° and assume an eclipsed conformation. The 1-oxopropane-1,3-diyl bridge has a pseudo-envelope conformation with the C=O group deviating by as much as 22.5 (2)° from coplanarity with its attached Cp ring.

Related literature

For an overview of the chemistry of ferrocene, see: Štěpnička (2008[Štěpnička, P. (2008). Editor. Ferrocenes: Ligands, Materials and Biomolecules. Chichester: Wiley.]). For the preparation of the title compound, see: Turbitt & Watts (1972[Turbitt, T. D. & Watts, W. E. (1972). J. Organomet. Chem. 46, 109-117.]). For its crystal structure at room temperature, see: Jones et al. (1965[Jones, N. D., Marsh, R. E. & Richards, J. H. (1965). Acta Cryst. 19, 330-336.]). For an introductory review on the chemistry of ferrocenophanes with carbon bridges, see: Heo & Lee (1999[Heo, R. W. & Lee, T. R. (1999). J. Organomet. Chem. 578, 31-42.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C13H12O)]

  • Mr = 240.08

  • Monoclinic, P 21 /c

  • a = 5.77450 (10) Å

  • b = 7.3303 (2) Å

  • c = 22.8596 (6) Å

  • β = 93.242 (2)°

  • V = 966.07 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.52 mm−1

  • T = 150 (2) K

  • 0.38 × 0.30 × 0.28 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.579, Tmax = 0.660

  • 13397 measured reflections

  • 2223 independent reflections

  • 2102 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.096

  • S = 1.31

  • 2223 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The chemistry of ferrocene has received considerable attention because of its widespread applications ranging from material science to biomedicine. A particularly successful area is undoubtedly catalysis with ferrocene ligands (Štěpnička, 2008). A number of ferrocene ligands has been prepared a studied as ligands for transtion metal-mediated reactions. Among the numerous ligands reported to date, a specific class is constituted by the donors whose cyclopentadienyl (Cp) rings are interconnected with a linking group (i.e., ferrocenophane-type compounds (Heo & Lee, 1999)). [3]ferrocenophan-1-one (I) represent a convenient entry to such donors (Štěpnička, 2008). Because the crystal structure of I has been reported already in the middle 1960's (Jones et al., 1965), we have redetermined it at 150 K in order to obtain more precise structural information.

The molecular structure of I (Figure 1) is rather unexceptional as far as interatomic distances and angles concerns. Because of spatial constraints imposed by the 1-oxapropan-1,3-diyl linker, the Cp rings are tilted by 9.39 (18)° and adopt a near-to-eclipsed conformation characterized by the torsion angle C(1)—Cg(1)—Cg(2)—C(6) of -5.6 (2)°, where Cg(1) and Cg(2) are the centroids of the Cp rings C(1–5) and C(6–10), respectively. The iron—Cg distances in I are: Fe1—Cg(1) 1.6399 (14) Å and Fe1—Cg(2) 1.6463 (14) Å. The aliphatic bridge assumes a pseudoenvelope conformation and its CO bond (C11—O 1.2012 (4) Å) is displaced above its bonding Cp ring, the angle subtended by the C?O vector and the Cp ring being 22.5 (2)°.

Related literature top

For an overview of the chemistry of ferrocene, see: Štěpnička (2008). For the preparation of the title compound, see: Turbitt & Watts (1972). For its crystal structure at room temperature, see: Jones et al. (1965). For related literature, see: Heo & Lee (1999).

Experimental top

The title compound was synthesized by acylation of ferrocene with acryloyl chloride in the presence of AlCl3 (Turbitt & Watts, 1972) and characterized by 1H and 13C{1H} NMR spectra. Orange-red crystals suitable for X-ray diffraction analysis were obtained by liquid-phase diffusion of hexane into a solution of the compound in dichloromethane.

Refinement top

All H-atoms were included in calculated positions and refined with d(C—H) = 0.93 Å (aromatic) and 0.97 Å (methylene) and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Side (a) and top (b) views of I showing the atom numbering scheme and displacement ellipsoids for the non-H atoms at the 30% probability level.
[3]ferrocenophan-1-one top
Crystal data top
[Fe(C13H12O)]F(000) = 496
Mr = 240.08Dx = 1.651 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2391 reflections
a = 5.7745 (1) Åθ = 0.4–27.5°
b = 7.3303 (2) ŵ = 1.52 mm1
c = 22.8596 (6) ÅT = 150 K
β = 93.242 (2)°Block, orange–red
V = 966.07 (4) Å30.38 × 0.30 × 0.28 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2223 independent reflections
Radiation source: fine-focus sealed tube2102 reflections with I > 2σ(I)
Horizontal graphite crystal monochromatorRint = 0.032
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 1.8°
ω and π scans to fill the Ewald sphereh = 77
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 99
Tmin = 0.579, Tmax = 0.660l = 2929
13397 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.31 w = 1/[σ2(Fo2) + 2.5298P]
where P = (Fo2 + 2Fc2)/3
2223 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Fe(C13H12O)]V = 966.07 (4) Å3
Mr = 240.08Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.7745 (1) ŵ = 1.52 mm1
b = 7.3303 (2) ÅT = 150 K
c = 22.8596 (6) Å0.38 × 0.30 × 0.28 mm
β = 93.242 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2223 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2102 reflections with I > 2σ(I)
Tmin = 0.579, Tmax = 0.660Rint = 0.032
13397 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.31Δρmax = 0.53 e Å3
2223 reflectionsΔρmin = 0.38 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.18818 (7)0.12608 (6)0.151598 (17)0.01753 (13)
O10.6106 (4)0.4906 (4)0.09480 (11)0.0324 (5)
C10.3394 (5)0.3716 (4)0.15759 (12)0.0187 (5)
C20.1123 (5)0.3776 (4)0.18047 (12)0.0206 (6)
H20.01170.44910.16640.025*
C30.1121 (6)0.2545 (4)0.22849 (13)0.0246 (6)
H30.01270.23240.25150.029*
C40.3337 (6)0.1708 (4)0.23551 (13)0.0263 (7)
H40.37810.08370.26350.032*
C50.4752 (5)0.2428 (4)0.19256 (13)0.0226 (6)
H50.62930.21220.18770.027*
C60.1582 (5)0.0986 (4)0.06275 (12)0.0212 (6)
C70.0636 (5)0.0829 (4)0.08711 (13)0.0228 (6)
H70.19120.15730.07820.027*
C80.0570 (5)0.0656 (4)0.12733 (14)0.0242 (6)
H80.17860.10440.14930.029*
C90.1688 (6)0.1445 (4)0.12808 (14)0.0255 (6)
H90.22110.24340.15060.031*
C100.3001 (5)0.0440 (4)0.08799 (13)0.0240 (6)
H100.45300.06750.07960.029*
C110.4118 (5)0.4452 (4)0.10113 (13)0.0209 (6)
C120.2345 (6)0.4393 (4)0.04970 (13)0.0238 (6)
H12A0.27330.52910.02060.029*
H12B0.08190.46800.06280.029*
C130.2334 (6)0.2466 (4)0.02244 (13)0.0250 (6)
H13A0.13030.24670.01260.030*
H13B0.38820.21890.01070.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0204 (2)0.0150 (2)0.0171 (2)0.00020 (17)0.00002 (14)0.00078 (16)
O10.0253 (11)0.0364 (14)0.0359 (13)0.0055 (10)0.0037 (9)0.0061 (11)
C10.0220 (13)0.0145 (12)0.0194 (13)0.0010 (11)0.0012 (10)0.0025 (11)
C20.0256 (14)0.0172 (13)0.0189 (13)0.0012 (12)0.0003 (11)0.0038 (11)
C30.0315 (16)0.0269 (16)0.0155 (13)0.0018 (13)0.0037 (11)0.0037 (12)
C40.0352 (17)0.0240 (15)0.0189 (14)0.0010 (13)0.0057 (12)0.0010 (12)
C50.0225 (14)0.0201 (14)0.0242 (14)0.0009 (12)0.0066 (11)0.0020 (12)
C60.0270 (15)0.0193 (14)0.0172 (13)0.0014 (12)0.0002 (11)0.0049 (11)
C70.0229 (14)0.0241 (15)0.0210 (14)0.0026 (12)0.0032 (11)0.0039 (11)
C80.0260 (15)0.0204 (14)0.0263 (15)0.0068 (12)0.0016 (12)0.0038 (12)
C90.0358 (17)0.0123 (13)0.0284 (15)0.0008 (12)0.0008 (13)0.0013 (12)
C100.0268 (15)0.0198 (14)0.0258 (15)0.0018 (12)0.0051 (12)0.0057 (12)
C110.0255 (15)0.0132 (13)0.0241 (14)0.0009 (11)0.0016 (11)0.0003 (11)
C120.0294 (16)0.0217 (14)0.0199 (14)0.0035 (12)0.0011 (12)0.0042 (12)
C130.0335 (16)0.0252 (15)0.0164 (13)0.0027 (13)0.0036 (12)0.0028 (12)
Geometric parameters (Å, º) top
Fe1—C12.002 (3)C4—H40.9300
Fe1—C22.015 (3)C5—H50.9300
Fe1—C72.036 (3)C6—C101.430 (4)
Fe1—C62.039 (3)C6—C71.430 (4)
Fe1—C52.045 (3)C6—C131.503 (4)
Fe1—C102.048 (3)C7—C81.424 (4)
Fe1—C82.049 (3)C7—H70.9300
Fe1—C92.056 (3)C8—C91.425 (4)
Fe1—C32.063 (3)C8—H80.9300
Fe1—C42.076 (3)C9—C101.427 (4)
O1—C111.212 (4)C9—H90.9300
C1—C21.440 (4)C10—H100.9300
C1—C51.441 (4)C11—C121.515 (4)
C1—C111.480 (4)C12—C131.544 (4)
C2—C31.421 (4)C12—H12A0.9700
C2—H20.9300C12—H12B0.9700
C3—C41.420 (5)C13—H13A0.9700
C3—H30.9300C13—H13B0.9700
C4—C51.415 (4)
C1—Fe1—C242.00 (12)C4—C3—H3125.6
C1—Fe1—C7118.70 (12)C2—C3—H3125.6
C2—Fe1—C7102.70 (12)Fe1—C3—H3127.7
C1—Fe1—C699.73 (12)C5—C4—C3108.2 (3)
C2—Fe1—C6114.13 (12)C5—C4—Fe168.73 (17)
C7—Fe1—C641.09 (12)C3—C4—Fe169.44 (17)
C1—Fe1—C541.70 (11)C5—C4—H4125.9
C2—Fe1—C569.68 (12)C3—C4—H4125.9
C7—Fe1—C5157.51 (13)Fe1—C4—H4127.5
C6—Fe1—C5121.23 (12)C4—C5—C1108.2 (3)
C1—Fe1—C10116.24 (12)C4—C5—Fe171.13 (17)
C2—Fe1—C10150.81 (12)C1—C5—Fe167.56 (16)
C7—Fe1—C1068.43 (12)C4—C5—H5125.9
C6—Fe1—C1040.96 (12)C1—C5—H5125.9
C5—Fe1—C10107.44 (13)Fe1—C5—H5126.9
C1—Fe1—C8158.01 (12)C10—C6—C7106.8 (3)
C2—Fe1—C8123.82 (13)C10—C6—C13126.6 (3)
C7—Fe1—C840.80 (12)C7—C6—C13126.4 (3)
C6—Fe1—C869.15 (12)C10—C6—Fe169.86 (16)
C5—Fe1—C8160.19 (13)C7—C6—Fe169.36 (16)
C10—Fe1—C868.35 (13)C13—C6—Fe1121.9 (2)
C1—Fe1—C9154.45 (13)C8—C7—C6108.7 (3)
C2—Fe1—C9163.46 (13)C8—C7—Fe170.09 (17)
C7—Fe1—C968.57 (13)C6—C7—Fe169.55 (16)
C6—Fe1—C969.15 (12)C8—C7—H7125.6
C5—Fe1—C9123.64 (13)C6—C7—H7125.6
C10—Fe1—C940.68 (12)Fe1—C7—H7126.3
C8—Fe1—C940.64 (13)C7—C8—C9108.0 (3)
C1—Fe1—C369.18 (12)C7—C8—Fe169.11 (17)
C2—Fe1—C340.77 (12)C9—C8—Fe169.95 (17)
C7—Fe1—C3120.66 (13)C7—C8—H8126.0
C6—Fe1—C3152.09 (12)C9—C8—H8126.0
C5—Fe1—C367.99 (13)Fe1—C8—H8126.5
C10—Fe1—C3166.86 (13)C8—C9—C10107.6 (3)
C8—Fe1—C3111.49 (13)C8—C9—Fe169.41 (17)
C9—Fe1—C3130.67 (13)C10—C9—Fe169.35 (17)
C1—Fe1—C469.06 (12)C8—C9—H9126.2
C2—Fe1—C468.71 (12)C10—C9—H9126.2
C7—Fe1—C4158.22 (13)Fe1—C9—H9126.6
C6—Fe1—C4160.60 (13)C9—C10—C6108.9 (3)
C5—Fe1—C440.15 (12)C9—C10—Fe169.97 (17)
C10—Fe1—C4128.66 (13)C6—C10—Fe169.17 (16)
C8—Fe1—C4126.57 (13)C9—C10—H10125.6
C9—Fe1—C4114.02 (13)C6—C10—H10125.6
C3—Fe1—C440.13 (13)Fe1—C10—H10126.9
C2—C1—C5107.3 (3)O1—C11—C1121.3 (3)
C2—C1—C11127.8 (3)O1—C11—C12121.2 (3)
C5—C1—C11123.4 (3)C1—C11—C12117.0 (3)
C2—C1—Fe169.48 (17)C11—C12—C13109.1 (3)
C5—C1—Fe170.74 (17)C11—C12—H12A109.9
C11—C1—Fe1114.28 (19)C13—C12—H12A109.9
C3—C2—C1107.6 (3)C11—C12—H12B109.9
C3—C2—Fe171.43 (18)C13—C12—H12B109.9
C1—C2—Fe168.51 (17)H12A—C12—H12B108.3
C3—C2—H2126.2C6—C13—C12114.1 (2)
C1—C2—H2126.2C6—C13—H13A108.7
Fe1—C2—H2125.4C12—C13—H13A108.7
C4—C3—C2108.7 (3)C6—C13—H13B108.7
C4—C3—Fe170.44 (17)C12—C13—H13B108.7
C2—C3—Fe167.80 (16)H13A—C13—H13B107.6

Experimental details

Crystal data
Chemical formula[Fe(C13H12O)]
Mr240.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)5.7745 (1), 7.3303 (2), 22.8596 (6)
β (°) 93.242 (2)
V3)966.07 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.52
Crystal size (mm)0.38 × 0.30 × 0.28
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.579, 0.660
No. of measured, independent and
observed [I > 2σ(I)] reflections
13397, 2223, 2102
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.096, 1.31
No. of reflections2223
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.38

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and publCIF (Westrip, 2008).

 

Acknowledgements

This work is a part of the long-term research project supported by the Ministry of Education, Youth and Sports of the Czech Republic (project No. MSM0021620857).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHeo, R. W. & Lee, T. R. (1999). J. Organomet. Chem. 578, 31–42.  Web of Science CrossRef CAS Google Scholar
First citationJones, N. D., Marsh, R. E. & Richards, J. H. (1965). Acta Cryst. 19, 330–336.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŠtěpnička, P. (2008). Editor. Ferrocenes: Ligands, Materials and Biomolecules. Chichester: Wiley.  Google Scholar
First citationTurbitt, T. D. & Watts, W. E. (1972). J. Organomet. Chem. 46, 109–117.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds