metal-organic compounds
[3]Ferrocenophan-1-one
aDepartment of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic
*Correspondence e-mail: stepnic@natur.cuni.cz
The 13H12O)], has been redetermined at 150 K. The tethered cyclopentadienyl (Cp) rings are tilted by 9.39 (18)° and assume an eclipsed conformation. The 1-oxopropane-1,3-diyl bridge has a pseudo-envelope conformation with the C=O group deviating by as much as 22.5 (2)° from coplanarity with its attached Cp ring.
of [3]ferrocenophan-1-one, [Fe(CRelated literature
For an overview of the chemistry of ferrocene, see: Štěpnička (2008). For the preparation of the title compound, see: Turbitt & Watts (1972). For its at room temperature, see: Jones et al. (1965). For an introductory review on the chemistry of ferrocenophanes with carbon bridges, see: Heo & Lee (1999).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON and publCIF (Westrip, 2008).
Supporting information
10.1107/S1600536808022927/dn2366sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808022927/dn2366Isup2.hkl
The title compound was synthesized by acylation of ferrocene with acryloyl chloride in the presence of AlCl3 (Turbitt & Watts, 1972) and characterized by 1H and 13C{1H} NMR spectra. Orange-red crystals suitable for X-ray
were obtained by liquid-phase diffusion of hexane into a solution of the compound in dichloromethane.All H-atoms were included in calculated positions and refined with d(C—H) = 0.93 Å (aromatic) and 0.97 Å (methylene) and Uiso(H) = 1.2Ueq(C).
Data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003) and publCIF (Westrip, 2008).Fig. 1. Side (a) and top (b) views of I showing the atom numbering scheme and displacement ellipsoids for the non-H atoms at the 30% probability level. |
[Fe(C13H12O)] | F(000) = 496 |
Mr = 240.08 | Dx = 1.651 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2391 reflections |
a = 5.7745 (1) Å | θ = 0.4–27.5° |
b = 7.3303 (2) Å | µ = 1.52 mm−1 |
c = 22.8596 (6) Å | T = 150 K |
β = 93.242 (2)° | Block, orange–red |
V = 966.07 (4) Å3 | 0.38 × 0.30 × 0.28 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 2223 independent reflections |
Radiation source: fine-focus sealed tube | 2102 reflections with I > 2σ(I) |
Horizontal graphite crystal monochromator | Rint = 0.032 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 1.8° |
ω and π scans to fill the Ewald sphere | h = −7→7 |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | k = −9→9 |
Tmin = 0.579, Tmax = 0.660 | l = −29→29 |
13397 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.31 | w = 1/[σ2(Fo2) + 2.5298P] where P = (Fo2 + 2Fc2)/3 |
2223 reflections | (Δ/σ)max < 0.001 |
136 parameters | Δρmax = 0.53 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
[Fe(C13H12O)] | V = 966.07 (4) Å3 |
Mr = 240.08 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.7745 (1) Å | µ = 1.52 mm−1 |
b = 7.3303 (2) Å | T = 150 K |
c = 22.8596 (6) Å | 0.38 × 0.30 × 0.28 mm |
β = 93.242 (2)° |
Nonius KappaCCD diffractometer | 2223 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | 2102 reflections with I > 2σ(I) |
Tmin = 0.579, Tmax = 0.660 | Rint = 0.032 |
13397 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.31 | Δρmax = 0.53 e Å−3 |
2223 reflections | Δρmin = −0.38 e Å−3 |
136 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.18818 (7) | 0.12608 (6) | 0.151598 (17) | 0.01753 (13) | |
O1 | 0.6106 (4) | 0.4906 (4) | 0.09480 (11) | 0.0324 (5) | |
C1 | 0.3394 (5) | 0.3716 (4) | 0.15759 (12) | 0.0187 (5) | |
C2 | 0.1123 (5) | 0.3776 (4) | 0.18047 (12) | 0.0206 (6) | |
H2 | −0.0117 | 0.4491 | 0.1664 | 0.025* | |
C3 | 0.1121 (6) | 0.2545 (4) | 0.22849 (13) | 0.0246 (6) | |
H3 | −0.0127 | 0.2324 | 0.2515 | 0.029* | |
C4 | 0.3337 (6) | 0.1708 (4) | 0.23551 (13) | 0.0263 (7) | |
H4 | 0.3781 | 0.0837 | 0.2635 | 0.032* | |
C5 | 0.4752 (5) | 0.2428 (4) | 0.19256 (13) | 0.0226 (6) | |
H5 | 0.6293 | 0.2122 | 0.1877 | 0.027* | |
C6 | 0.1582 (5) | 0.0986 (4) | 0.06275 (12) | 0.0212 (6) | |
C7 | −0.0636 (5) | 0.0829 (4) | 0.08711 (13) | 0.0228 (6) | |
H7 | −0.1912 | 0.1573 | 0.0782 | 0.027* | |
C8 | −0.0570 (5) | −0.0656 (4) | 0.12733 (14) | 0.0242 (6) | |
H8 | −0.1786 | −0.1044 | 0.1493 | 0.029* | |
C9 | 0.1688 (6) | −0.1445 (4) | 0.12808 (14) | 0.0255 (6) | |
H9 | 0.2211 | −0.2434 | 0.1506 | 0.031* | |
C10 | 0.3001 (5) | −0.0440 (4) | 0.08799 (13) | 0.0240 (6) | |
H10 | 0.4530 | −0.0675 | 0.0796 | 0.029* | |
C11 | 0.4118 (5) | 0.4452 (4) | 0.10113 (13) | 0.0209 (6) | |
C12 | 0.2345 (6) | 0.4393 (4) | 0.04970 (13) | 0.0238 (6) | |
H12A | 0.2733 | 0.5291 | 0.0206 | 0.029* | |
H12B | 0.0819 | 0.4680 | 0.0628 | 0.029* | |
C13 | 0.2334 (6) | 0.2466 (4) | 0.02244 (13) | 0.0250 (6) | |
H13A | 0.1303 | 0.2467 | −0.0126 | 0.030* | |
H13B | 0.3882 | 0.2189 | 0.0107 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0204 (2) | 0.0150 (2) | 0.0171 (2) | 0.00020 (17) | −0.00002 (14) | −0.00078 (16) |
O1 | 0.0253 (11) | 0.0364 (14) | 0.0359 (13) | −0.0055 (10) | 0.0037 (9) | 0.0061 (11) |
C1 | 0.0220 (13) | 0.0145 (12) | 0.0194 (13) | −0.0010 (11) | −0.0012 (10) | −0.0025 (11) |
C2 | 0.0256 (14) | 0.0172 (13) | 0.0189 (13) | 0.0012 (12) | 0.0003 (11) | −0.0038 (11) |
C3 | 0.0315 (16) | 0.0269 (16) | 0.0155 (13) | −0.0018 (13) | 0.0037 (11) | −0.0037 (12) |
C4 | 0.0352 (17) | 0.0240 (15) | 0.0189 (14) | −0.0010 (13) | −0.0057 (12) | 0.0010 (12) |
C5 | 0.0225 (14) | 0.0201 (14) | 0.0242 (14) | −0.0009 (12) | −0.0066 (11) | −0.0020 (12) |
C6 | 0.0270 (15) | 0.0193 (14) | 0.0172 (13) | −0.0014 (12) | −0.0002 (11) | −0.0049 (11) |
C7 | 0.0229 (14) | 0.0241 (15) | 0.0210 (14) | −0.0026 (12) | −0.0032 (11) | −0.0039 (11) |
C8 | 0.0260 (15) | 0.0204 (14) | 0.0263 (15) | −0.0068 (12) | 0.0016 (12) | −0.0038 (12) |
C9 | 0.0358 (17) | 0.0123 (13) | 0.0284 (15) | −0.0008 (12) | 0.0008 (13) | −0.0013 (12) |
C10 | 0.0268 (15) | 0.0198 (14) | 0.0258 (15) | 0.0018 (12) | 0.0051 (12) | −0.0057 (12) |
C11 | 0.0255 (15) | 0.0132 (13) | 0.0241 (14) | −0.0009 (11) | 0.0016 (11) | 0.0003 (11) |
C12 | 0.0294 (16) | 0.0217 (14) | 0.0199 (14) | −0.0035 (12) | −0.0011 (12) | 0.0042 (12) |
C13 | 0.0335 (16) | 0.0252 (15) | 0.0164 (13) | −0.0027 (13) | 0.0036 (12) | −0.0028 (12) |
Fe1—C1 | 2.002 (3) | C4—H4 | 0.9300 |
Fe1—C2 | 2.015 (3) | C5—H5 | 0.9300 |
Fe1—C7 | 2.036 (3) | C6—C10 | 1.430 (4) |
Fe1—C6 | 2.039 (3) | C6—C7 | 1.430 (4) |
Fe1—C5 | 2.045 (3) | C6—C13 | 1.503 (4) |
Fe1—C10 | 2.048 (3) | C7—C8 | 1.424 (4) |
Fe1—C8 | 2.049 (3) | C7—H7 | 0.9300 |
Fe1—C9 | 2.056 (3) | C8—C9 | 1.425 (4) |
Fe1—C3 | 2.063 (3) | C8—H8 | 0.9300 |
Fe1—C4 | 2.076 (3) | C9—C10 | 1.427 (4) |
O1—C11 | 1.212 (4) | C9—H9 | 0.9300 |
C1—C2 | 1.440 (4) | C10—H10 | 0.9300 |
C1—C5 | 1.441 (4) | C11—C12 | 1.515 (4) |
C1—C11 | 1.480 (4) | C12—C13 | 1.544 (4) |
C2—C3 | 1.421 (4) | C12—H12A | 0.9700 |
C2—H2 | 0.9300 | C12—H12B | 0.9700 |
C3—C4 | 1.420 (5) | C13—H13A | 0.9700 |
C3—H3 | 0.9300 | C13—H13B | 0.9700 |
C4—C5 | 1.415 (4) | ||
C1—Fe1—C2 | 42.00 (12) | C4—C3—H3 | 125.6 |
C1—Fe1—C7 | 118.70 (12) | C2—C3—H3 | 125.6 |
C2—Fe1—C7 | 102.70 (12) | Fe1—C3—H3 | 127.7 |
C1—Fe1—C6 | 99.73 (12) | C5—C4—C3 | 108.2 (3) |
C2—Fe1—C6 | 114.13 (12) | C5—C4—Fe1 | 68.73 (17) |
C7—Fe1—C6 | 41.09 (12) | C3—C4—Fe1 | 69.44 (17) |
C1—Fe1—C5 | 41.70 (11) | C5—C4—H4 | 125.9 |
C2—Fe1—C5 | 69.68 (12) | C3—C4—H4 | 125.9 |
C7—Fe1—C5 | 157.51 (13) | Fe1—C4—H4 | 127.5 |
C6—Fe1—C5 | 121.23 (12) | C4—C5—C1 | 108.2 (3) |
C1—Fe1—C10 | 116.24 (12) | C4—C5—Fe1 | 71.13 (17) |
C2—Fe1—C10 | 150.81 (12) | C1—C5—Fe1 | 67.56 (16) |
C7—Fe1—C10 | 68.43 (12) | C4—C5—H5 | 125.9 |
C6—Fe1—C10 | 40.96 (12) | C1—C5—H5 | 125.9 |
C5—Fe1—C10 | 107.44 (13) | Fe1—C5—H5 | 126.9 |
C1—Fe1—C8 | 158.01 (12) | C10—C6—C7 | 106.8 (3) |
C2—Fe1—C8 | 123.82 (13) | C10—C6—C13 | 126.6 (3) |
C7—Fe1—C8 | 40.80 (12) | C7—C6—C13 | 126.4 (3) |
C6—Fe1—C8 | 69.15 (12) | C10—C6—Fe1 | 69.86 (16) |
C5—Fe1—C8 | 160.19 (13) | C7—C6—Fe1 | 69.36 (16) |
C10—Fe1—C8 | 68.35 (13) | C13—C6—Fe1 | 121.9 (2) |
C1—Fe1—C9 | 154.45 (13) | C8—C7—C6 | 108.7 (3) |
C2—Fe1—C9 | 163.46 (13) | C8—C7—Fe1 | 70.09 (17) |
C7—Fe1—C9 | 68.57 (13) | C6—C7—Fe1 | 69.55 (16) |
C6—Fe1—C9 | 69.15 (12) | C8—C7—H7 | 125.6 |
C5—Fe1—C9 | 123.64 (13) | C6—C7—H7 | 125.6 |
C10—Fe1—C9 | 40.68 (12) | Fe1—C7—H7 | 126.3 |
C8—Fe1—C9 | 40.64 (13) | C7—C8—C9 | 108.0 (3) |
C1—Fe1—C3 | 69.18 (12) | C7—C8—Fe1 | 69.11 (17) |
C2—Fe1—C3 | 40.77 (12) | C9—C8—Fe1 | 69.95 (17) |
C7—Fe1—C3 | 120.66 (13) | C7—C8—H8 | 126.0 |
C6—Fe1—C3 | 152.09 (12) | C9—C8—H8 | 126.0 |
C5—Fe1—C3 | 67.99 (13) | Fe1—C8—H8 | 126.5 |
C10—Fe1—C3 | 166.86 (13) | C8—C9—C10 | 107.6 (3) |
C8—Fe1—C3 | 111.49 (13) | C8—C9—Fe1 | 69.41 (17) |
C9—Fe1—C3 | 130.67 (13) | C10—C9—Fe1 | 69.35 (17) |
C1—Fe1—C4 | 69.06 (12) | C8—C9—H9 | 126.2 |
C2—Fe1—C4 | 68.71 (12) | C10—C9—H9 | 126.2 |
C7—Fe1—C4 | 158.22 (13) | Fe1—C9—H9 | 126.6 |
C6—Fe1—C4 | 160.60 (13) | C9—C10—C6 | 108.9 (3) |
C5—Fe1—C4 | 40.15 (12) | C9—C10—Fe1 | 69.97 (17) |
C10—Fe1—C4 | 128.66 (13) | C6—C10—Fe1 | 69.17 (16) |
C8—Fe1—C4 | 126.57 (13) | C9—C10—H10 | 125.6 |
C9—Fe1—C4 | 114.02 (13) | C6—C10—H10 | 125.6 |
C3—Fe1—C4 | 40.13 (13) | Fe1—C10—H10 | 126.9 |
C2—C1—C5 | 107.3 (3) | O1—C11—C1 | 121.3 (3) |
C2—C1—C11 | 127.8 (3) | O1—C11—C12 | 121.2 (3) |
C5—C1—C11 | 123.4 (3) | C1—C11—C12 | 117.0 (3) |
C2—C1—Fe1 | 69.48 (17) | C11—C12—C13 | 109.1 (3) |
C5—C1—Fe1 | 70.74 (17) | C11—C12—H12A | 109.9 |
C11—C1—Fe1 | 114.28 (19) | C13—C12—H12A | 109.9 |
C3—C2—C1 | 107.6 (3) | C11—C12—H12B | 109.9 |
C3—C2—Fe1 | 71.43 (18) | C13—C12—H12B | 109.9 |
C1—C2—Fe1 | 68.51 (17) | H12A—C12—H12B | 108.3 |
C3—C2—H2 | 126.2 | C6—C13—C12 | 114.1 (2) |
C1—C2—H2 | 126.2 | C6—C13—H13A | 108.7 |
Fe1—C2—H2 | 125.4 | C12—C13—H13A | 108.7 |
C4—C3—C2 | 108.7 (3) | C6—C13—H13B | 108.7 |
C4—C3—Fe1 | 70.44 (17) | C12—C13—H13B | 108.7 |
C2—C3—Fe1 | 67.80 (16) | H13A—C13—H13B | 107.6 |
Experimental details
Crystal data | |
Chemical formula | [Fe(C13H12O)] |
Mr | 240.08 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 5.7745 (1), 7.3303 (2), 22.8596 (6) |
β (°) | 93.242 (2) |
V (Å3) | 966.07 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.52 |
Crystal size (mm) | 0.38 × 0.30 × 0.28 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SORTAV; Blessing, 1995) |
Tmin, Tmax | 0.579, 0.660 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13397, 2223, 2102 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.096, 1.31 |
No. of reflections | 2223 |
No. of parameters | 136 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.53, −0.38 |
Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and publCIF (Westrip, 2008).
Acknowledgements
This work is a part of the long-term research project supported by the Ministry of Education, Youth and Sports of the Czech Republic (project No. MSM0021620857).
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Heo, R. W. & Lee, T. R. (1999). J. Organomet. Chem. 578, 31–42. Web of Science CrossRef CAS Google Scholar
Jones, N. D., Marsh, R. E. & Richards, J. H. (1965). Acta Cryst. 19, 330–336. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Štěpnička, P. (2008). Editor. Ferrocenes: Ligands, Materials and Biomolecules. Chichester: Wiley. Google Scholar
Turbitt, T. D. & Watts, W. E. (1972). J. Organomet. Chem. 46, 109–117. CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2008). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The chemistry of ferrocene has received considerable attention because of its widespread applications ranging from material science to biomedicine. A particularly successful area is undoubtedly catalysis with ferrocene ligands (Štěpnička, 2008). A number of ferrocene ligands has been prepared a studied as ligands for transtion metal-mediated reactions. Among the numerous ligands reported to date, a specific class is constituted by the donors whose cyclopentadienyl (Cp) rings are interconnected with a linking group (i.e., ferrocenophane-type compounds (Heo & Lee, 1999)). [3]ferrocenophan-1-one (I) represent a convenient entry to such donors (Štěpnička, 2008). Because the crystal structure of I has been reported already in the middle 1960's (Jones et al., 1965), we have redetermined it at 150 K in order to obtain more precise structural information.
The molecular structure of I (Figure 1) is rather unexceptional as far as interatomic distances and angles concerns. Because of spatial constraints imposed by the 1-oxapropan-1,3-diyl linker, the Cp rings are tilted by 9.39 (18)° and adopt a near-to-eclipsed conformation characterized by the torsion angle C(1)—Cg(1)—Cg(2)—C(6) of -5.6 (2)°, where Cg(1) and Cg(2) are the centroids of the Cp rings C(1–5) and C(6–10), respectively. The iron—Cg distances in I are: Fe1—Cg(1) 1.6399 (14) Å and Fe1—Cg(2) 1.6463 (14) Å. The aliphatic bridge assumes a pseudoenvelope conformation and its C═O bond (C11—O 1.2012 (4) Å) is displaced above its bonding Cp ring, the angle subtended by the C?O vector and the Cp ring being 22.5 (2)°.