metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(di­allyl­benzimidazolium) tetra­bromidocuprate(II)

aDepartment of Inorganic Chemistry, Ivan Franko National University, Cyryla and Mefodia 6, L'viv, Ukraine, and bDepartment of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
*Correspondence e-mail: myskiv@franko.lviv.ua

(Received 11 July 2008; accepted 22 July 2008; online 26 July 2008)

The structure of the title ionic copper(II) compound, (C13H15N2)2[CuBr4], is built up of isolated 1,3-diallyl­benzimidazolium cations and [CuBr4]2− anions which are inter­connected by electrostatic inter­actions. Differences in packing of the heterocyclic cores results in a different structure compared with earlier investigated chloride and bromide analogues.

Related literature

For related literature, see: Goreshnik et al. (1999[Goreshnik, E. A., Davydov, V. N., Pavlyuk, A. V. & Mys'kiv, M. G. (1999). Russ. J. Coord. Chem. 25, 732-737.], 2000[Goreshnik, E. A., Schollmeyer, D., Mys'kiv, M. G. & Pavl'uk, O. V. (2000). Z. Anorg. Allg. Chem. 626, 1016-1019.]); Hathaway (1982[Hathaway, B. J. (1982). Coord. Chem. Rev. 41, 423-487.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H15N2)2[CuBr4]

  • Mr = 781.69

  • Monoclinic, P 21 /n

  • a = 10.8619 (7) Å

  • b = 15.3447 (7) Å

  • c = 18.3282 (10) Å

  • β = 105.451 (2)°

  • V = 2944.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.19 mm−1

  • T = 200 K

  • 0.12 × 0.09 × 0.07 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.522, Tmax = 0.639

  • 24051 measured reflections

  • 6609 independent reflections

  • 4956 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.136

  • S = 1.21

  • 6609 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The structure of the title compound (I) is built by isolated 1,3-diallylbenzimidazolium cations and CuBr42- anions which are interconnected by electrostatic interaction (Fig. 1). The copper(II) atom possesses a less common distorted tetrahedral coordination. The flattened tetrahedron of the CuII atom can be considered as a result of the Jahn–Teller effect similarly as it takes place in the structure of CsCuCl3 (Hathaway, 1982).

Compound I noticeably differs from earlier investigated chloride [C13H15N2]+2[CuIICl4]2- (Goreshnik et al., 1999) and chloride–bromide [C13H15N2]+2[CuCl2.58Br1.42]2- (Goreshnik et al., 2000) derivatives. Last two compounds are isostructural and crystallize, contrary to compound I, in an orthorhombic Fddd space group. The main difference between two structural types is the packing of the closest benimidazole rings. In chloride and chloride–bromide derivatives two closest heterocyclic cores are oriented in a 'head-to-tail' manner with the location of benzene ring of one organic molecule opposite the imidazole ring of another one (Fig. 2 left). The planes of the closest benzimidazole rings are slightly tilted. In compound I benzene ring of one organic moiety is oriented strictly opposite the benzene ring of another one (Fig. 2 right). Two closest benzimidazole cores appear to be strictly parallel, and the ring–ring distanse of 3.752 (9) Å indicates the presence of ππ stacking interaction.

Related literature top

For related literature, see: Goreshnik et al. (1999, 2000); Hathaway (1982).

Experimental top

Compound I was synthesized from Cu(CF3COO)2H2O and 1,3-diallylbezimidazolium bromide in ethanol solution.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C ).

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalClear (Rigaku, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. View of (I) (30% probability displacement ellipsoids)
[Figure 2] Fig. 2. Difference in a packing of heterocyclic cores in [C13H15N2]+2[CuBr4]2- and [C13H15N2]+2[CuCl4]2- compounds
Bis(diallylbenzimidazolium) tetrabromidocuprate(II) top
Crystal data top
(C13H15N2)2[CuBr4]F(000) = 1532
Mr = 781.69Dx = 1.763 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 8643 reflections
a = 10.8619 (7) Åθ = 1.8–28.9°
b = 15.3447 (7) ŵ = 6.19 mm1
c = 18.3282 (10) ÅT = 200 K
β = 105.451 (2)°Chunk, black
V = 2944.4 (3) Å30.12 × 0.09 × 0.07 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
4956 reflections with I > 2σ(I)
dtprofit.ref scansRint = 0.052
Absorption correction: multi-scan
(Blessing, 1995)
θmax = 29.5°, θmin = 1.8°
Tmin = 0.522, Tmax = 0.639h = 1515
24051 measured reflectionsk = 2121
6609 independent reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0337P)2 + 3.822P]
where P = (Fo2 + 2Fc2)/3
6609 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 1.03 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
(C13H15N2)2[CuBr4]V = 2944.4 (3) Å3
Mr = 781.69Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8619 (7) ŵ = 6.19 mm1
b = 15.3447 (7) ÅT = 200 K
c = 18.3282 (10) Å0.12 × 0.09 × 0.07 mm
β = 105.451 (2)°
Data collection top
Rigaku Mercury CCD
diffractometer
6609 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
4956 reflections with I > 2σ(I)
Tmin = 0.522, Tmax = 0.639Rint = 0.052
24051 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.21Δρmax = 1.03 e Å3
6609 reflectionsΔρmin = 0.54 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.00902 (7)0.69985 (4)0.39870 (4)0.0588 (2)
Br20.08214 (7)0.78208 (5)0.22471 (4)0.05540 (19)
Br30.28719 (7)0.88041 (5)0.39572 (4)0.0670 (2)
Br40.04726 (7)0.93993 (5)0.37629 (4)0.0606 (2)
Cu10.08067 (7)0.82226 (5)0.34949 (4)0.0479 (2)
N10.1331 (5)1.0593 (3)0.1875 (3)0.0506 (13)
N20.0731 (5)1.0430 (3)0.1659 (3)0.0450 (12)
N30.6672 (5)0.6752 (3)0.1157 (3)0.0500 (13)
N40.4599 (5)0.6754 (4)0.0790 (3)0.0596 (15)
C10.0793 (7)1.0878 (4)0.1133 (4)0.0498 (15)
C20.1342 (7)1.1211 (4)0.0586 (4)0.0595 (18)
H20.22181.12940.06790.071*
C30.0514 (8)1.1407 (4)0.0092 (4)0.0654 (19)
H30.08411.16300.04730.078*
C40.0790 (8)1.1290 (4)0.0241 (4)0.0633 (19)
H40.13061.14280.07190.076*
C50.1354 (7)1.0974 (4)0.0303 (4)0.0578 (17)
H50.22321.09060.02110.069*
C60.0509 (6)1.0766 (4)0.0994 (3)0.0472 (14)
C70.0392 (6)1.0332 (4)0.2152 (4)0.0501 (15)
H70.05071.01060.26360.060*
C80.1982 (6)1.0191 (4)0.1768 (4)0.0524 (15)
H8A0.25911.06530.15730.063*
H8B0.19081.01280.23040.063*
C90.2457 (7)0.9362 (4)0.1373 (4)0.0599 (17)
H90.20020.88550.15470.072*
C100.3459 (8)0.9295 (6)0.0805 (5)0.084 (3)
H10A0.39360.97890.06180.101*
H10B0.37020.87550.05850.101*
C110.2709 (7)1.0506 (5)0.2243 (4)0.0643 (18)
H11A0.28471.04970.27880.077*
H11B0.31591.10050.21150.077*
C120.3226 (7)0.9698 (5)0.2000 (4)0.0636 (18)
H120.29530.91670.21440.076*
C130.4048 (8)0.9693 (5)0.1592 (5)0.090 (3)
H13A0.43361.02160.14400.108*
H13B0.43450.91660.14540.108*
C140.6251 (6)0.7068 (4)0.1764 (3)0.0474 (14)
C150.6927 (7)0.7363 (4)0.2464 (4)0.0602 (18)
H150.78150.73800.26130.072*
C160.6190 (9)0.7634 (5)0.2931 (4)0.070 (2)
H160.66010.78360.34130.085*
C170.4853 (9)0.7619 (4)0.2712 (4)0.064 (2)
H170.44060.78010.30520.077*
C180.4193 (7)0.7341 (4)0.2007 (4)0.0624 (19)
H180.33050.73380.18560.075*
C190.4916 (7)0.7064 (4)0.1530 (4)0.0526 (16)
C200.5660 (6)0.6565 (4)0.0598 (3)0.0524 (15)
H200.56880.63330.01340.063*
C210.7995 (6)0.6605 (5)0.1136 (4)0.0594 (17)
H21A0.84900.71260.13150.071*
H21B0.80100.65100.06150.071*
C220.8619 (8)0.5839 (6)0.1607 (6)0.081 (2)
H220.88170.59040.21300.098*
C230.8892 (9)0.5139 (7)0.1368 (7)0.118 (4)
H23A0.87130.50430.08490.142*
H23B0.92770.47040.17050.142*
C240.3253 (8)0.6751 (6)0.0274 (4)0.086 (3)
H24A0.28500.73080.03050.103*
H24B0.32800.66640.02460.103*
C250.2548 (10)0.6089 (6)0.0486 (4)0.094 (3)
H250.29070.55410.06130.112*
C260.1296 (8)0.6254 (7)0.0506 (6)0.105 (3)
H26A0.09410.68030.03790.126*
H26B0.08160.58150.06470.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0615 (4)0.0512 (4)0.0634 (5)0.0018 (3)0.0158 (3)0.0067 (3)
Br20.0578 (4)0.0624 (4)0.0460 (4)0.0059 (3)0.0139 (3)0.0070 (3)
Br30.0574 (4)0.0742 (5)0.0679 (5)0.0087 (4)0.0143 (4)0.0175 (4)
Br40.0731 (5)0.0568 (4)0.0580 (4)0.0202 (3)0.0283 (4)0.0101 (3)
Cu10.0519 (5)0.0441 (4)0.0485 (5)0.0020 (3)0.0150 (4)0.0008 (3)
N10.051 (3)0.046 (3)0.056 (3)0.003 (2)0.016 (3)0.006 (2)
N20.048 (3)0.045 (3)0.045 (3)0.000 (2)0.019 (2)0.003 (2)
N30.049 (3)0.057 (3)0.043 (3)0.003 (2)0.010 (2)0.001 (2)
N40.047 (3)0.090 (4)0.043 (3)0.006 (3)0.012 (3)0.004 (3)
C10.066 (4)0.036 (3)0.049 (4)0.001 (3)0.019 (3)0.001 (3)
C20.069 (5)0.048 (4)0.073 (5)0.002 (3)0.040 (4)0.002 (3)
C30.087 (6)0.051 (4)0.068 (5)0.005 (4)0.037 (4)0.013 (3)
C40.092 (6)0.050 (4)0.050 (4)0.011 (4)0.022 (4)0.010 (3)
C50.065 (4)0.051 (4)0.058 (4)0.002 (3)0.017 (4)0.004 (3)
C60.062 (4)0.039 (3)0.044 (4)0.003 (3)0.018 (3)0.003 (3)
C70.060 (4)0.046 (3)0.045 (4)0.004 (3)0.016 (3)0.001 (3)
C80.048 (4)0.062 (4)0.050 (4)0.001 (3)0.019 (3)0.006 (3)
C90.061 (4)0.052 (4)0.070 (5)0.003 (3)0.025 (4)0.000 (3)
C100.082 (6)0.095 (7)0.081 (6)0.023 (5)0.034 (5)0.015 (5)
C110.061 (4)0.064 (5)0.067 (5)0.006 (4)0.015 (4)0.000 (4)
C120.054 (4)0.055 (4)0.083 (5)0.002 (3)0.022 (4)0.011 (4)
C130.095 (7)0.062 (5)0.132 (8)0.006 (5)0.062 (6)0.022 (5)
C140.054 (4)0.042 (3)0.046 (4)0.002 (3)0.014 (3)0.005 (3)
C150.073 (5)0.059 (4)0.045 (4)0.008 (4)0.010 (4)0.001 (3)
C160.106 (7)0.054 (4)0.046 (4)0.001 (4)0.010 (4)0.007 (3)
C170.105 (6)0.043 (4)0.052 (5)0.010 (4)0.034 (4)0.000 (3)
C180.071 (5)0.062 (4)0.060 (5)0.019 (4)0.027 (4)0.012 (3)
C190.060 (4)0.051 (4)0.046 (4)0.001 (3)0.013 (3)0.005 (3)
C200.050 (4)0.068 (4)0.038 (3)0.004 (3)0.009 (3)0.006 (3)
C210.045 (4)0.065 (4)0.071 (5)0.008 (3)0.020 (3)0.008 (3)
C220.066 (5)0.076 (6)0.116 (7)0.005 (4)0.048 (5)0.010 (5)
C230.070 (6)0.089 (7)0.184 (11)0.007 (6)0.013 (7)0.002 (7)
C240.089 (7)0.108 (7)0.064 (5)0.010 (5)0.025 (5)0.002 (5)
C250.120 (8)0.082 (6)0.067 (6)0.016 (6)0.004 (5)0.015 (5)
C260.056 (5)0.120 (8)0.145 (9)0.019 (5)0.039 (6)0.031 (7)
Geometric parameters (Å, º) top
Br1—Cu12.3999 (10)C10—H10B0.9300
Br2—Cu12.3728 (9)C11—C121.477 (9)
Br3—Cu12.3524 (11)C11—H11A0.9700
Br4—Cu12.4074 (10)C11—H11B0.9700
N1—C71.317 (8)C12—C131.308 (10)
N1—C11.400 (8)C12—H120.9300
N1—C111.474 (8)C13—H13A0.9300
N2—C71.319 (8)C13—H13B0.9300
N2—C61.402 (7)C14—C151.375 (9)
N2—C81.472 (7)C14—C191.399 (9)
N3—C201.319 (7)C15—C161.382 (10)
N3—C141.397 (8)C15—H150.9300
N3—C211.465 (8)C16—C171.400 (11)
N4—C201.323 (8)C16—H160.9300
N4—C191.392 (8)C17—C181.368 (10)
N4—C241.515 (10)C17—H170.9300
C1—C61.379 (9)C18—C191.389 (9)
C1—C21.392 (8)C18—H180.9300
C2—C31.360 (10)C20—H200.9300
C2—H20.9300C21—C221.510 (10)
C3—C41.381 (10)C21—H21A0.9700
C3—H30.9300C21—H21B0.9700
C4—C51.389 (9)C22—C231.226 (12)
C4—H40.9300C22—H220.9300
C5—C61.388 (9)C23—H23A0.9300
C5—H50.9300C23—H23B0.9300
C7—H70.9300C24—C251.388 (11)
C8—C91.486 (9)C24—H24A0.9700
C8—H8A0.9700C24—H24B0.9700
C8—H8B0.9700C25—C261.393 (12)
C9—C101.294 (10)C25—H250.9300
C9—H90.9300C26—H26A0.9300
C10—H10A0.9300C26—H26B0.9300
Br3—Cu1—Br2101.25 (4)N1—C11—H11B109.4
Br3—Cu1—Br1127.24 (4)C12—C11—H11B109.4
Br2—Cu1—Br1105.46 (4)H11A—C11—H11B108.0
Br3—Cu1—Br4100.89 (4)C13—C12—C11123.4 (7)
Br2—Cu1—Br4122.96 (4)C13—C12—H12118.3
Br1—Cu1—Br4101.31 (4)C11—C12—H12118.3
C7—N1—C1107.7 (5)C12—C13—H13A120.0
C7—N1—C11126.3 (6)C12—C13—H13B120.0
C1—N1—C11125.7 (6)H13A—C13—H13B120.0
C7—N2—C6107.2 (5)C15—C14—N3130.6 (6)
C7—N2—C8126.7 (5)C15—C14—C19122.7 (6)
C6—N2—C8126.1 (5)N3—C14—C19106.7 (5)
C20—N3—C14108.2 (5)C14—C15—C16115.1 (7)
C20—N3—C21124.5 (5)C14—C15—H15122.5
C14—N3—C21127.3 (5)C16—C15—H15122.5
C20—N4—C19109.1 (6)C15—C16—C17123.0 (7)
C20—N4—C24126.7 (6)C15—C16—H16118.5
C19—N4—C24123.8 (6)C17—C16—H16118.5
C6—C1—C2121.8 (6)C18—C17—C16121.3 (7)
C6—C1—N1106.5 (5)C18—C17—H17119.4
C2—C1—N1131.7 (7)C16—C17—H17119.4
C3—C2—C1115.7 (7)C17—C18—C19116.6 (7)
C3—C2—H2122.2C17—C18—H18121.7
C1—C2—H2122.2C19—C18—H18121.7
C2—C3—C4123.1 (7)C18—C19—N4133.2 (7)
C2—C3—H3118.4C18—C19—C14121.3 (6)
C4—C3—H3118.4N4—C19—C14105.5 (6)
C3—C4—C5121.9 (7)N3—C20—N4110.5 (6)
C3—C4—H4119.1N3—C20—H20124.7
C5—C4—H4119.1N4—C20—H20124.7
C6—C5—C4115.1 (7)N3—C21—C22113.5 (5)
C6—C5—H5122.4N3—C21—H21A108.9
C4—C5—H5122.4C22—C21—H21A108.9
C1—C6—C5122.4 (6)N3—C21—H21B108.9
C1—C6—N2106.9 (5)C22—C21—H21B108.9
C5—C6—N2130.7 (6)H21A—C21—H21B107.7
N1—C7—N2111.8 (6)C23—C22—C21126.3 (10)
N1—C7—H7124.1C23—C22—H22116.8
N2—C7—H7124.1C21—C22—H22116.8
N2—C8—C9111.1 (5)C22—C23—H23A120.0
N2—C8—H8A109.4C22—C23—H23B120.0
C9—C8—H8A109.4H23A—C23—H23B120.0
N2—C8—H8B109.4C25—C24—N4109.9 (8)
C9—C8—H8B109.4C25—C24—H24A109.7
H8A—C8—H8B108.0N4—C24—H24A109.7
C10—C9—C8124.5 (7)C25—C24—H24B109.7
C10—C9—H9117.7N4—C24—H24B109.7
C8—C9—H9117.7H24A—C24—H24B108.2
C9—C10—H10A120.0C24—C25—C26119.4 (10)
C9—C10—H10B120.0C24—C25—H25120.3
H10A—C10—H10B120.0C26—C25—H25120.3
N1—C11—C12111.1 (6)C25—C26—H26A120.0
N1—C11—H11A109.4C25—C26—H26B120.0
C12—C11—H11A109.4H26A—C26—H26B120.0

Experimental details

Crystal data
Chemical formula(C13H15N2)2[CuBr4]
Mr781.69
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)10.8619 (7), 15.3447 (7), 18.3282 (10)
β (°) 105.451 (2)
V3)2944.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)6.19
Crystal size (mm)0.12 × 0.09 × 0.07
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.522, 0.639
No. of measured, independent and
observed [I > 2σ(I)] reflections
24051, 6609, 4956
Rint0.052
(sin θ/λ)max1)0.692
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.136, 1.21
No. of reflections6609
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 0.54

Computer programs: CrystalClear (Rigaku, 2001), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 1999), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

 

Acknowledgements

The authors gratefully acknowledge the Slovenian Research Agency (ARRS) and the Ukrainian Ministry for Science and Higher Education for financial support (bilateral project BI-UA/07-08-003, M/107-2007).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGoreshnik, E. A., Davydov, V. N., Pavlyuk, A. V. & Mys'kiv, M. G. (1999). Russ. J. Coord. Chem. 25, 732–737.  CAS Google Scholar
First citationGoreshnik, E. A., Schollmeyer, D., Mys'kiv, M. G. & Pavl'uk, O. V. (2000). Z. Anorg. Allg. Chem. 626, 1016–1019.  CrossRef CAS Google Scholar
First citationHathaway, B. J. (1982). Coord. Chem. Rev. 41, 423–487.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds