metal-organic compounds
Bis(triphenylguanidinium) tetrachloridocuprate(II)
aCEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal
*Correspondence e-mail: psidonio@pollux.fis.uc.pt
The structure of the title compound, (C19H18N3)2[CuCl4], consists of square-planar [CuCl4]2− anions and triphenylguanidinium cations. The CuII ion occupies a crystallographic inversion centre. In the cation, the dihedral angles between the phenyl rings and the plane defined by the central guanidinium fragment are in the range 51.9 (4)–64.4 (3)°. N—H⋯Cl hydrogen bonds assemble the ions into infinite chains running along the b axis.
Related literature
For related literature, see: Bian et al. (2005); Kemme et al. (1988); Klement et al. (1995); Pereira Silva et al. (2006); Pereira Silva et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808023404/er2054sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808023404/er2054Isup2.hkl
Copper(II) chloride dihydrate (Riedel-de-Haën, pro analysis >99%, 0.125 mmol) was dissolved in 50 ml of hot water and triphenylguanidine (TCI, 97%, 0.25 mmol) was dissolved in ethanol (50 ml). The two solutions were mixed and several drops of HCl (Merck, 37%) were added. The solution was left to evaporate at room temperature and pressure. Green single crystals of (I) were obtained from the solution after a few days.
Several crystals of (I) were probed but the Rint of all data collections was relatively high, reflecting the poor quality of the crystals. The maximum peak in the final difference Fourier map is 1.29 e Å-3 situated at 1.14 Å from the atom Cl1 and at 1.17 Å from the heavier metal atom. H atoms were placed at calculated positions and refined as riding on their parent atoms, using SHELXL97 (Sheldrick, 2008) defaults [C—H = 0.93 Å, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).(C19H18N3)2[CuCl4] | F(000) = 806 |
Mr = 782.08 | Dx = 1.396 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1887 reflections |
a = 11.5893 (13) Å | θ = 2.7–15.3° |
b = 8.2404 (9) Å | µ = 0.91 mm−1 |
c = 22.364 (2) Å | T = 293 K |
β = 119.423 (7)° | Prism, green |
V = 1860.3 (3) Å3 | 0.21 × 0.10 × 0.04 mm |
Z = 2 |
Bruker APEX2 CCD area-detector diffractometer | 3304 independent reflections |
Radiation source: fine-focus sealed tube | 1405 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.164 |
ϕ and ω scans | θmax = 25.1°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −13→13 |
Tmin = 0.744, Tmax = 0.964 | k = −9→9 |
27709 measured reflections | l = −26→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.097 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.319 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.1615P)2 + 0.2636P] where P = (Fo2 + 2Fc2)/3 |
3304 reflections | (Δ/σ)max < 0.001 |
223 parameters | Δρmax = 1.29 e Å−3 |
0 restraints | Δρmin = −0.52 e Å−3 |
(C19H18N3)2[CuCl4] | V = 1860.3 (3) Å3 |
Mr = 782.08 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.5893 (13) Å | µ = 0.91 mm−1 |
b = 8.2404 (9) Å | T = 293 K |
c = 22.364 (2) Å | 0.21 × 0.10 × 0.04 mm |
β = 119.423 (7)° |
Bruker APEX2 CCD area-detector diffractometer | 3304 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1405 reflections with I > 2σ(I) |
Tmin = 0.744, Tmax = 0.964 | Rint = 0.164 |
27709 measured reflections |
R[F2 > 2σ(F2)] = 0.097 | 0 restraints |
wR(F2) = 0.319 | H-atom parameters constrained |
S = 1.05 | Δρmax = 1.29 e Å−3 |
3304 reflections | Δρmin = −0.52 e Å−3 |
223 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.5000 | 0.0000 | 0.0000 | 0.0567 (7) | |
Cl1 | 0.6357 (3) | −0.0354 (3) | 0.11412 (14) | 0.0719 (9) | |
Cl2 | 0.4205 (3) | 0.2267 (4) | 0.02411 (15) | 0.0826 (11) | |
N1 | 0.7105 (8) | 0.4791 (9) | 0.0748 (4) | 0.055 (2) | |
H1 | 0.6701 | 0.5646 | 0.0521 | 0.066* | |
N2 | 0.7200 (9) | 0.5995 (10) | 0.1697 (4) | 0.062 (2) | |
H2 | 0.7380 | 0.6909 | 0.1576 | 0.075* | |
N3 | 0.7583 (8) | 0.3232 (10) | 0.1706 (4) | 0.057 (2) | |
H3 | 0.7238 | 0.2389 | 0.1453 | 0.069* | |
C1 | 0.7289 (10) | 0.4673 (11) | 0.1380 (6) | 0.055 (3) | |
C2 | 0.7497 (12) | 0.3671 (13) | 0.0409 (6) | 0.060 (3) | |
C3 | 0.8688 (11) | 0.2853 (14) | 0.0731 (6) | 0.069 (3) | |
H3A | 0.9255 | 0.2991 | 0.1199 | 0.083* | |
C4 | 0.9037 (14) | 0.1834 (15) | 0.0360 (7) | 0.085 (4) | |
H4 | 0.9849 | 0.1303 | 0.0577 | 0.102* | |
C5 | 0.8197 (15) | 0.1595 (17) | −0.0327 (8) | 0.084 (4) | |
H5 | 0.8431 | 0.0888 | −0.0574 | 0.101* | |
C6 | 0.7024 (15) | 0.2395 (16) | −0.0646 (6) | 0.086 (4) | |
H6 | 0.6462 | 0.2265 | −0.1115 | 0.103* | |
C7 | 0.6666 (12) | 0.3400 (14) | −0.0272 (6) | 0.074 (3) | |
H7 | 0.5842 | 0.3903 | −0.0489 | 0.089* | |
C8 | 0.6834 (11) | 0.6040 (13) | 0.2223 (5) | 0.059 (3) | |
C9 | 0.7498 (11) | 0.7120 (13) | 0.2771 (6) | 0.066 (3) | |
H9 | 0.8164 | 0.7788 | 0.2792 | 0.079* | |
C10 | 0.7153 (13) | 0.7180 (15) | 0.3276 (6) | 0.079 (4) | |
H10 | 0.7582 | 0.7892 | 0.3644 | 0.094* | |
C11 | 0.6171 (13) | 0.6182 (15) | 0.3234 (7) | 0.073 (3) | |
H11 | 0.5943 | 0.6208 | 0.3579 | 0.087* | |
C12 | 0.5536 (11) | 0.5173 (14) | 0.2705 (6) | 0.067 (3) | |
H12 | 0.4874 | 0.4504 | 0.2687 | 0.081* | |
C13 | 0.5842 (11) | 0.5110 (13) | 0.2195 (6) | 0.065 (3) | |
H13 | 0.5369 | 0.4424 | 0.1823 | 0.078* | |
C14 | 0.8391 (11) | 0.2945 (12) | 0.2415 (5) | 0.054 (3) | |
C15 | 0.9571 (13) | 0.3811 (16) | 0.2788 (7) | 0.077 (3) | |
H15 | 0.9813 | 0.4584 | 0.2567 | 0.092* | |
C16 | 1.0364 (12) | 0.3537 (17) | 0.3468 (8) | 0.079 (4) | |
H16 | 1.1129 | 0.4146 | 0.3721 | 0.095* | |
C17 | 1.0011 (17) | 0.233 (2) | 0.3775 (6) | 0.099 (5) | |
H17 | 1.0568 | 0.2110 | 0.4237 | 0.118* | |
C18 | 0.8876 (15) | 0.1465 (16) | 0.3424 (6) | 0.088 (4) | |
H18 | 0.8648 | 0.0666 | 0.3641 | 0.106* | |
C19 | 0.8083 (12) | 0.1796 (13) | 0.2748 (6) | 0.066 (3) | |
H19 | 0.7300 | 0.1213 | 0.2503 | 0.079* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.0701 (13) | 0.0335 (10) | 0.0702 (13) | 0.0039 (9) | 0.0374 (10) | 0.0044 (8) |
Cl1 | 0.088 (2) | 0.0415 (16) | 0.0687 (18) | 0.0019 (14) | 0.0247 (17) | −0.0021 (13) |
Cl2 | 0.128 (3) | 0.0549 (18) | 0.082 (2) | 0.0388 (18) | 0.064 (2) | 0.0194 (15) |
N1 | 0.074 (6) | 0.047 (5) | 0.056 (5) | 0.011 (4) | 0.040 (5) | 0.007 (4) |
N2 | 0.101 (7) | 0.032 (5) | 0.069 (6) | −0.004 (5) | 0.053 (6) | −0.001 (4) |
N3 | 0.077 (6) | 0.044 (5) | 0.053 (5) | −0.005 (5) | 0.034 (5) | 0.001 (4) |
C1 | 0.055 (7) | 0.037 (6) | 0.074 (8) | −0.001 (5) | 0.033 (6) | 0.004 (5) |
C2 | 0.074 (8) | 0.053 (7) | 0.063 (8) | −0.006 (6) | 0.040 (7) | −0.003 (6) |
C3 | 0.062 (8) | 0.065 (8) | 0.090 (9) | 0.016 (6) | 0.046 (7) | 0.006 (6) |
C4 | 0.103 (11) | 0.054 (8) | 0.114 (11) | 0.028 (7) | 0.065 (10) | 0.005 (7) |
C5 | 0.096 (10) | 0.082 (9) | 0.100 (11) | 0.004 (9) | 0.067 (9) | −0.011 (8) |
C6 | 0.095 (11) | 0.077 (9) | 0.078 (9) | −0.003 (8) | 0.036 (8) | −0.023 (7) |
C7 | 0.079 (8) | 0.065 (8) | 0.087 (9) | 0.005 (7) | 0.047 (8) | −0.006 (7) |
C8 | 0.075 (8) | 0.046 (6) | 0.055 (7) | 0.010 (6) | 0.031 (6) | 0.013 (5) |
C9 | 0.076 (8) | 0.051 (7) | 0.069 (8) | −0.005 (6) | 0.034 (7) | −0.006 (6) |
C10 | 0.097 (10) | 0.070 (8) | 0.067 (8) | 0.007 (8) | 0.039 (8) | −0.011 (6) |
C11 | 0.092 (9) | 0.063 (8) | 0.086 (9) | 0.014 (7) | 0.061 (8) | 0.009 (7) |
C12 | 0.066 (7) | 0.067 (8) | 0.083 (8) | 0.001 (6) | 0.047 (7) | −0.002 (7) |
C13 | 0.076 (8) | 0.052 (7) | 0.068 (7) | −0.016 (6) | 0.036 (7) | −0.002 (6) |
C14 | 0.064 (8) | 0.037 (6) | 0.069 (8) | 0.009 (5) | 0.039 (7) | 0.003 (5) |
C15 | 0.081 (9) | 0.078 (9) | 0.080 (9) | 0.013 (8) | 0.047 (8) | 0.003 (7) |
C16 | 0.055 (8) | 0.072 (9) | 0.100 (11) | −0.001 (7) | 0.031 (8) | −0.014 (8) |
C17 | 0.109 (12) | 0.110 (13) | 0.056 (8) | 0.042 (11) | 0.025 (9) | −0.004 (9) |
C18 | 0.112 (11) | 0.069 (9) | 0.059 (9) | −0.006 (9) | 0.022 (8) | 0.004 (7) |
C19 | 0.079 (8) | 0.050 (7) | 0.062 (8) | 0.000 (6) | 0.030 (7) | 0.003 (6) |
Cu—Cl2 | 2.263 (3) | C7—H7 | 0.9300 |
Cu—Cl2i | 2.263 (3) | C8—C13 | 1.358 (14) |
Cu—Cl1 | 2.265 (3) | C8—C9 | 1.400 (14) |
Cu—Cl1i | 2.265 (3) | C9—C10 | 1.372 (15) |
N1—C1 | 1.324 (12) | C9—H9 | 0.9300 |
N1—C2 | 1.404 (12) | C10—C11 | 1.370 (16) |
N1—H1 | 0.8600 | C10—H10 | 0.9300 |
N2—C1 | 1.332 (12) | C11—C12 | 1.332 (15) |
N2—C8 | 1.433 (12) | C11—H11 | 0.9300 |
N2—H2 | 0.8600 | C12—C13 | 1.351 (14) |
N3—C1 | 1.347 (12) | C12—H12 | 0.9300 |
N3—C14 | 1.411 (12) | C13—H13 | 0.9300 |
N3—H3 | 0.8600 | C14—C19 | 1.355 (14) |
C2—C7 | 1.363 (14) | C14—C15 | 1.398 (15) |
C2—C3 | 1.379 (14) | C15—C16 | 1.353 (15) |
C3—C4 | 1.373 (15) | C15—H15 | 0.9300 |
C3—H3A | 0.9300 | C16—C17 | 1.377 (19) |
C4—C5 | 1.371 (15) | C16—H16 | 0.9300 |
C4—H4 | 0.9300 | C17—C18 | 1.359 (19) |
C5—C6 | 1.356 (16) | C17—H17 | 0.9300 |
C5—H5 | 0.9300 | C18—C19 | 1.356 (14) |
C6—C7 | 1.376 (15) | C18—H18 | 0.9300 |
C6—H6 | 0.9300 | C19—H19 | 0.9300 |
Cl2—Cu—Cl2i | 180.00 (15) | C13—C8—C9 | 119.2 (10) |
Cl2—Cu—Cl1 | 88.65 (10) | C13—C8—N2 | 122.2 (10) |
Cl2i—Cu—Cl1 | 91.35 (10) | C9—C8—N2 | 118.5 (10) |
Cl2—Cu—Cl1i | 91.35 (10) | C10—C9—C8 | 119.1 (11) |
Cl2i—Cu—Cl1i | 88.65 (10) | C10—C9—H9 | 120.4 |
Cl1—Cu—Cl1i | 180.00 (16) | C8—C9—H9 | 120.4 |
C1—N1—C2 | 127.0 (9) | C11—C10—C9 | 119.3 (12) |
C1—N1—H1 | 116.5 | C11—C10—H10 | 120.3 |
C2—N1—H1 | 116.5 | C9—C10—H10 | 120.3 |
C1—N2—C8 | 126.2 (9) | C12—C11—C10 | 120.9 (11) |
C1—N2—H2 | 116.9 | C12—C11—H11 | 119.5 |
C8—N2—H2 | 116.9 | C10—C11—H11 | 119.5 |
C1—N3—C14 | 127.5 (9) | C11—C12—C13 | 120.9 (11) |
C1—N3—H3 | 116.3 | C11—C12—H12 | 119.5 |
C14—N3—H3 | 116.3 | C13—C12—H12 | 119.5 |
N1—C1—N2 | 119.6 (9) | C12—C13—C8 | 120.5 (11) |
N1—C1—N3 | 120.5 (9) | C12—C13—H13 | 119.8 |
N2—C1—N3 | 119.8 (10) | C8—C13—H13 | 119.8 |
C7—C2—C3 | 118.6 (11) | C19—C14—C15 | 118.3 (11) |
C7—C2—N1 | 118.2 (10) | C19—C14—N3 | 121.7 (10) |
C3—C2—N1 | 123.2 (10) | C15—C14—N3 | 120.0 (10) |
C4—C3—C2 | 120.0 (12) | C16—C15—C14 | 120.7 (12) |
C4—C3—H3A | 120.0 | C16—C15—H15 | 119.6 |
C2—C3—H3A | 120.0 | C14—C15—H15 | 119.6 |
C5—C4—C3 | 120.5 (12) | C15—C16—C17 | 118.4 (13) |
C5—C4—H4 | 119.8 | C15—C16—H16 | 120.8 |
C3—C4—H4 | 119.8 | C17—C16—H16 | 120.8 |
C6—C5—C4 | 119.7 (12) | C18—C17—C16 | 122.1 (13) |
C6—C5—H5 | 120.2 | C18—C17—H17 | 118.9 |
C4—C5—H5 | 120.2 | C16—C17—H17 | 118.9 |
C5—C6—C7 | 119.8 (12) | C17—C18—C19 | 118.1 (13) |
C5—C6—H6 | 120.1 | C17—C18—H18 | 120.9 |
C7—C6—H6 | 120.1 | C19—C18—H18 | 120.9 |
C2—C7—C6 | 121.3 (12) | C14—C19—C18 | 122.3 (12) |
C2—C7—H7 | 119.4 | C14—C19—H19 | 118.8 |
C6—C7—H7 | 119.4 | C18—C19—H19 | 118.8 |
C2—N1—C1—N2 | 161.5 (10) | C13—C8—C9—C10 | 1.8 (16) |
C2—N1—C1—N3 | −17.6 (16) | N2—C8—C9—C10 | 179.7 (9) |
C8—N2—C1—N1 | 152.7 (10) | C8—C9—C10—C11 | 0.1 (17) |
C8—N2—C1—N3 | −28.2 (16) | C9—C10—C11—C12 | −0.9 (17) |
C14—N3—C1—N1 | 146.9 (9) | C10—C11—C12—C13 | −0.1 (18) |
C14—N3—C1—N2 | −32.2 (15) | C11—C12—C13—C8 | 2.1 (17) |
C1—N1—C2—C7 | 141.5 (11) | C9—C8—C13—C12 | −2.9 (16) |
C1—N1—C2—C3 | −39.4 (16) | N2—C8—C13—C12 | 179.3 (10) |
C7—C2—C3—C4 | 2.3 (17) | C1—N3—C14—C19 | 141.6 (11) |
N1—C2—C3—C4 | −176.8 (10) | C1—N3—C14—C15 | −41.1 (15) |
C2—C3—C4—C5 | −1.4 (19) | C19—C14—C15—C16 | −1.8 (16) |
C3—C4—C5—C6 | 1 (2) | N3—C14—C15—C16 | −179.2 (9) |
C4—C5—C6—C7 | −2 (2) | C14—C15—C16—C17 | 2.9 (17) |
C3—C2—C7—C6 | −3.2 (17) | C15—C16—C17—C18 | −2.4 (19) |
N1—C2—C7—C6 | 175.9 (10) | C16—C17—C18—C19 | 1 (2) |
C5—C6—C7—C2 | 3.1 (19) | C15—C14—C19—C18 | 0.1 (16) |
C1—N2—C8—C13 | −41.0 (15) | N3—C14—C19—C18 | 177.5 (10) |
C1—N2—C8—C9 | 141.1 (11) | C17—C18—C19—C14 | 0.4 (18) |
Symmetry code: (i) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl2ii | 0.86 | 2.28 | 3.126 (8) | 167 |
N2—H2···Cl1iii | 0.86 | 2.51 | 3.218 (8) | 140 |
N3—H3···Cl1 | 0.86 | 2.44 | 3.253 (9) | 159 |
Symmetry codes: (ii) −x+1, −y+1, −z; (iii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | (C19H18N3)2[CuCl4] |
Mr | 782.08 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 11.5893 (13), 8.2404 (9), 22.364 (2) |
β (°) | 119.423 (7) |
V (Å3) | 1860.3 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.91 |
Crystal size (mm) | 0.21 × 0.10 × 0.04 |
Data collection | |
Diffractometer | Bruker APEX2 CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.744, 0.964 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27709, 3304, 1405 |
Rint | 0.164 |
(sin θ/λ)max (Å−1) | 0.598 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.097, 0.319, 1.05 |
No. of reflections | 3304 |
No. of parameters | 223 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.29, −0.52 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl2i | 0.86 | 2.28 | 3.126 (8) | 167.3 |
N2—H2···Cl1ii | 0.86 | 2.51 | 3.218 (8) | 140.1 |
N3—H3···Cl1 | 0.86 | 2.44 | 3.253 (9) | 158.5 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, y+1, z. |
Acknowledgements
This work was supported by Fundação para a Ciência e a Tecnologia (FCT) under project POCI/FIS/57876/2004.
References
Bian, G.-Q., Kuroda-Sowa, T., Gunjima, N., Maekawa, M. & Munakata, M. (2005). Inorg. Chem. Commun. 8, 208–211. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Kemme, A., Rutkis, M. & Eiduss, J. (1988). Latv. PSR Zinat. Akad. Vestis Kim. Ser. 5, 595–601 Google Scholar
Klement, U., Range, K.-J., Hayessen, R. & Heckmann, K.-D. (1995). Z. Kristallogr. 220, 611. CrossRef Google Scholar
Pereira Silva, P. S., Cardoso, C., Ramos Silva, M. & Paixão, J. A. (2007). Acta Cryst. E63, o501–o503. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pereira Silva, P. S., Paixão, J. A., Ramos Silva, M. & Matos Beja, A. (2006). Acta Cryst. E62, o3073–o3075. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Molecular based magnets, systems in which molecular orbitals are crucial in mediating the magnetic interaction, are often synthesized by mild-chemistry conditions. Furthermore, the molecules/ions often assemble in low dimensional compounds providing easier systems to study both theoretical and experimentally. Some systems are even classified as Single Molecule Magnets, since the organically bridged metal clusters, exhibit magnetic properties similar to those observed in conventional bulk magnets like remanence and hysteresis (Bian et al., 2005). The title compound, (I), Fig.1, was synthesized within a project aiming at developing new molecular based magnets. Compound (I) is built up from triphenylguanidinium cations and CuCl42- anions. The CN3 fragment of the guanidinium group in (I) is planar, as expected for sp2 hybridization of the central C atom. The bond lengths C1—N1 [1.324 (12) Å], C1—N2 [1.332 (12) Å] and C1—N3 [1.347 (12) Å] are within the range expected for a delocalized C-N bond. The dihedral angles between the ring planes and the plane defined by the central guanidinium fragment are 51.9 (4)°(C2—C7), 59.8 (4)°(C8—C13) and 64.4 (3)°(C14—C19). The corresponding angles for other triphenylguanidinium salts reported in the literature are within the range 32.6 (3)–70.2 (3)° (Kemme et al., 1988; Klement et al., 1995; Pereira Silva et al., 2006, 2007). This variability attests the flexibility of the triphenylguanidinium cation. The CuII ion occupies a crystallographic inversion centre and the environment around the metal ion is square-planar. There are hydrogen bonds between all the NH groups and the Cl- ions, each CuCl42- anion being linked to four cations, forming infinite chains along the [010] direction (Fig. 2, Table 2).