organic compounds
Di-tert-butyl 2,2′-(biphenyl-2,2′-diyldioxy)diacetate
aHEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and bChemistry Department, Clemson University, Clemson, SC 29634-0973, USA
*Correspondence e-mail: raza_shahm@yahoo.com
The title compound, C24H30O6, does not exhibit π–π interactions due to the of the bulky tert-butyl groups present in the molecule. The presence of these groups at the 2 and 2′ positions hinders the free motion of the benzene rings relative to each other, causing them to adopt an antiperiplanar arrangement. The benzene rings are twisted by just under 50.96 (17)° with respect to each other. The carbonyl groups within the molecule are directed in different directions, one towards the biphenyl group and the other away from it. The molecules are linked together by C=O⋯H—C hydrogen bonds.
Related literature
For general background on chemical and biological studies of biphenyl compounds, see: Toshiaki et al. (2007); Kamoda et al. (2006); Makarov et al. (2005); Weisburger et al. (1967); Spivey et al. (1999); Sisson et al. (2006); Litvinchuk et al. (2004); Baudry et al. (2006). For the crystal structures of related compounds, see: Ali et al. (2008); Ibad et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku/MSC, 2006); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808019764/ez2127sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808019764/ez2127Isup2.hkl
K2CO3 (414 mg, 3 mmol) and 2,2'-dihydroxybiphenyl (186 mg, 1 mmol) in 15 ml of acetone were stirred for 10 minutes, followed by addition of tertiary butyl bromoacetate (371 mg, 3 mmol). The reaction mixture was stirred at room temperature for three hours. Solvent was evaporated under reduced pressure and the residue was dissolved in a mixture of water (50 ml) and dichloromethane (50 ml). The aqueous layer was extracted three times with dichloromethane.The combined organic phases were evaporated under reduced pressure and the solid residue was dissolved in hot hexane. Slow evaporation of hot hexane gave colorless crystals (736 mg) in 80% yield.
All H atoms were geometrically fixed and allowed to ride on the corresponding non-H atom with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) of the attached C atom for methyl H atoms and 1.2Ueq(C) for other H atoms.
Data collection: CrystalClear (Rigaku/MSC, 2006); cell
CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Crystal Structure of (I) showing the atom labelling scheme (50% ellipsoids). | |
Fig. 2. Partial packing diagram viewed along the a axis. |
C24H30O6 | Z = 2 |
Mr = 414.48 | F(000) = 444 |
Triclinic, P1 | Dx = 1.195 Mg m−3 |
a = 7.7458 (15) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.112 (2) Å | Cell parameters from 3800 reflections |
c = 13.480 (3) Å | θ = 3.0–26.4° |
α = 67.36 (3)° | µ = 0.09 mm−1 |
β = 82.11 (3)° | T = 153 K |
γ = 82.68 (3)° | Chip, colorless |
V = 1152.3 (4) Å3 | 0.48 × 0.38 × 0.19 mm |
Rigaku Mercury CCD (2x2 bin mode) diffractometer | 4191 independent reflections |
Radiation source: Sealed Tube | 3687 reflections with I > 2σ(I) |
Graphite Monochromator monochromator | Rint = 0.012 |
Detector resolution: 14.6306 pixels mm-1 | θmax = 25.4°, θmin = 2.9° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | k = −14→14 |
Tmin = 0.960, Tmax = 0.984 | l = −13→16 |
8742 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0624P)2 + 0.3008P] where P = (Fo2 + 2Fc2)/3 |
4191 reflections | (Δ/σ)max < 0.001 |
271 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C24H30O6 | γ = 82.68 (3)° |
Mr = 414.48 | V = 1152.3 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.7458 (15) Å | Mo Kα radiation |
b = 12.112 (2) Å | µ = 0.09 mm−1 |
c = 13.480 (3) Å | T = 153 K |
α = 67.36 (3)° | 0.48 × 0.38 × 0.19 mm |
β = 82.11 (3)° |
Rigaku Mercury CCD (2x2 bin mode) diffractometer | 4191 independent reflections |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | 3687 reflections with I > 2σ(I) |
Tmin = 0.960, Tmax = 0.984 | Rint = 0.012 |
8742 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.20 e Å−3 |
4191 reflections | Δρmin = −0.21 e Å−3 |
271 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.63964 (12) | 0.48792 (8) | 0.74773 (7) | 0.0256 (2) | |
O2 | 0.67544 (15) | 0.42265 (9) | 0.92572 (8) | 0.0407 (3) | |
O3 | 0.51537 (11) | 0.70530 (8) | 0.73639 (7) | 0.0242 (2) | |
O4 | 0.22493 (12) | 0.95936 (8) | 0.46008 (7) | 0.0279 (2) | |
O5 | 0.13650 (14) | 0.94540 (8) | 0.27408 (8) | 0.0351 (2) | |
O6 | 0.14967 (12) | 1.14648 (8) | 0.18911 (7) | 0.0285 (2) | |
C1 | 0.63803 (16) | 0.49982 (12) | 0.84152 (10) | 0.0240 (3) | |
C2 | 0.58898 (17) | 0.62861 (11) | 0.83262 (10) | 0.0249 (3) | |
H2A | 0.5043 | 0.6279 | 0.8949 | 0.030* | |
H2B | 0.6951 | 0.6628 | 0.8381 | 0.030* | |
C3 | 0.35750 (16) | 0.67899 (11) | 0.71761 (10) | 0.0217 (3) | |
C4 | 0.24448 (17) | 0.60667 (11) | 0.79977 (11) | 0.0264 (3) | |
H4A | 0.2749 | 0.5724 | 0.8720 | 0.032* | |
C5 | 0.08664 (17) | 0.58520 (12) | 0.77493 (12) | 0.0307 (3) | |
H5A | 0.0099 | 0.5348 | 0.8302 | 0.037* | |
C6 | 0.04097 (17) | 0.63678 (12) | 0.67037 (12) | 0.0306 (3) | |
H6A | −0.0676 | 0.6228 | 0.6539 | 0.037* | |
C7 | 0.15448 (16) | 0.70935 (11) | 0.58920 (11) | 0.0258 (3) | |
H7A | 0.1216 | 0.7451 | 0.5175 | 0.031* | |
C8 | 0.31533 (15) | 0.73087 (10) | 0.61059 (10) | 0.0211 (3) | |
C9 | 0.44218 (16) | 0.80053 (11) | 0.52109 (10) | 0.0219 (3) | |
C10 | 0.61274 (17) | 0.75052 (13) | 0.50921 (11) | 0.0285 (3) | |
H10A | 0.6473 | 0.6736 | 0.5598 | 0.034* | |
C11 | 0.73297 (18) | 0.81058 (15) | 0.42515 (12) | 0.0372 (4) | |
H11A | 0.8482 | 0.7749 | 0.4181 | 0.045* | |
C12 | 0.68340 (19) | 0.92246 (16) | 0.35221 (12) | 0.0403 (4) | |
H12A | 0.7657 | 0.9645 | 0.2952 | 0.048* | |
C13 | 0.51479 (18) | 0.97446 (14) | 0.36101 (11) | 0.0335 (3) | |
H13A | 0.4815 | 1.0514 | 0.3100 | 0.040* | |
C14 | 0.39452 (16) | 0.91327 (12) | 0.44496 (10) | 0.0245 (3) | |
C15 | 0.16606 (19) | 1.06562 (11) | 0.37635 (11) | 0.0284 (3) | |
H15A | 0.2491 | 1.1275 | 0.3596 | 0.034* | |
H15B | 0.0507 | 1.0966 | 0.4011 | 0.034* | |
C16 | 0.15050 (16) | 1.04284 (11) | 0.27501 (11) | 0.0255 (3) | |
C17 | 0.67465 (19) | 0.36897 (12) | 0.73667 (12) | 0.0309 (3) | |
C18 | 0.6458 (3) | 0.40082 (18) | 0.61993 (16) | 0.0636 (6) | |
H18A | 0.5237 | 0.4314 | 0.6089 | 0.095* | |
H18B | 0.6720 | 0.3291 | 0.6017 | 0.095* | |
H18C | 0.7230 | 0.4626 | 0.5734 | 0.095* | |
C19 | 0.5431 (3) | 0.28453 (16) | 0.81140 (19) | 0.0589 (5) | |
H19A | 0.5651 | 0.2644 | 0.8865 | 0.088* | |
H19B | 0.5544 | 0.2110 | 0.7960 | 0.088* | |
H19C | 0.4247 | 0.3235 | 0.8001 | 0.088* | |
C20 | 0.8607 (2) | 0.32095 (15) | 0.75818 (16) | 0.0461 (4) | |
H20A | 0.8746 | 0.3010 | 0.8345 | 0.069* | |
H20B | 0.9400 | 0.3820 | 0.7131 | 0.069* | |
H20C | 0.8886 | 0.2487 | 0.7410 | 0.069* | |
C21 | 0.12658 (19) | 1.15005 (13) | 0.08041 (11) | 0.0313 (3) | |
C22 | 0.2762 (2) | 1.07515 (15) | 0.04516 (14) | 0.0449 (4) | |
H22A | 0.3876 | 1.1053 | 0.0455 | 0.067* | |
H22B | 0.2633 | 1.0805 | −0.0279 | 0.067* | |
H22C | 0.2744 | 0.9913 | 0.0951 | 0.067* | |
C23 | 0.1343 (2) | 1.28210 (13) | 0.01004 (12) | 0.0386 (4) | |
H23A | 0.2499 | 1.3070 | 0.0098 | 0.058* | |
H23B | 0.0444 | 1.3296 | 0.0387 | 0.058* | |
H23C | 0.1136 | 1.2950 | −0.0639 | 0.058* | |
C24 | −0.0517 (2) | 1.10931 (17) | 0.08184 (13) | 0.0458 (4) | |
H24A | −0.1431 | 1.1605 | 0.1051 | 0.069* | |
H24B | −0.0581 | 1.0258 | 0.1321 | 0.069* | |
H24C | −0.0689 | 1.1153 | 0.0092 | 0.069* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0307 (5) | 0.0248 (5) | 0.0223 (5) | −0.0003 (4) | −0.0047 (4) | −0.0096 (4) |
O2 | 0.0582 (7) | 0.0344 (6) | 0.0223 (5) | 0.0101 (5) | −0.0090 (5) | −0.0052 (5) |
O3 | 0.0245 (4) | 0.0238 (4) | 0.0226 (5) | −0.0039 (3) | −0.0061 (4) | −0.0049 (4) |
O4 | 0.0285 (5) | 0.0244 (5) | 0.0218 (5) | 0.0031 (4) | −0.0014 (4) | −0.0005 (4) |
O5 | 0.0451 (6) | 0.0234 (5) | 0.0360 (6) | −0.0064 (4) | −0.0066 (4) | −0.0080 (4) |
O6 | 0.0397 (5) | 0.0235 (5) | 0.0207 (5) | −0.0042 (4) | −0.0067 (4) | −0.0047 (4) |
C1 | 0.0232 (6) | 0.0285 (7) | 0.0181 (6) | −0.0020 (5) | −0.0023 (5) | −0.0064 (5) |
C2 | 0.0276 (6) | 0.0280 (7) | 0.0189 (6) | −0.0018 (5) | −0.0060 (5) | −0.0075 (5) |
C3 | 0.0206 (6) | 0.0192 (6) | 0.0246 (6) | 0.0003 (5) | −0.0034 (5) | −0.0077 (5) |
C4 | 0.0255 (6) | 0.0241 (6) | 0.0239 (7) | 0.0006 (5) | −0.0018 (5) | −0.0036 (5) |
C5 | 0.0238 (6) | 0.0252 (7) | 0.0341 (8) | −0.0028 (5) | 0.0012 (5) | −0.0024 (6) |
C6 | 0.0214 (6) | 0.0272 (7) | 0.0407 (8) | −0.0036 (5) | −0.0055 (6) | −0.0088 (6) |
C7 | 0.0248 (6) | 0.0235 (6) | 0.0281 (7) | 0.0001 (5) | −0.0068 (5) | −0.0078 (5) |
C8 | 0.0212 (6) | 0.0173 (6) | 0.0236 (6) | 0.0008 (4) | −0.0023 (5) | −0.0071 (5) |
C9 | 0.0229 (6) | 0.0245 (6) | 0.0196 (6) | −0.0039 (5) | −0.0037 (5) | −0.0085 (5) |
C10 | 0.0243 (6) | 0.0354 (7) | 0.0244 (7) | 0.0010 (5) | −0.0050 (5) | −0.0097 (6) |
C11 | 0.0215 (6) | 0.0561 (9) | 0.0304 (7) | −0.0012 (6) | −0.0013 (5) | −0.0131 (7) |
C12 | 0.0288 (7) | 0.0581 (10) | 0.0264 (7) | −0.0125 (7) | 0.0020 (6) | −0.0061 (7) |
C13 | 0.0331 (7) | 0.0362 (8) | 0.0245 (7) | −0.0080 (6) | −0.0037 (6) | −0.0021 (6) |
C14 | 0.0250 (6) | 0.0270 (6) | 0.0215 (6) | −0.0027 (5) | −0.0040 (5) | −0.0082 (5) |
C15 | 0.0355 (7) | 0.0203 (6) | 0.0234 (7) | 0.0032 (5) | −0.0056 (5) | −0.0024 (5) |
C16 | 0.0244 (6) | 0.0211 (6) | 0.0268 (7) | −0.0015 (5) | −0.0040 (5) | −0.0040 (5) |
C17 | 0.0370 (7) | 0.0250 (7) | 0.0348 (8) | −0.0033 (6) | −0.0037 (6) | −0.0155 (6) |
C18 | 0.1049 (17) | 0.0525 (11) | 0.0492 (11) | 0.0072 (11) | −0.0259 (11) | −0.0343 (10) |
C19 | 0.0529 (10) | 0.0426 (9) | 0.0859 (15) | −0.0215 (8) | 0.0172 (10) | −0.0317 (10) |
C20 | 0.0403 (9) | 0.0373 (8) | 0.0676 (12) | 0.0044 (7) | −0.0056 (8) | −0.0292 (8) |
C21 | 0.0412 (8) | 0.0321 (7) | 0.0215 (7) | −0.0085 (6) | −0.0057 (6) | −0.0083 (6) |
C22 | 0.0565 (10) | 0.0422 (9) | 0.0359 (9) | −0.0074 (7) | 0.0058 (7) | −0.0166 (7) |
C23 | 0.0557 (9) | 0.0333 (8) | 0.0239 (7) | −0.0079 (7) | −0.0098 (6) | −0.0041 (6) |
C24 | 0.0480 (9) | 0.0551 (10) | 0.0339 (8) | −0.0188 (8) | −0.0107 (7) | −0.0095 (8) |
O1—C1 | 1.3247 (16) | C12—H12A | 0.9500 |
O1—C17 | 1.4921 (16) | C13—C14 | 1.3924 (19) |
O2—C1 | 1.2044 (17) | C13—H13A | 0.9500 |
O3—C3 | 1.3811 (15) | C15—C16 | 1.5168 (19) |
O3—C2 | 1.4180 (16) | C15—H15A | 0.9900 |
O4—C14 | 1.3805 (16) | C15—H15B | 0.9900 |
O4—C15 | 1.4183 (16) | C17—C20 | 1.507 (2) |
O5—C16 | 1.2038 (16) | C17—C18 | 1.511 (2) |
O6—C16 | 1.3407 (17) | C17—C19 | 1.513 (2) |
O6—C21 | 1.4839 (16) | C18—H18A | 0.9800 |
C1—C2 | 1.5196 (18) | C18—H18B | 0.9800 |
C2—H2A | 0.9900 | C18—H18C | 0.9800 |
C2—H2B | 0.9900 | C19—H19A | 0.9800 |
C3—C4 | 1.3939 (19) | C19—H19B | 0.9800 |
C3—C8 | 1.4006 (18) | C19—H19C | 0.9800 |
C4—C5 | 1.3910 (19) | C20—H20A | 0.9800 |
C4—H4A | 0.9500 | C20—H20B | 0.9800 |
C5—C6 | 1.380 (2) | C20—H20C | 0.9800 |
C5—H5A | 0.9500 | C21—C23 | 1.517 (2) |
C6—C7 | 1.391 (2) | C21—C22 | 1.518 (2) |
C6—H6A | 0.9500 | C21—C24 | 1.520 (2) |
C7—C8 | 1.3938 (17) | C22—H22A | 0.9800 |
C7—H7A | 0.9500 | C22—H22B | 0.9800 |
C8—C9 | 1.4950 (18) | C22—H22C | 0.9800 |
C9—C10 | 1.3966 (19) | C23—H23A | 0.9800 |
C9—C14 | 1.3967 (19) | C23—H23B | 0.9800 |
C10—C11 | 1.389 (2) | C23—H23C | 0.9800 |
C10—H10A | 0.9500 | C24—H24A | 0.9800 |
C11—C12 | 1.377 (2) | C24—H24B | 0.9800 |
C11—H11A | 0.9500 | C24—H24C | 0.9800 |
C12—C13 | 1.386 (2) | ||
C1—O1—C17 | 122.25 (11) | C16—C15—H15B | 109.3 |
C3—O3—C2 | 117.83 (10) | H15A—C15—H15B | 108.0 |
C14—O4—C15 | 116.99 (11) | O5—C16—O6 | 125.86 (13) |
C16—O6—C21 | 121.03 (10) | O5—C16—C15 | 123.97 (12) |
O2—C1—O1 | 126.99 (13) | O6—C16—C15 | 110.14 (11) |
O2—C1—C2 | 120.93 (12) | O1—C17—C20 | 109.60 (11) |
O1—C1—C2 | 112.04 (11) | O1—C17—C18 | 102.02 (12) |
O3—C2—C1 | 115.22 (10) | C20—C17—C18 | 111.65 (15) |
O3—C2—H2A | 108.5 | O1—C17—C19 | 109.59 (12) |
C1—C2—H2A | 108.5 | C20—C17—C19 | 112.56 (14) |
O3—C2—H2B | 108.5 | C18—C17—C19 | 110.90 (16) |
C1—C2—H2B | 108.5 | C17—C18—H18A | 109.5 |
H2A—C2—H2B | 107.5 | C17—C18—H18B | 109.5 |
O3—C3—C4 | 122.53 (11) | H18A—C18—H18B | 109.5 |
O3—C3—C8 | 116.03 (11) | C17—C18—H18C | 109.5 |
C4—C3—C8 | 121.43 (11) | H18A—C18—H18C | 109.5 |
C5—C4—C3 | 119.31 (12) | H18B—C18—H18C | 109.5 |
C5—C4—H4A | 120.3 | C17—C19—H19A | 109.5 |
C3—C4—H4A | 120.3 | C17—C19—H19B | 109.5 |
C6—C5—C4 | 120.34 (12) | H19A—C19—H19B | 109.5 |
C6—C5—H5A | 119.8 | C17—C19—H19C | 109.5 |
C4—C5—H5A | 119.8 | H19A—C19—H19C | 109.5 |
C5—C6—C7 | 119.79 (12) | H19B—C19—H19C | 109.5 |
C5—C6—H6A | 120.1 | C17—C20—H20A | 109.5 |
C7—C6—H6A | 120.1 | C17—C20—H20B | 109.5 |
C6—C7—C8 | 121.50 (12) | H20A—C20—H20B | 109.5 |
C6—C7—H7A | 119.2 | C17—C20—H20C | 109.5 |
C8—C7—H7A | 119.2 | H20A—C20—H20C | 109.5 |
C7—C8—C3 | 117.62 (12) | H20B—C20—H20C | 109.5 |
C7—C8—C9 | 120.83 (11) | O6—C21—C23 | 102.98 (11) |
C3—C8—C9 | 121.45 (11) | O6—C21—C22 | 109.69 (12) |
C10—C9—C14 | 117.97 (12) | C23—C21—C22 | 110.79 (13) |
C10—C9—C8 | 119.72 (11) | O6—C21—C24 | 109.62 (12) |
C14—C9—C8 | 122.25 (11) | C23—C21—C24 | 110.38 (13) |
C11—C10—C9 | 121.56 (13) | C22—C21—C24 | 112.92 (13) |
C11—C10—H10A | 119.2 | C21—C22—H22A | 109.5 |
C9—C10—H10A | 119.2 | C21—C22—H22B | 109.5 |
C12—C11—C10 | 119.28 (14) | H22A—C22—H22B | 109.5 |
C12—C11—H11A | 120.4 | C21—C22—H22C | 109.5 |
C10—C11—H11A | 120.4 | H22A—C22—H22C | 109.5 |
C11—C12—C13 | 120.73 (13) | H22B—C22—H22C | 109.5 |
C11—C12—H12A | 119.6 | C21—C23—H23A | 109.5 |
C13—C12—H12A | 119.6 | C21—C23—H23B | 109.5 |
C12—C13—C14 | 119.66 (13) | H23A—C23—H23B | 109.5 |
C12—C13—H13A | 120.2 | C21—C23—H23C | 109.5 |
C14—C13—H13A | 120.2 | H23A—C23—H23C | 109.5 |
O4—C14—C13 | 123.23 (12) | H23B—C23—H23C | 109.5 |
O4—C14—C9 | 115.98 (11) | C21—C24—H24A | 109.5 |
C13—C14—C9 | 120.78 (12) | C21—C24—H24B | 109.5 |
O4—C15—C16 | 111.40 (11) | H24A—C24—H24B | 109.5 |
O4—C15—H15A | 109.3 | C21—C24—H24C | 109.5 |
C16—C15—H15A | 109.3 | H24A—C24—H24C | 109.5 |
O4—C15—H15B | 109.3 | H24B—C24—H24C | 109.5 |
C17—O1—C1—O2 | 5.8 (2) | C8—C9—C10—C11 | 177.90 (12) |
C17—O1—C1—C2 | −176.69 (10) | C9—C10—C11—C12 | 0.5 (2) |
C3—O3—C2—C1 | 63.42 (14) | C10—C11—C12—C13 | −1.0 (2) |
O2—C1—C2—O3 | −168.21 (12) | C11—C12—C13—C14 | 0.4 (2) |
O1—C1—C2—O3 | 14.12 (15) | C15—O4—C14—C13 | 9.65 (18) |
C2—O3—C3—C4 | 20.01 (17) | C15—O4—C14—C9 | −171.68 (11) |
C2—O3—C3—C8 | −160.90 (11) | C12—C13—C14—O4 | 179.23 (13) |
O3—C3—C4—C5 | 179.27 (12) | C12—C13—C14—C9 | 0.6 (2) |
C8—C3—C4—C5 | 0.22 (19) | C10—C9—C14—O4 | −179.80 (11) |
C3—C4—C5—C6 | −1.2 (2) | C8—C9—C14—O4 | 2.91 (17) |
C4—C5—C6—C7 | 0.8 (2) | C10—C9—C14—C13 | −1.10 (19) |
C5—C6—C7—C8 | 0.5 (2) | C8—C9—C14—C13 | −178.39 (12) |
C6—C7—C8—C3 | −1.45 (19) | C14—O4—C15—C16 | 67.83 (14) |
C6—C7—C8—C9 | 174.84 (12) | C21—O6—C16—O5 | 1.3 (2) |
O3—C3—C8—C7 | −178.03 (11) | C21—O6—C16—C15 | −176.87 (11) |
C4—C3—C8—C7 | 1.08 (18) | O4—C15—C16—O5 | 21.25 (18) |
O3—C3—C8—C9 | 5.71 (17) | O4—C15—C16—O6 | −160.51 (11) |
C4—C3—C8—C9 | −175.19 (11) | C1—O1—C17—C20 | −66.57 (16) |
C7—C8—C9—C10 | −125.19 (13) | C1—O1—C17—C18 | 174.98 (14) |
C3—C8—C9—C10 | 50.96 (17) | C1—O1—C17—C19 | 57.41 (17) |
C7—C8—C9—C14 | 52.05 (17) | C16—O6—C21—C23 | −179.93 (12) |
C3—C8—C9—C14 | −131.80 (13) | C16—O6—C21—C22 | −61.94 (16) |
C14—C9—C10—C11 | 0.54 (19) | C16—O6—C21—C24 | 62.58 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O2i | 0.99 | 2.51 | 3.482 (2) | 166 |
C20—H20C···O5ii | 0.98 | 2.47 | 3.414 (2) | 162 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C24H30O6 |
Mr | 414.48 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 153 |
a, b, c (Å) | 7.7458 (15), 12.112 (2), 13.480 (3) |
α, β, γ (°) | 67.36 (3), 82.11 (3), 82.68 (3) |
V (Å3) | 1152.3 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.48 × 0.38 × 0.19 |
Data collection | |
Diffractometer | Rigaku Mercury CCD (2x2 bin mode) diffractometer |
Absorption correction | Multi-scan (REQAB; Jacobson, 1998) |
Tmin, Tmax | 0.960, 0.984 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8742, 4191, 3687 |
Rint | 0.012 |
(sin θ/λ)max (Å−1) | 0.604 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.113, 1.06 |
No. of reflections | 4191 |
No. of parameters | 271 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.21 |
Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O2i | 0.99 | 2.513 | 3.482 (2) | 166.4 |
C20—H20C···O5ii | 0.98 | 2.470 | 3.414 (2) | 161.7 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
The authors thank the Organization for the Prohibition of Chemical Weapons for financial support.
References
Ali, Q., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o910. Web of Science CSD CrossRef IUCr Journals Google Scholar
Baudry, Y., Litvinchuk, S., Mareda, J., Nishihara, M., Pasnin, D., Shah, M. R., Sakai, N. & Matile, S. (2006). Adv. Funct. Mater. 16, 169–179. Web of Science CrossRef CAS Google Scholar
Ibad, F., Mustafa, A., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o1130–o1131. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA. Google Scholar
Kamoda, O., Anzai, K., Mizoguchi, J., Shiojiri, M., Yanagi, T., Nishino, T. & Kamiya, S. (2006). Antimicrob. Agents Chemother. 50, 3062–3069. Web of Science CrossRef PubMed CAS Google Scholar
Litvinchuk, S., Bollot, G., Mareda, J., Som, A., Ronan, D., Shah, M. R., Perrottet, P., Sakai, N. & Matile, S. (2004). J. Am. Chem. Soc. 126, 10067–10075. Web of Science CrossRef PubMed CAS Google Scholar
Makarov, V. A., Riabova, O. B., Granik, V. G., Wutzler, P. & Schmidtke, M. (2005). J. Antimicrob. Chemother. 55, 483–488. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sisson, A. L., Shah, M. R., Bhosale, S. & Matile, S. (2006). Chem. Soc. Rev. 35, 1269–1286. Web of Science CrossRef PubMed CAS Google Scholar
Spivey, A. C., Fekner, T., Spey, S. E. & Adams, H. (1999). J. Org. Chem. 64, 9430–9443. Web of Science CSD CrossRef CAS Google Scholar
Toshiaki, M., Yoshihisa, K., Kouhei, K., Shizue, K., Yoshika, F., Toshiaki, S. & Yutaka, G. (2007). J. Pharm. Sci. 103, 238–239. Google Scholar
Weisburger, J. H., Mantel, N., Weisburger, E. K., Hadidian, Z. & Fredrickson, T. (1967). Nature (London), 213, 930–931. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Biphenyl moieties have been found to act as pharmacophores in many biological studies such as antimycobacterial testing (Kamoda et al., 2006). Several derivatives of biphenyl are reported to be potential inhibitors of HRV-2 (Makarov et al., 2005). However, they also show carcinogenic activity (Weisburger et al., 1967). Furthermore, they occupy a unique place in various classes of organic compounds not only due to their prevalence as the core framework of numerous natural products, but also for their use as chiral reagents, as chiral phases for chromatography, and as chiral nucleophilic catalysts (Spivey et al., 1999). Biphenyl derivatives are also used as precursors for the synthesis of oligo(p-phenylene)s (Sisson et al., 2006). Oligo(p-phenylene)s have been extensively studied in the domain of artificial ion channels (Litvinchuk et al., 2004). Our interest in the synthesis of biphenyl derivatives stems from the fact that we wish to attach macrocycles like porphyrins and calix[4]arenes to oligo(p-phenylene)s to obtain functionalized pores (Baudry et al., 2006). In order to achieve these goals the synthesis of a number of biphenyl derivatives has been accomplished (Ali et al., 2008; Ibad et al., 2008). In this paper we report the synthesis and crystal structure of the title compound (I).
The OCH2C(═O)OC(CH3)3 residues are twisted away fom the biphenyl, as seen in the value of the C14—O4—C15—C16 torsion angle of 67.83 (14). The crystal packing diagram (Fig. 2) shows that there are fairly strong C—H···O interactions that are 0.2 Å less than the sum of the van der Waals radii, which results in the molecules forming chains in the c-direction.