organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-tert-butyl 2,2′-(bi­phenyl-2,2′-diyl­di­oxy)di­acetate

aHEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and bChemistry Department, Clemson University, Clemson, SC 29634-0973, USA
*Correspondence e-mail: raza_shahm@yahoo.com

(Received 23 April 2008; accepted 28 June 2008; online 5 July 2008)

The title compound, C24H30O6, does not exhibit ππ inter­actions due to the steric effect of the bulky tert-butyl groups present in the mol­ecule. The presence of these groups at the 2 and 2′ positions hinders the free motion of the benzene rings relative to each other, causing them to adopt an anti­periplanar arrangement. The benzene rings are twisted by just under 50.96 (17)° with respect to each other. The carbonyl groups within the mol­ecule are directed in different directions, one towards the biphenyl group and the other away from it. The mol­ecules are linked together by C=O⋯H—C hydrogen bonds.

Related literature

For general background on chemical and biological studies of biphenyl compounds, see: Toshiaki et al. (2007[Toshiaki, M., Yoshihisa, K., Kouhei, K., Shizue, K., Yoshika, F., Toshiaki, S. & Yutaka, G. (2007). J. Pharm. Sci. 103, 238-239.]); Kamoda et al. (2006[Kamoda, O., Anzai, K., Mizoguchi, J., Shiojiri, M., Yanagi, T., Nishino, T. & Kamiya, S. (2006). Antimicrob. Agents Chemother. 50, 3062-3069.]); Makarov et al. (2005[Makarov, V. A., Riabova, O. B., Granik, V. G., Wutzler, P. & Schmidtke, M. (2005). J. Antimicrob. Chemother. 55, 483-488.]); Weisburger et al. (1967[Weisburger, J. H., Mantel, N., Weisburger, E. K., Hadidian, Z. & Fredrickson, T. (1967). Nature (London), 213, 930-931.]); Spivey et al. (1999[Spivey, A. C., Fekner, T., Spey, S. E. & Adams, H. (1999). J. Org. Chem. 64, 9430-9443.]); Sisson et al. (2006[Sisson, A. L., Shah, M. R., Bhosale, S. & Matile, S. (2006). Chem. Soc. Rev. 35, 1269-1286.]); Litvinchuk et al. (2004[Litvinchuk, S., Bollot, G., Mareda, J., Som, A., Ronan, D., Shah, M. R., Perrottet, P., Sakai, N. & Matile, S. (2004). J. Am. Chem. Soc. 126, 10067-10075.]); Baudry et al. (2006[Baudry, Y., Litvinchuk, S., Mareda, J., Nishihara, M., Pasnin, D., Shah, M. R., Sakai, N. & Matile, S. (2006). Adv. Funct. Mater. 16, 169-179.]). For the crystal structures of related compounds, see: Ali et al. (2008[Ali, Q., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o910.]); Ibad et al. (2008[Ibad, F., Mustafa, A., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o1130-o1131.]).

[Scheme 1]

Experimental

Crystal data
  • C24H30O6

  • Mr = 414.48

  • Triclinic, [P \overline 1]

  • a = 7.7458 (15) Å

  • b = 12.112 (2) Å

  • c = 13.480 (3) Å

  • α = 67.36 (3)°

  • β = 82.11 (3)°

  • γ = 82.68 (3)°

  • V = 1152.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 153 (2) K

  • 0.48 × 0.38 × 0.19 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.960, Tmax = 0.984

  • 8742 measured reflections

  • 4191 independent reflections

  • 3687 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.113

  • S = 1.06

  • 4191 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.99 2.51 3.482 (2) 166
C20—H20C⋯O5ii 0.98 2.47 3.414 (2) 162
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Biphenyl moieties have been found to act as pharmacophores in many biological studies such as antimycobacterial testing (Kamoda et al., 2006). Several derivatives of biphenyl are reported to be potential inhibitors of HRV-2 (Makarov et al., 2005). However, they also show carcinogenic activity (Weisburger et al., 1967). Furthermore, they occupy a unique place in various classes of organic compounds not only due to their prevalence as the core framework of numerous natural products, but also for their use as chiral reagents, as chiral phases for chromatography, and as chiral nucleophilic catalysts (Spivey et al., 1999). Biphenyl derivatives are also used as precursors for the synthesis of oligo(p-phenylene)s (Sisson et al., 2006). Oligo(p-phenylene)s have been extensively studied in the domain of artificial ion channels (Litvinchuk et al., 2004). Our interest in the synthesis of biphenyl derivatives stems from the fact that we wish to attach macrocycles like porphyrins and calix[4]arenes to oligo(p-phenylene)s to obtain functionalized pores (Baudry et al., 2006). In order to achieve these goals the synthesis of a number of biphenyl derivatives has been accomplished (Ali et al., 2008; Ibad et al., 2008). In this paper we report the synthesis and crystal structure of the title compound (I).

The OCH2C(O)OC(CH3)3 residues are twisted away fom the biphenyl, as seen in the value of the C14—O4—C15—C16 torsion angle of 67.83 (14). The crystal packing diagram (Fig. 2) shows that there are fairly strong C—H···O interactions that are 0.2 Å less than the sum of the van der Waals radii, which results in the molecules forming chains in the c-direction.

Related literature top

For general background on chemical and biological studies of biphenyl compounds, see: Toshiaki et al. (1994); Kamoda et al. (2006); Makarov et al. (2005); Weisburger et al. (1967); Spivey et al. (1999); Sisson et al. (2006); Litvinchuk et al. (2004); Baudry et al., 2006). For the crystal structures of related compounds, see: Ali et al. (2008); Ibad et al. (2008).

Experimental top

K2CO3 (414 mg, 3 mmol) and 2,2'-dihydroxybiphenyl (186 mg, 1 mmol) in 15 ml of acetone were stirred for 10 minutes, followed by addition of tertiary butyl bromoacetate (371 mg, 3 mmol). The reaction mixture was stirred at room temperature for three hours. Solvent was evaporated under reduced pressure and the residue was dissolved in a mixture of water (50 ml) and dichloromethane (50 ml). The aqueous layer was extracted three times with dichloromethane.The combined organic phases were evaporated under reduced pressure and the solid residue was dissolved in hot hexane. Slow evaporation of hot hexane gave colorless crystals (736 mg) in 80% yield.

Refinement top

All H atoms were geometrically fixed and allowed to ride on the corresponding non-H atom with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) of the attached C atom for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal Structure of (I) showing the atom labelling scheme (50% ellipsoids).
[Figure 2] Fig. 2. Partial packing diagram viewed along the a axis.
Di-tert-butyl 2,2'-(biphenyl-2,2'-diyldioxy)diacetate top
Crystal data top
C24H30O6Z = 2
Mr = 414.48F(000) = 444
Triclinic, P1Dx = 1.195 Mg m3
a = 7.7458 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.112 (2) ÅCell parameters from 3800 reflections
c = 13.480 (3) Åθ = 3.0–26.4°
α = 67.36 (3)°µ = 0.09 mm1
β = 82.11 (3)°T = 153 K
γ = 82.68 (3)°Chip, colorless
V = 1152.3 (4) Å30.48 × 0.38 × 0.19 mm
Data collection top
Rigaku Mercury CCD (2x2 bin mode)
diffractometer
4191 independent reflections
Radiation source: Sealed Tube3687 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.012
Detector resolution: 14.6306 pixels mm-1θmax = 25.4°, θmin = 2.9°
ω scansh = 99
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1414
Tmin = 0.960, Tmax = 0.984l = 1316
8742 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0624P)2 + 0.3008P]
where P = (Fo2 + 2Fc2)/3
4191 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C24H30O6γ = 82.68 (3)°
Mr = 414.48V = 1152.3 (4) Å3
Triclinic, P1Z = 2
a = 7.7458 (15) ÅMo Kα radiation
b = 12.112 (2) ŵ = 0.09 mm1
c = 13.480 (3) ÅT = 153 K
α = 67.36 (3)°0.48 × 0.38 × 0.19 mm
β = 82.11 (3)°
Data collection top
Rigaku Mercury CCD (2x2 bin mode)
diffractometer
4191 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
3687 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.984Rint = 0.012
8742 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.06Δρmax = 0.20 e Å3
4191 reflectionsΔρmin = 0.21 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.63964 (12)0.48792 (8)0.74773 (7)0.0256 (2)
O20.67544 (15)0.42265 (9)0.92572 (8)0.0407 (3)
O30.51537 (11)0.70530 (8)0.73639 (7)0.0242 (2)
O40.22493 (12)0.95936 (8)0.46008 (7)0.0279 (2)
O50.13650 (14)0.94540 (8)0.27408 (8)0.0351 (2)
O60.14967 (12)1.14648 (8)0.18911 (7)0.0285 (2)
C10.63803 (16)0.49982 (12)0.84152 (10)0.0240 (3)
C20.58898 (17)0.62861 (11)0.83262 (10)0.0249 (3)
H2A0.50430.62790.89490.030*
H2B0.69510.66280.83810.030*
C30.35750 (16)0.67899 (11)0.71761 (10)0.0217 (3)
C40.24448 (17)0.60667 (11)0.79977 (11)0.0264 (3)
H4A0.27490.57240.87200.032*
C50.08664 (17)0.58520 (12)0.77493 (12)0.0307 (3)
H5A0.00990.53480.83020.037*
C60.04097 (17)0.63678 (12)0.67037 (12)0.0306 (3)
H6A0.06760.62280.65390.037*
C70.15448 (16)0.70935 (11)0.58920 (11)0.0258 (3)
H7A0.12160.74510.51750.031*
C80.31533 (15)0.73087 (10)0.61059 (10)0.0211 (3)
C90.44218 (16)0.80053 (11)0.52109 (10)0.0219 (3)
C100.61274 (17)0.75052 (13)0.50921 (11)0.0285 (3)
H10A0.64730.67360.55980.034*
C110.73297 (18)0.81058 (15)0.42515 (12)0.0372 (4)
H11A0.84820.77490.41810.045*
C120.68340 (19)0.92246 (16)0.35221 (12)0.0403 (4)
H12A0.76570.96450.29520.048*
C130.51479 (18)0.97446 (14)0.36101 (11)0.0335 (3)
H13A0.48151.05140.31000.040*
C140.39452 (16)0.91327 (12)0.44496 (10)0.0245 (3)
C150.16606 (19)1.06562 (11)0.37635 (11)0.0284 (3)
H15A0.24911.12750.35960.034*
H15B0.05071.09660.40110.034*
C160.15050 (16)1.04284 (11)0.27501 (11)0.0255 (3)
C170.67465 (19)0.36897 (12)0.73667 (12)0.0309 (3)
C180.6458 (3)0.40082 (18)0.61993 (16)0.0636 (6)
H18A0.52370.43140.60890.095*
H18B0.67200.32910.60170.095*
H18C0.72300.46260.57340.095*
C190.5431 (3)0.28453 (16)0.81140 (19)0.0589 (5)
H19A0.56510.26440.88650.088*
H19B0.55440.21100.79600.088*
H19C0.42470.32350.80010.088*
C200.8607 (2)0.32095 (15)0.75818 (16)0.0461 (4)
H20A0.87460.30100.83450.069*
H20B0.94000.38200.71310.069*
H20C0.88860.24870.74100.069*
C210.12658 (19)1.15005 (13)0.08041 (11)0.0313 (3)
C220.2762 (2)1.07515 (15)0.04516 (14)0.0449 (4)
H22A0.38761.10530.04550.067*
H22B0.26331.08050.02790.067*
H22C0.27440.99130.09510.067*
C230.1343 (2)1.28210 (13)0.01004 (12)0.0386 (4)
H23A0.24991.30700.00980.058*
H23B0.04441.32960.03870.058*
H23C0.11361.29500.06390.058*
C240.0517 (2)1.10931 (17)0.08184 (13)0.0458 (4)
H24A0.14311.16050.10510.069*
H24B0.05811.02580.13210.069*
H24C0.06891.11530.00920.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0307 (5)0.0248 (5)0.0223 (5)0.0003 (4)0.0047 (4)0.0096 (4)
O20.0582 (7)0.0344 (6)0.0223 (5)0.0101 (5)0.0090 (5)0.0052 (5)
O30.0245 (4)0.0238 (4)0.0226 (5)0.0039 (3)0.0061 (4)0.0049 (4)
O40.0285 (5)0.0244 (5)0.0218 (5)0.0031 (4)0.0014 (4)0.0005 (4)
O50.0451 (6)0.0234 (5)0.0360 (6)0.0064 (4)0.0066 (4)0.0080 (4)
O60.0397 (5)0.0235 (5)0.0207 (5)0.0042 (4)0.0067 (4)0.0047 (4)
C10.0232 (6)0.0285 (7)0.0181 (6)0.0020 (5)0.0023 (5)0.0064 (5)
C20.0276 (6)0.0280 (7)0.0189 (6)0.0018 (5)0.0060 (5)0.0075 (5)
C30.0206 (6)0.0192 (6)0.0246 (6)0.0003 (5)0.0034 (5)0.0077 (5)
C40.0255 (6)0.0241 (6)0.0239 (7)0.0006 (5)0.0018 (5)0.0036 (5)
C50.0238 (6)0.0252 (7)0.0341 (8)0.0028 (5)0.0012 (5)0.0024 (6)
C60.0214 (6)0.0272 (7)0.0407 (8)0.0036 (5)0.0055 (6)0.0088 (6)
C70.0248 (6)0.0235 (6)0.0281 (7)0.0001 (5)0.0068 (5)0.0078 (5)
C80.0212 (6)0.0173 (6)0.0236 (6)0.0008 (4)0.0023 (5)0.0071 (5)
C90.0229 (6)0.0245 (6)0.0196 (6)0.0039 (5)0.0037 (5)0.0085 (5)
C100.0243 (6)0.0354 (7)0.0244 (7)0.0010 (5)0.0050 (5)0.0097 (6)
C110.0215 (6)0.0561 (9)0.0304 (7)0.0012 (6)0.0013 (5)0.0131 (7)
C120.0288 (7)0.0581 (10)0.0264 (7)0.0125 (7)0.0020 (6)0.0061 (7)
C130.0331 (7)0.0362 (8)0.0245 (7)0.0080 (6)0.0037 (6)0.0021 (6)
C140.0250 (6)0.0270 (6)0.0215 (6)0.0027 (5)0.0040 (5)0.0082 (5)
C150.0355 (7)0.0203 (6)0.0234 (7)0.0032 (5)0.0056 (5)0.0024 (5)
C160.0244 (6)0.0211 (6)0.0268 (7)0.0015 (5)0.0040 (5)0.0040 (5)
C170.0370 (7)0.0250 (7)0.0348 (8)0.0033 (6)0.0037 (6)0.0155 (6)
C180.1049 (17)0.0525 (11)0.0492 (11)0.0072 (11)0.0259 (11)0.0343 (10)
C190.0529 (10)0.0426 (9)0.0859 (15)0.0215 (8)0.0172 (10)0.0317 (10)
C200.0403 (9)0.0373 (8)0.0676 (12)0.0044 (7)0.0056 (8)0.0292 (8)
C210.0412 (8)0.0321 (7)0.0215 (7)0.0085 (6)0.0057 (6)0.0083 (6)
C220.0565 (10)0.0422 (9)0.0359 (9)0.0074 (7)0.0058 (7)0.0166 (7)
C230.0557 (9)0.0333 (8)0.0239 (7)0.0079 (7)0.0098 (6)0.0041 (6)
C240.0480 (9)0.0551 (10)0.0339 (8)0.0188 (8)0.0107 (7)0.0095 (8)
Geometric parameters (Å, º) top
O1—C11.3247 (16)C12—H12A0.9500
O1—C171.4921 (16)C13—C141.3924 (19)
O2—C11.2044 (17)C13—H13A0.9500
O3—C31.3811 (15)C15—C161.5168 (19)
O3—C21.4180 (16)C15—H15A0.9900
O4—C141.3805 (16)C15—H15B0.9900
O4—C151.4183 (16)C17—C201.507 (2)
O5—C161.2038 (16)C17—C181.511 (2)
O6—C161.3407 (17)C17—C191.513 (2)
O6—C211.4839 (16)C18—H18A0.9800
C1—C21.5196 (18)C18—H18B0.9800
C2—H2A0.9900C18—H18C0.9800
C2—H2B0.9900C19—H19A0.9800
C3—C41.3939 (19)C19—H19B0.9800
C3—C81.4006 (18)C19—H19C0.9800
C4—C51.3910 (19)C20—H20A0.9800
C4—H4A0.9500C20—H20B0.9800
C5—C61.380 (2)C20—H20C0.9800
C5—H5A0.9500C21—C231.517 (2)
C6—C71.391 (2)C21—C221.518 (2)
C6—H6A0.9500C21—C241.520 (2)
C7—C81.3938 (17)C22—H22A0.9800
C7—H7A0.9500C22—H22B0.9800
C8—C91.4950 (18)C22—H22C0.9800
C9—C101.3966 (19)C23—H23A0.9800
C9—C141.3967 (19)C23—H23B0.9800
C10—C111.389 (2)C23—H23C0.9800
C10—H10A0.9500C24—H24A0.9800
C11—C121.377 (2)C24—H24B0.9800
C11—H11A0.9500C24—H24C0.9800
C12—C131.386 (2)
C1—O1—C17122.25 (11)C16—C15—H15B109.3
C3—O3—C2117.83 (10)H15A—C15—H15B108.0
C14—O4—C15116.99 (11)O5—C16—O6125.86 (13)
C16—O6—C21121.03 (10)O5—C16—C15123.97 (12)
O2—C1—O1126.99 (13)O6—C16—C15110.14 (11)
O2—C1—C2120.93 (12)O1—C17—C20109.60 (11)
O1—C1—C2112.04 (11)O1—C17—C18102.02 (12)
O3—C2—C1115.22 (10)C20—C17—C18111.65 (15)
O3—C2—H2A108.5O1—C17—C19109.59 (12)
C1—C2—H2A108.5C20—C17—C19112.56 (14)
O3—C2—H2B108.5C18—C17—C19110.90 (16)
C1—C2—H2B108.5C17—C18—H18A109.5
H2A—C2—H2B107.5C17—C18—H18B109.5
O3—C3—C4122.53 (11)H18A—C18—H18B109.5
O3—C3—C8116.03 (11)C17—C18—H18C109.5
C4—C3—C8121.43 (11)H18A—C18—H18C109.5
C5—C4—C3119.31 (12)H18B—C18—H18C109.5
C5—C4—H4A120.3C17—C19—H19A109.5
C3—C4—H4A120.3C17—C19—H19B109.5
C6—C5—C4120.34 (12)H19A—C19—H19B109.5
C6—C5—H5A119.8C17—C19—H19C109.5
C4—C5—H5A119.8H19A—C19—H19C109.5
C5—C6—C7119.79 (12)H19B—C19—H19C109.5
C5—C6—H6A120.1C17—C20—H20A109.5
C7—C6—H6A120.1C17—C20—H20B109.5
C6—C7—C8121.50 (12)H20A—C20—H20B109.5
C6—C7—H7A119.2C17—C20—H20C109.5
C8—C7—H7A119.2H20A—C20—H20C109.5
C7—C8—C3117.62 (12)H20B—C20—H20C109.5
C7—C8—C9120.83 (11)O6—C21—C23102.98 (11)
C3—C8—C9121.45 (11)O6—C21—C22109.69 (12)
C10—C9—C14117.97 (12)C23—C21—C22110.79 (13)
C10—C9—C8119.72 (11)O6—C21—C24109.62 (12)
C14—C9—C8122.25 (11)C23—C21—C24110.38 (13)
C11—C10—C9121.56 (13)C22—C21—C24112.92 (13)
C11—C10—H10A119.2C21—C22—H22A109.5
C9—C10—H10A119.2C21—C22—H22B109.5
C12—C11—C10119.28 (14)H22A—C22—H22B109.5
C12—C11—H11A120.4C21—C22—H22C109.5
C10—C11—H11A120.4H22A—C22—H22C109.5
C11—C12—C13120.73 (13)H22B—C22—H22C109.5
C11—C12—H12A119.6C21—C23—H23A109.5
C13—C12—H12A119.6C21—C23—H23B109.5
C12—C13—C14119.66 (13)H23A—C23—H23B109.5
C12—C13—H13A120.2C21—C23—H23C109.5
C14—C13—H13A120.2H23A—C23—H23C109.5
O4—C14—C13123.23 (12)H23B—C23—H23C109.5
O4—C14—C9115.98 (11)C21—C24—H24A109.5
C13—C14—C9120.78 (12)C21—C24—H24B109.5
O4—C15—C16111.40 (11)H24A—C24—H24B109.5
O4—C15—H15A109.3C21—C24—H24C109.5
C16—C15—H15A109.3H24A—C24—H24C109.5
O4—C15—H15B109.3H24B—C24—H24C109.5
C17—O1—C1—O25.8 (2)C8—C9—C10—C11177.90 (12)
C17—O1—C1—C2176.69 (10)C9—C10—C11—C120.5 (2)
C3—O3—C2—C163.42 (14)C10—C11—C12—C131.0 (2)
O2—C1—C2—O3168.21 (12)C11—C12—C13—C140.4 (2)
O1—C1—C2—O314.12 (15)C15—O4—C14—C139.65 (18)
C2—O3—C3—C420.01 (17)C15—O4—C14—C9171.68 (11)
C2—O3—C3—C8160.90 (11)C12—C13—C14—O4179.23 (13)
O3—C3—C4—C5179.27 (12)C12—C13—C14—C90.6 (2)
C8—C3—C4—C50.22 (19)C10—C9—C14—O4179.80 (11)
C3—C4—C5—C61.2 (2)C8—C9—C14—O42.91 (17)
C4—C5—C6—C70.8 (2)C10—C9—C14—C131.10 (19)
C5—C6—C7—C80.5 (2)C8—C9—C14—C13178.39 (12)
C6—C7—C8—C31.45 (19)C14—O4—C15—C1667.83 (14)
C6—C7—C8—C9174.84 (12)C21—O6—C16—O51.3 (2)
O3—C3—C8—C7178.03 (11)C21—O6—C16—C15176.87 (11)
C4—C3—C8—C71.08 (18)O4—C15—C16—O521.25 (18)
O3—C3—C8—C95.71 (17)O4—C15—C16—O6160.51 (11)
C4—C3—C8—C9175.19 (11)C1—O1—C17—C2066.57 (16)
C7—C8—C9—C10125.19 (13)C1—O1—C17—C18174.98 (14)
C3—C8—C9—C1050.96 (17)C1—O1—C17—C1957.41 (17)
C7—C8—C9—C1452.05 (17)C16—O6—C21—C23179.93 (12)
C3—C8—C9—C14131.80 (13)C16—O6—C21—C2261.94 (16)
C14—C9—C10—C110.54 (19)C16—O6—C21—C2462.58 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.992.513.482 (2)166
C20—H20C···O5ii0.982.473.414 (2)162
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H30O6
Mr414.48
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)7.7458 (15), 12.112 (2), 13.480 (3)
α, β, γ (°)67.36 (3), 82.11 (3), 82.68 (3)
V3)1152.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.48 × 0.38 × 0.19
Data collection
DiffractometerRigaku Mercury CCD (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.960, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
8742, 4191, 3687
Rint0.012
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.113, 1.06
No. of reflections4191
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXTL (Sheldrick, 2008).

Selected torsion angles (º) top
C3—C8—C9—C1050.96 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.992.5133.482 (2)166.4
C20—H20C···O5ii0.982.4703.414 (2)161.7
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Organization for the Prohibition of Chemical Weapons for financial support.

References

First citationAli, Q., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o910.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaudry, Y., Litvinchuk, S., Mareda, J., Nishihara, M., Pasnin, D., Shah, M. R., Sakai, N. & Matile, S. (2006). Adv. Funct. Mater. 16, 169–179.  Web of Science CrossRef CAS Google Scholar
First citationIbad, F., Mustafa, A., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o1130–o1131.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationKamoda, O., Anzai, K., Mizoguchi, J., Shiojiri, M., Yanagi, T., Nishino, T. & Kamiya, S. (2006). Antimicrob. Agents Chemother. 50, 3062–3069.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLitvinchuk, S., Bollot, G., Mareda, J., Som, A., Ronan, D., Shah, M. R., Perrottet, P., Sakai, N. & Matile, S. (2004). J. Am. Chem. Soc. 126, 10067–10075.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMakarov, V. A., Riabova, O. B., Granik, V. G., Wutzler, P. & Schmidtke, M. (2005). J. Antimicrob. Chemother. 55, 483–488.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSisson, A. L., Shah, M. R., Bhosale, S. & Matile, S. (2006). Chem. Soc. Rev. 35, 1269–1286.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpivey, A. C., Fekner, T., Spey, S. E. & Adams, H. (1999). J. Org. Chem. 64, 9430–9443.  Web of Science CSD CrossRef CAS Google Scholar
First citationToshiaki, M., Yoshihisa, K., Kouhei, K., Shizue, K., Yoshika, F., Toshiaki, S. & Yutaka, G. (2007). J. Pharm. Sci. 103, 238–239.  Google Scholar
First citationWeisburger, J. H., Mantel, N., Weisburger, E. K., Hadidian, Z. & Fredrickson, T. (1967). Nature (London), 213, 930–931.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds