metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­azido­bis­{2-[3-(di­methyl­amino)propyl­imino­meth­yl]phenol}manganese(III) perchlorate

aSchool of Chemistry and Life Sciences, Harbin University, Harbin 150080, People's Republic of China
*Correspondence e-mail: ygb_hu@sina.com

(Received 8 May 2008; accepted 24 July 2008; online 31 July 2008)

The title compound, [Mn(N3)2(C12H18N2O)2]ClO4, was synthesized from manganese(III) acetate, sodium azide and 2-[3-(dimethyl­amino)propyl­imino­meth­yl]phenol by a hydro­thermal reaction. The MnIII ion is hexa­coordinated by two N and two O atoms from two phenolate ligands and two N atoms from two azide ligands. The MnIII cation lies on an inversion centre and, as a result, the asymmetric unit comprises one half-mol­ecule.

Related literature

For related literature, see: Choudhury et al. (2001[Choudhury, C. R., Dey, S. K., Mondal, N., Mitra, S., Mahalli, S. O. G. & Malik, K. M. A. (2001). J. Chem. Crystallogr. 31, 57-62.]); Church & Halvorson (1959[Church, B. D. & Halvorson, H. (1959). Nature (London), 183, 124-125.]); Chung et al. (1971[Chung, L., Rajan, K. S., Merdinger, E. & Crecz, N. (1971). Biophys. J. 11, 469-475.]); Okabe & Oya (2000[Okabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416-1417.]); Serre et al. (2005[Serre, C., Marrot, J. & Feréy, G. (2005). Inorg. Chem. 44, 654-658.]); Scapin et al. (1997[Scapin, G., Reddy, S. G., Zheng, R. & Blanchard, J. S. (1997). Biochemistry, 36, 15081-15088.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(N3)2(C12H18N2O)2]ClO4

  • Mr = 651.02

  • Monoclinic, C 2/c

  • a = 16.8115 (17) Å

  • b = 16.4456 (18) Å

  • c = 12.9059 (14) Å

  • β = 121.121 (8)°

  • V = 3054.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 293 (2) K

  • 0.43 × 0.28 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.790, Tmax = 0.884

  • 3388 measured reflections

  • 2842 independent reflections

  • 2216 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.144

  • S = 1.00

  • 2842 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, Schiff base ligands have been widely used as polydentate ligands that can coordinate to transition or rare earth ions yielding complexes with interesting properties that are useful in materials science (Church & Halvorson, 1959; Chung et al., 1971) and in biological systems (Okabe & Oya, 2000; Serre et al., 2005; Scapin et al., 1997). Herein, we report the synthesis and X-ray crystal structure analysis of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. The MnIII cation lies on an inversion centre, as a consequence the asymmetric unit comprises half of the molecule. The MnIII ion is hexacoordinated by two N and two O atoms from two 2-[3-(dimethylamino)propyliminomethyl]phenolate ligands and two N atoms from two azide ligands.

Related literature top

For related literature, see: Choudhury et al. (2001); Church & Halvorson (1959); Chung et al. (1971); Okabe & Oya (2000); Serre et al. (2005); Scapin et al. (1997).

Experimental top

The title compound was synthesized according to the following two steps:

(i) Synthesis of the ligand: 2-[3-(dimethylamino)propyliminomethyl]phenol was prepared by refluxing 3-dimethylamino-1-propylamine (1.0 mmol) and salicylaldehyde (1.0 mmol) in ethanol (25 ml) for two hours and used without further purification, according to the literature method (see: Choudhury et al., 2001).

(ii) Synthesis of the complex: A solution of sodium azide (0.5 mmol) and sodium perchlorate (0.05 mmol) in 5 ml water was added to the ethanol solution of the ligand (1.0 mmol). Then manganese(III) acetate dihydrate (0.5 mmol) in 3 ml water was added to the above mixture. A yellow mixture was obtained by refluxing for 3 h and was left to stand undisturbed. Upon slow evaporation at room temperature, light yellow prismatic crystals suitable for X-ray diffraction appeared three days later and were separated by filtration.

Refinement top

The H atom on O1 was located from a difference density map and was refined with a distance restraint of d(O—H) = 0.82 (2) Å. All other H atoms were placed in calculated positions with C—H = 0.93 Å and N—H = 0.86 Å and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms.
Diazidobis{2-[3-(dimethylamino)propyliminomethyl]phenol}manganese(III) perchlorate top
Crystal data top
[Mn(N3)2(C12H18N2O)2]ClO4F(000) = 1360
Mr = 651.02Dx = 1.416 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2842 reflections
a = 16.8115 (17) Åθ = 1.9–25.5°
b = 16.4456 (18) ŵ = 0.58 mm1
c = 12.9059 (14) ÅT = 293 K
β = 121.121 (8)°Prism, yellow
V = 3054.6 (6) Å30.43 × 0.28 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2842 independent reflections
Radiation source: fine-focus sealed tube2216 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 201
Tmin = 0.790, Tmax = 0.884k = 119
3388 measured reflectionsl = 1315
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0843P)2 + 2.1116P]
where P = (Fo2 + 2Fc2)/3
2842 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Mn(N3)2(C12H18N2O)2]ClO4V = 3054.6 (6) Å3
Mr = 651.02Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.8115 (17) ŵ = 0.58 mm1
b = 16.4456 (18) ÅT = 293 K
c = 12.9059 (14) Å0.43 × 0.28 × 0.22 mm
β = 121.121 (8)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2842 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2216 reflections with I > 2σ(I)
Tmin = 0.790, Tmax = 0.884Rint = 0.044
3388 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.48 e Å3
2842 reflectionsΔρmin = 0.48 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.25000.25000.50000.0467 (2)
Cl10.00000.15323 (8)0.75000.0711 (3)
O10.28801 (14)0.20397 (12)0.40192 (19)0.0626 (5)
O20.0690 (2)0.2006 (3)0.7580 (4)0.1579 (17)
O30.0340 (3)0.1044 (2)0.8529 (3)0.1482 (15)
N10.13856 (14)0.16698 (13)0.43275 (19)0.0481 (5)
N20.12645 (16)0.32706 (14)0.3901 (2)0.0576 (6)
N30.33339 (17)0.16169 (15)0.6490 (2)0.0603 (6)
N40.36786 (18)0.10586 (17)0.6266 (2)0.0649 (6)
N50.4004 (3)0.0528 (2)0.6034 (4)0.0980 (10)
C10.25785 (18)0.14208 (15)0.3267 (2)0.0497 (6)
C20.18274 (18)0.09312 (16)0.3069 (2)0.0523 (6)
C30.1561 (2)0.0279 (2)0.2252 (3)0.0730 (9)
H3A0.10710.00550.21230.088*
C40.2015 (3)0.0129 (2)0.1639 (4)0.0896 (11)
H4A0.18280.03000.10920.108*
C50.2746 (3)0.0614 (2)0.1835 (3)0.0791 (10)
H5A0.30500.05120.14170.095*
C60.3033 (2)0.12473 (19)0.2640 (3)0.0633 (7)
H6A0.35340.15650.27710.076*
C70.12924 (18)0.10820 (16)0.3631 (2)0.0513 (6)
H7A0.08260.07080.34670.062*
C80.06994 (18)0.17367 (16)0.4719 (3)0.0532 (6)
H8A0.10220.18060.55900.064*
H8B0.03360.12410.45130.064*
C90.0061 (2)0.24542 (17)0.4104 (3)0.0572 (7)
H9A0.02470.23890.32330.069*
H9B0.04270.29490.43220.069*
C100.0665 (2)0.25332 (17)0.4460 (3)0.0583 (7)
H10A0.10530.20510.42030.070*
H10B0.03580.25700.53350.070*
C110.0775 (3)0.4036 (2)0.4465 (4)0.0850 (10)
H11A0.02160.40660.44380.127*
H11B0.06210.40520.52920.127*
H11C0.11690.44880.40330.127*
C120.2131 (2)0.3213 (2)0.3943 (4)0.0844 (11)
H12A0.25010.36910.35850.127*
H12B0.19740.31700.47700.127*
H12C0.24770.27420.35020.127*
H1A0.313 (2)0.2343 (11)0.376 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0433 (3)0.0501 (3)0.0527 (3)0.0081 (2)0.0290 (3)0.0109 (2)
Cl10.0692 (7)0.0852 (8)0.0727 (7)0.0000.0465 (6)0.000
O10.0654 (12)0.0654 (12)0.0774 (13)0.0213 (10)0.0513 (11)0.0260 (10)
O20.083 (2)0.220 (4)0.168 (4)0.032 (3)0.062 (2)0.055 (3)
O30.219 (4)0.128 (3)0.087 (2)0.018 (3)0.071 (2)0.0178 (19)
N10.0422 (11)0.0487 (12)0.0532 (12)0.0003 (9)0.0244 (9)0.0002 (10)
N20.0499 (12)0.0601 (14)0.0690 (14)0.0035 (11)0.0352 (11)0.0025 (11)
N30.0555 (13)0.0637 (15)0.0616 (14)0.0029 (12)0.0301 (12)0.0023 (12)
N40.0647 (15)0.0638 (16)0.0727 (16)0.0071 (13)0.0401 (14)0.0059 (13)
N50.127 (3)0.0709 (19)0.135 (3)0.0137 (19)0.096 (3)0.0101 (19)
C10.0521 (14)0.0471 (13)0.0497 (14)0.0050 (11)0.0262 (12)0.0020 (11)
C20.0484 (14)0.0480 (14)0.0532 (14)0.0048 (11)0.0212 (12)0.0027 (11)
C30.073 (2)0.0593 (17)0.079 (2)0.0060 (15)0.0346 (17)0.0179 (16)
C40.102 (3)0.079 (2)0.094 (3)0.008 (2)0.055 (2)0.039 (2)
C50.095 (3)0.080 (2)0.079 (2)0.006 (2)0.057 (2)0.0181 (18)
C60.0683 (18)0.0650 (17)0.0686 (18)0.0052 (15)0.0438 (15)0.0039 (14)
C70.0425 (13)0.0456 (14)0.0567 (15)0.0028 (11)0.0190 (11)0.0005 (12)
C80.0428 (13)0.0569 (15)0.0642 (16)0.0031 (12)0.0307 (12)0.0028 (13)
C90.0483 (15)0.0666 (18)0.0628 (17)0.0030 (13)0.0329 (13)0.0054 (13)
C100.0521 (16)0.0656 (18)0.0652 (17)0.0022 (13)0.0359 (14)0.0042 (13)
C110.082 (2)0.068 (2)0.114 (3)0.0071 (18)0.056 (2)0.019 (2)
C120.0615 (19)0.089 (2)0.119 (3)0.0021 (18)0.059 (2)0.008 (2)
Geometric parameters (Å, º) top
Mn1—O11.8493 (18)C3—C41.377 (5)
Mn1—O1i1.8493 (18)C3—H3A0.9300
Mn1—N1i2.109 (2)C4—C51.374 (5)
Mn1—N12.109 (2)C4—H4A0.9300
Mn1—N3i2.233 (2)C5—C61.370 (4)
Mn1—N32.233 (2)C5—H5A0.9300
Cl1—O21.357 (3)C6—H6A0.9300
Cl1—O2ii1.357 (3)C7—H7A0.9300
Cl1—O3ii1.397 (3)C8—C91.515 (4)
Cl1—O31.397 (3)C8—H8A0.9700
O1—C11.314 (3)C8—H8B0.9700
O1—H1A0.828 (9)C9—C101.516 (4)
N1—C71.273 (3)C9—H9A0.9700
N1—C81.483 (3)C9—H9B0.9700
N2—C111.474 (4)C10—H10A0.9700
N2—C121.489 (4)C10—H10B0.9700
N2—C101.502 (4)C11—H11A0.9600
N3—N41.199 (4)C11—H11B0.9600
N4—N51.149 (4)C11—H11C0.9600
C1—C61.400 (4)C12—H12A0.9600
C1—C21.405 (4)C12—H12B0.9600
C2—C31.405 (4)C12—H12C0.9600
C2—C71.439 (4)
O1—Mn1—O1i180.00 (8)C5—C4—H4A120.0
O1—Mn1—N1i89.94 (8)C3—C4—H4A120.0
O1i—Mn1—N1i90.06 (8)C6—C5—C4120.8 (3)
O1—Mn1—N190.06 (8)C6—C5—H5A119.6
O1i—Mn1—N189.94 (8)C4—C5—H5A119.6
N1i—Mn1—N1180.00 (13)C5—C6—C1120.7 (3)
O1—Mn1—N3i87.82 (10)C5—C6—H6A119.7
O1i—Mn1—N3i92.18 (10)C1—C6—H6A119.7
N1i—Mn1—N3i87.83 (8)N1—C7—C2127.3 (2)
N1—Mn1—N3i92.17 (8)N1—C7—H7A116.4
O1—Mn1—N392.18 (10)C2—C7—H7A116.4
O1i—Mn1—N387.82 (10)N1—C8—C9110.2 (2)
N1i—Mn1—N392.17 (8)N1—C8—H8A109.6
N1—Mn1—N387.83 (8)C9—C8—H8A109.6
N3i—Mn1—N3180.0N1—C8—H8B109.6
O2—Cl1—O2ii109.9 (5)C9—C8—H8B109.6
O2—Cl1—O3ii108.4 (3)H8A—C8—H8B108.1
O2ii—Cl1—O3ii110.1 (2)C8—C9—C10111.8 (2)
O2—Cl1—O3110.1 (2)C8—C9—H9A109.2
O2ii—Cl1—O3108.4 (3)C10—C9—H9A109.2
O3ii—Cl1—O3109.8 (3)C8—C9—H9B109.3
C1—O1—Mn1133.21 (18)C10—C9—H9B109.3
C1—O1—H1A104.7 (14)H9A—C9—H9B107.9
Mn1—O1—H1A117.3 (13)N2—C10—C9111.7 (2)
C7—N1—C8117.6 (2)N2—C10—H10A109.3
C7—N1—Mn1122.76 (18)C9—C10—H10A109.3
C8—N1—Mn1119.59 (17)N2—C10—H10B109.3
C11—N2—C12110.1 (3)C9—C10—H10B109.3
C11—N2—C10112.8 (2)H10A—C10—H10B107.9
C12—N2—C10111.0 (3)N2—C11—H11A109.5
N4—N3—Mn1117.2 (2)N2—C11—H11B109.5
N5—N4—N3179.0 (3)H11A—C11—H11B109.5
O1—C1—C6117.9 (3)N2—C11—H11C109.5
O1—C1—C2123.1 (2)H11A—C11—H11C109.5
C6—C1—C2119.0 (3)H11B—C11—H11C109.5
C1—C2—C3118.8 (3)N2—C12—H12A109.5
C1—C2—C7123.1 (2)N2—C12—H12B109.5
C3—C2—C7118.0 (3)H12A—C12—H12B109.5
C4—C3—C2120.7 (3)N2—C12—H12C109.5
C4—C3—H3A119.6H12A—C12—H12C109.5
C2—C3—H3A119.6H12B—C12—H12C109.5
C5—C4—C3119.9 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Mn(N3)2(C12H18N2O)2]ClO4
Mr651.02
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)16.8115 (17), 16.4456 (18), 12.9059 (14)
β (°) 121.121 (8)
V3)3054.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.43 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.790, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
3388, 2842, 2216
Rint0.044
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.144, 1.00
No. of reflections2842
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.48

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank Harbin University for financial support.

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoudhury, C. R., Dey, S. K., Mondal, N., Mitra, S., Mahalli, S. O. G. & Malik, K. M. A. (2001). J. Chem. Crystallogr. 31, 57–62.  Web of Science CSD CrossRef CAS Google Scholar
First citationChung, L., Rajan, K. S., Merdinger, E. & Crecz, N. (1971). Biophys. J. 11, 469–475.  CrossRef CAS Web of Science PubMed Google Scholar
First citationChurch, B. D. & Halvorson, H. (1959). Nature (London), 183, 124–125.  CrossRef PubMed CAS Web of Science Google Scholar
First citationOkabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416–1417.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationScapin, G., Reddy, S. G., Zheng, R. & Blanchard, J. S. (1997). Biochemistry, 36, 15081–15088.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSerre, C., Marrot, J. & Feréy, G. (2005). Inorg. Chem. 44, 654–658.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds