organic compounds
Benzamide oxime
aLaboratory of Beibu Gulf Marine Protection and Exploitation, Department of Chemistry and Biology, Qinzhou University, Qinzhou, Guangxi 535000, People's Republic of China
*Correspondence e-mail: ljmmarise@163.com
In the 7H8N2O, molecules are connected via intermolecular N—H⋯O and O—H⋯N hydrogen bonds to form a two-dimensional supramolecular structure. The oxime group has an E configuration and the dihedral angle between the mean planes of the benzene ring and the amidoxime grouping is 20.2 (3)°.
of the title compound, CRelated literature
For related literature, see: Bruton et al. (2003); Kang et al. (2007); Li et al. (2007); Srivastava et al. (1997); Wang et al. (2006, 2007); Bertolasi et al. (1982); Chertanova et al. (1994); Goel et al. (1981); Xing, Ding et al. (2007); Xing, Wang et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808020813/ez2131sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808020813/ez2131Isup2.hkl
Reagents and solvents used were of commercially available quality. The Schiff base ligand benzamidoxime was synthesized according to the method of Kang et al. (2007). A mixture of benzonitrile (0.33 mol) and hydroxylamine hydrochloride (0.33 mol) in ethanol (231 ml) and potassium carbonate (0.33 mol) in water (66 ml) was refluxed for 12 h. After cooling and filtering, compound (I) was obtained. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.
H atoms were positioned geometrically, with N—H = 0.86 A (for NH), O—H = 0.82 Å (for OH) and C—H = 0.93 Å for aromatic H atoms, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N,O), where x = 1.5 for OH H, and x = 1.2 for all other H atoms.
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C7H8N2O | F(000) = 288 |
Mr = 136.15 | Dx = 1.304 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1198 reflections |
a = 12.579 (2) Å | θ = 2.5–27.7° |
b = 5.053 (1) Å | µ = 0.09 mm−1 |
c = 10.908 (2) Å | T = 273 K |
β = 90.380 (7)° | Block, colorless |
V = 693.3 (2) Å3 | 0.28 × 0.22 × 0.18 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 1216 independent reflections |
Radiation source: fine-focus sealed tube | 967 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −14→14 |
Tmin = 0.975, Tmax = 0.984 | k = −6→6 |
4489 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.145 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0753P)2 + 0.2452P] where P = (Fo2 + 2Fc2)/3 |
1216 reflections | (Δ/σ)max < 0.001 |
92 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C7H8N2O | V = 693.3 (2) Å3 |
Mr = 136.15 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.579 (2) Å | µ = 0.09 mm−1 |
b = 5.053 (1) Å | T = 273 K |
c = 10.908 (2) Å | 0.28 × 0.22 × 0.18 mm |
β = 90.380 (7)° |
Bruker SMART CCD area-detector diffractometer | 1216 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 967 reflections with I > 2σ(I) |
Tmin = 0.975, Tmax = 0.984 | Rint = 0.028 |
4489 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.145 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.21 e Å−3 |
1216 reflections | Δρmin = −0.22 e Å−3 |
92 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.50237 (11) | 0.1813 (3) | 1.12339 (12) | 0.0523 (4) | |
H1 | 0.4578 | 0.0750 | 1.0990 | 0.078* | |
N2 | 0.58736 (13) | 0.1959 (3) | 1.03730 (14) | 0.0453 (5) | |
C7 | 0.63885 (14) | 0.4152 (4) | 1.05147 (16) | 0.0391 (5) | |
N1 | 0.61721 (14) | 0.5943 (3) | 1.13971 (15) | 0.0508 (5) | |
H1A | 0.5666 | 0.5653 | 1.1906 | 0.061* | |
H1B | 0.6540 | 0.7373 | 1.1450 | 0.061* | |
C1 | 0.72942 (14) | 0.4640 (4) | 0.96838 (17) | 0.0411 (5) | |
C5 | 0.8218 (2) | 0.3813 (6) | 0.7814 (2) | 0.0710 (7) | |
H5 | 0.8256 | 0.2908 | 0.7073 | 0.085* | |
C6 | 0.73762 (19) | 0.3377 (5) | 0.8576 (2) | 0.0643 (7) | |
H6 | 0.6847 | 0.2195 | 0.8337 | 0.077* | |
C2 | 0.8089 (2) | 0.6386 (6) | 0.9997 (3) | 0.0781 (8) | |
H2 | 0.8062 | 0.7276 | 1.0742 | 0.094* | |
C4 | 0.89920 (19) | 0.5537 (5) | 0.8122 (2) | 0.0674 (7) | |
H4 | 0.9560 | 0.5839 | 0.7599 | 0.081* | |
C3 | 0.8926 (2) | 0.6829 (7) | 0.9215 (3) | 0.0962 (11) | |
H3 | 0.9455 | 0.8027 | 0.9437 | 0.115* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0545 (9) | 0.0537 (9) | 0.0488 (8) | −0.0083 (6) | 0.0195 (7) | 0.0020 (6) |
N2 | 0.0477 (9) | 0.0438 (10) | 0.0445 (9) | −0.0035 (7) | 0.0130 (7) | 0.0000 (7) |
C7 | 0.0435 (10) | 0.0375 (10) | 0.0364 (9) | 0.0027 (8) | 0.0008 (7) | 0.0041 (7) |
N1 | 0.0609 (11) | 0.0444 (10) | 0.0471 (9) | −0.0028 (8) | 0.0116 (8) | −0.0054 (8) |
C1 | 0.0427 (10) | 0.0376 (10) | 0.0429 (10) | 0.0011 (8) | 0.0024 (8) | 0.0036 (8) |
C5 | 0.0705 (15) | 0.0845 (18) | 0.0583 (13) | −0.0135 (13) | 0.0222 (12) | −0.0124 (13) |
C6 | 0.0606 (13) | 0.0763 (16) | 0.0562 (13) | −0.0226 (12) | 0.0151 (10) | −0.0164 (12) |
C2 | 0.0739 (16) | 0.0848 (19) | 0.0757 (16) | −0.0334 (14) | 0.0208 (13) | −0.0281 (14) |
C4 | 0.0543 (13) | 0.0735 (16) | 0.0747 (16) | −0.0065 (12) | 0.0226 (11) | 0.0063 (13) |
C3 | 0.0763 (18) | 0.108 (2) | 0.105 (2) | −0.0503 (18) | 0.0278 (16) | −0.0271 (19) |
O1—N2 | 1.430 (2) | C5—C4 | 1.348 (4) |
O1—H1 | 0.8200 | C5—C6 | 1.368 (3) |
N2—C7 | 1.292 (2) | C5—H5 | 0.9300 |
C7—N1 | 1.350 (2) | C6—H6 | 0.9300 |
C7—C1 | 1.481 (3) | C2—C3 | 1.378 (4) |
N1—H1A | 0.8600 | C2—H2 | 0.9300 |
N1—H1B | 0.8600 | C4—C3 | 1.362 (4) |
C1—C6 | 1.371 (3) | C4—H4 | 0.9300 |
C1—C2 | 1.375 (3) | C3—H3 | 0.9300 |
N2—O1—H1 | 109.5 | C6—C5—H5 | 119.6 |
C7—N2—O1 | 109.99 (15) | C5—C6—C1 | 121.6 (2) |
N2—C7—N1 | 123.82 (17) | C5—C6—H6 | 119.2 |
N2—C7—C1 | 117.16 (16) | C1—C6—H6 | 119.2 |
N1—C7—C1 | 118.97 (17) | C1—C2—C3 | 120.5 (2) |
C7—N1—H1A | 120.0 | C1—C2—H2 | 119.7 |
C7—N1—H1B | 120.0 | C3—C2—H2 | 119.7 |
H1A—N1—H1B | 120.0 | C5—C4—C3 | 118.7 (2) |
C6—C1—C2 | 117.3 (2) | C5—C4—H4 | 120.7 |
C6—C1—C7 | 121.63 (18) | C3—C4—H4 | 120.7 |
C2—C1—C7 | 121.06 (18) | C4—C3—C2 | 121.0 (2) |
C4—C5—C6 | 120.9 (2) | C4—C3—H3 | 119.5 |
C4—C5—H5 | 119.6 | C2—C3—H3 | 119.5 |
O1—N2—C7—N1 | 3.2 (2) | C2—C1—C6—C5 | 0.5 (4) |
O1—N2—C7—C1 | −179.43 (14) | C7—C1—C6—C5 | −179.5 (2) |
N2—C7—C1—C6 | 21.8 (3) | C6—C1—C2—C3 | 0.2 (4) |
N1—C7—C1—C6 | −160.7 (2) | C7—C1—C2—C3 | −179.8 (3) |
N2—C7—C1—C2 | −158.2 (2) | C6—C5—C4—C3 | 0.5 (5) |
N1—C7—C1—C2 | 19.3 (3) | C5—C4—C3—C2 | 0.2 (5) |
C4—C5—C6—C1 | −0.9 (4) | C1—C2—C3—C4 | −0.5 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N2i | 0.82 | 2.10 | 2.820 (2) | 147 |
N1—H1A···O1ii | 0.86 | 2.29 | 3.031 (2) | 145 |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+1, y+1/2, −z+5/2. |
Experimental details
Crystal data | |
Chemical formula | C7H8N2O |
Mr | 136.15 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 273 |
a, b, c (Å) | 12.579 (2), 5.053 (1), 10.908 (2) |
β (°) | 90.380 (7) |
V (Å3) | 693.3 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.28 × 0.22 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.975, 0.984 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4489, 1216, 967 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.145, 1.05 |
No. of reflections | 1216 |
No. of parameters | 92 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.22 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N2i | 0.82 | 2.10 | 2.820 (2) | 147.1 |
N1—H1A···O1ii | 0.86 | 2.29 | 3.031 (2) | 144.6 |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+1, y+1/2, −z+5/2. |
Acknowledgements
This work was supported by a grant from the Qinzhou University Foundation of Guangxi Zhuang Autonomous Region of the People's Republic of China (grant No. 2007XJ15).
References
Bertolasi, V., Gilli, G. & Veronese, A. C. (1982). Acta Cryst. B38, 502–511. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruton, E. A., Brammer, L., Pigge, F. C., Aakeröy, C. B. & Leinend, D. S. (2003). New J. Chem. 27, 1084–1094. Web of Science CSD CrossRef CAS Google Scholar
Chertanova, L., Pascard, C. & Sheremetev, A. (1994). Acta Cryst. B50, 708–716. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Goel, A. B., Goel, S. & Vanderveer, D. (1981). Inorg. Chim. Acta, 54, L5–L6. CSD CrossRef CAS Web of Science Google Scholar
Kang, S.-S., Wang, H.-B., Zeng, H.-S. & Li, H.-L. (2007). Acta Cryst. E63, o3279. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, H.-L., Zeng, H.-S., Kang, S.-S. & Wang, H.-B. (2007). Acta Cryst. E63, o4763. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Srivastava, R. M., Brinn, I. M., Machuca-Herrera, J. O., Faria, H. B., Carpenter, G. B., Andrade, D., Venkatesh, C. G. & Morais, L. P. F. (1997). J. Mol. Struct. 406, 159–167. CSD CrossRef CAS Web of Science Google Scholar
Wang, H.-B., Xing, Z.-T., Ding, W.-L., Yin, J. & Wang, P.-L. (2007). Acta Cryst. E63, o1834–o1835. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, H.-B., Yan, X.-C. & Liu, Z.-Q. (2006). Acta Cryst. E62, o4243–o4244. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xing, Z.-T., Ding, W.-L., Wang, H.-B., Yin, J. & Han, F. (2007). Acta Cryst. E63, o1019–o1020. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xing, Z.-T., Wang, H.-B., Yin, J., Wu, W.-Y. & Han, F. (2007). Acta Cryst. E63, o2236–o2237. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis of Schiff base complexes containing oxime (–C═N—OH) functional groups has attracted great interest due to their antiviral, anticancer and antibacterial activities (Srivastava et al., 1997; Goel et al., 1981; Li et al., 2007; Wang et al., 2007; Xing, Ding et al. (2007), Xing, Wang et al. (2007). Also, the interesting hydrogen-bond systems in the crystal structures of oximes have been analysed and a correlation between the pattern of hydrogen bonding and N—O bond lengths has been suggested (Bertolasi et al., 1982; Bruton et al., 2003). Herein, we report the synthesis and crystal structure of the title compound, (I). In the crystal structure of the title compound, molecules are connected via intermolecular N—H···O and O—H···N hydrogen bonds (see Table 1 and Fig. 2) to form a two-dimensional supramolecular structure. The oxime group has an E configuration [C4—C9—N1—O3 = -179.43 (14) °, Chertanova et al., 1994] and the dihedral angle between the mean planes of the benzene ring and the C7/N1/N2/O grouping is 20.2 (3) °, which is less than that reported for similar structures by Kang et al. (2007) and Xing, Ding et al. (2007), Xing, Wang et al. (2007).