metal-organic compounds
Monoclinic polymorph of trans-tetraaquabis[(4-pyridylsulfanyl)acetato-κN]cobalt(II)
aDepartment of Inorganic Chemistry, Slovak, Technical University, Radlinského 9, SK-812 37, Bratislava, Slovakia, and bDepartment of Chemistry, Faculty of Natural Science, University of St. Cyril and Methodius, SK-91701 Trnava, Slovakia
*Correspondence e-mail: jan.moncol@stuba.sk
The 7H6NO2S)2(H2O)4], is a polymorph of the structure first reported by Du, Zhao & Wang [(2004). Dalton Trans, pp. 2065–2072]. The of the title compound contains one half-molecule; the CoII atom lies on an inversion centre in a distorted octahedral geometry coordinated by two N atoms of the pyridine rings of the 4-pyridylthioacetate anions and four O atoms of water molecules. In the intermolecular O—H⋯O hydrogen bonds link the molecules, forming a three-dimensional network.
of the title compound, [Co(CRelated literature
For related literature, see: Bernstein et al. (1995); Chiang et al. (1993); Du et al. (2004); Du & Li (2006); Kondo et al. (2002); For related structures, see: Fang et al. (2004); Zhang et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: XSCANS (Siemens, 1994); cell XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al. 2004).
Supporting information
10.1107/S1600536808023593/ez2135sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808023593/ez2135Isup2.hkl
Well shaped red crystals of (I) suitable for X-ray analysis were prepared in an H-tube. An aqueous solution of the sodium salt of 4-pyridylthioacetic acid, was placed in the first part of the H-tube, and an aqueous solution of Co(II) sulfate in the second part. Crystals formed after two weeks, whereafter they were separated and dried at room temperature (yield 70%). Anal. Calc. for C14H20CoN2O8S2: C, 35.98; H, 4.31; N, 5.99; S, 13.72; Co, 12.61. Found: C, 35.82; H, 4.41; N, 5.90; S, 13.59; Co, 12.75%. Selected IR data (cm-1): 1570 (versus,br) (νa(COO-) + ν(C=N)), 1376 (versus) (νs(COO-)), 430 (m) (γ(py), pyridine ring out-of-plane bending). Electronic data (cm-1): 21200, 20300, 9200br.
All H atoms of C–H (aromatic and methylene) were placed in calculated positions (0.93 and 0.97 Å, respectively); isotropic displaced parameters were fixed [Uiso(H) = 1.2 Uiso(C) of C atoms to which they were attached] using a riding model. The water H atoms were placed in calculated positions (O–H = 0.82 Å); isotropic displacement parameters were fixed [Uiso(H) = 1.5Uiso(O)) of O atoms to which they were attached].
Data collection: XSCANS (Siemens, 1994); cell
XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004).[Co(C7H6NO2S)2(H2O)4] | F(000) = 482 |
Mr = 467.37 | Dx = 1.689 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 12.173 (1) Å | θ = 1.7–7.9° |
b = 10.479 (1) Å | µ = 1.21 mm−1 |
c = 7.523 (2) Å | T = 293 K |
β = 106.78 (3)° | Block, pink |
V = 918.8 (3) Å3 | 0.45 × 0.40 × 0.30 mm |
Z = 2 |
Siemens P4 diffractometer | 2283 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.024 |
Graphite monochromator | θmax = 30.0°, θmin = 1.8° |
2θ/ω scans | h = −17→16 |
Absorption correction: ψ scan (XEMP; Siemens, 1994) | k = −14→1 |
Tmin = 0.608, Tmax = 0.684 | l = −1→10 |
3491 measured reflections | 3 standard reflections every 97 reflections |
2651 independent reflections | intensity decay: 2.0% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0291P)2 + 0.3487P] where P = (Fo2 + 2Fc2)/3 |
S = 1.37 | (Δ/σ)max = 0.001 |
2651 reflections | Δρmax = 0.41 e Å−3 |
125 parameters | Δρmin = −0.37 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.073 (6) |
[Co(C7H6NO2S)2(H2O)4] | V = 918.8 (3) Å3 |
Mr = 467.37 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.173 (1) Å | µ = 1.21 mm−1 |
b = 10.479 (1) Å | T = 293 K |
c = 7.523 (2) Å | 0.45 × 0.40 × 0.30 mm |
β = 106.78 (3)° |
Siemens P4 diffractometer | 2283 reflections with I > 2σ(I) |
Absorption correction: ψ scan (XEMP; Siemens, 1994) | Rint = 0.024 |
Tmin = 0.608, Tmax = 0.684 | 3 standard reflections every 97 reflections |
3491 measured reflections | intensity decay: 2.0% |
2651 independent reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.37 | Δρmax = 0.41 e Å−3 |
2651 reflections | Δρmin = −0.37 e Å−3 |
125 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.5000 | 0.5000 | 0.0000 | 0.01988 (13) | |
S1 | 1.03489 (4) | 0.69603 (5) | 0.41990 (8) | 0.03026 (16) | |
O1 | 1.27843 (14) | 0.69566 (16) | 0.5784 (2) | 0.0379 (4) | |
O2 | 1.32163 (14) | 0.52026 (19) | 0.4432 (3) | 0.0413 (4) | |
O1W | 0.56051 (12) | 0.31434 (14) | 0.0783 (2) | 0.0303 (3) | |
H1W | 0.5952 | 0.2790 | 0.0135 | 0.046* | |
H2W | 0.5996 | 0.3114 | 0.1871 | 0.046* | |
O2W | 0.48936 (14) | 0.5278 (2) | 0.2660 (2) | 0.0386 (4) | |
H3W | 0.5470 | 0.5169 | 0.3536 | 0.058* | |
H4W | 0.4300 | 0.5267 | 0.2967 | 0.058* | |
N1 | 0.67362 (13) | 0.57244 (16) | 0.0968 (2) | 0.0246 (3) | |
C1 | 1.25327 (16) | 0.6025 (2) | 0.4709 (3) | 0.0294 (4) | |
C2 | 1.12871 (16) | 0.5827 (2) | 0.3577 (3) | 0.0296 (4) | |
H2A | 1.1051 | 0.4969 | 0.3782 | 0.036* | |
H2B | 1.1223 | 0.5915 | 0.2267 | 0.036* | |
C3 | 0.76428 (16) | 0.50244 (19) | 0.0894 (3) | 0.0249 (4) | |
H3 | 0.7508 | 0.4274 | 0.0205 | 0.030* | |
C4 | 0.87692 (16) | 0.5353 (2) | 0.1785 (3) | 0.0257 (4) | |
H4 | 0.9369 | 0.4834 | 0.1686 | 0.031* | |
C5 | 0.89935 (15) | 0.64675 (19) | 0.2828 (3) | 0.0228 (4) | |
C6 | 0.80572 (17) | 0.7236 (2) | 0.2835 (3) | 0.0305 (4) | |
H6 | 0.8171 | 0.8014 | 0.3458 | 0.037* | |
C7 | 0.69607 (17) | 0.6831 (2) | 0.1909 (3) | 0.0314 (5) | |
H7 | 0.6346 | 0.7350 | 0.1938 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.01396 (18) | 0.0244 (2) | 0.02025 (19) | 0.00132 (12) | 0.00333 (12) | −0.00054 (13) |
S1 | 0.0187 (2) | 0.0350 (3) | 0.0329 (3) | −0.00349 (18) | 0.00085 (18) | −0.0080 (2) |
O1 | 0.0261 (7) | 0.0401 (9) | 0.0392 (9) | −0.0061 (7) | −0.0036 (6) | 0.0038 (7) |
O2 | 0.0210 (7) | 0.0621 (12) | 0.0403 (9) | 0.0061 (7) | 0.0078 (6) | 0.0027 (8) |
O1W | 0.0248 (7) | 0.0294 (7) | 0.0337 (8) | 0.0049 (6) | 0.0034 (6) | 0.0022 (6) |
O2W | 0.0234 (7) | 0.0702 (12) | 0.0225 (7) | 0.0067 (7) | 0.0068 (6) | −0.0021 (7) |
N1 | 0.0169 (7) | 0.0273 (8) | 0.0281 (8) | 0.0001 (6) | 0.0041 (6) | −0.0015 (6) |
C1 | 0.0168 (8) | 0.0434 (12) | 0.0263 (9) | −0.0039 (8) | 0.0034 (7) | 0.0109 (9) |
C2 | 0.0172 (8) | 0.0392 (11) | 0.0297 (10) | 0.0010 (7) | 0.0026 (7) | −0.0015 (8) |
C3 | 0.0189 (8) | 0.0261 (9) | 0.0287 (9) | −0.0022 (7) | 0.0049 (7) | −0.0042 (8) |
C4 | 0.0169 (8) | 0.0272 (9) | 0.0317 (10) | 0.0009 (7) | 0.0050 (7) | −0.0023 (8) |
C5 | 0.0173 (8) | 0.0266 (9) | 0.0230 (8) | −0.0013 (6) | 0.0033 (6) | 0.0005 (7) |
C6 | 0.0226 (9) | 0.0286 (10) | 0.0382 (11) | −0.0003 (7) | 0.0053 (8) | −0.0108 (8) |
C7 | 0.0197 (9) | 0.0307 (10) | 0.0416 (12) | 0.0037 (7) | 0.0053 (8) | −0.0067 (9) |
Co1—O2Wi | 2.0632 (16) | N1—C3 | 1.340 (2) |
Co1—O2W | 2.0632 (16) | N1—C7 | 1.345 (3) |
Co1—O1Wi | 2.1034 (15) | C1—C2 | 1.524 (3) |
Co1—O1W | 2.1034 (15) | C2—H2A | 0.9700 |
Co1—N1i | 2.1644 (16) | C2—H2B | 0.9700 |
Co1—N1 | 2.1644 (16) | C3—C4 | 1.385 (3) |
S1—C5 | 1.7523 (19) | C3—H3 | 0.9300 |
S1—C2 | 1.800 (2) | C4—C5 | 1.389 (3) |
O1—C1 | 1.248 (3) | C4—H4 | 0.9300 |
O2—C1 | 1.257 (3) | C5—C6 | 1.397 (3) |
O1W—H1W | 0.8200 | C6—C7 | 1.382 (3) |
O1W—H2W | 0.8200 | C6—H6 | 0.9300 |
O2W—H3W | 0.8200 | C7—H7 | 0.9300 |
O2W—H4W | 0.8200 | ||
O2Wi—Co1—O2W | 180.0 | O1—C1—O2 | 126.42 (19) |
O2Wi—Co1—O1Wi | 88.52 (7) | O1—C1—C2 | 119.1 (2) |
O2W—Co1—O1Wi | 91.48 (7) | O2—C1—C2 | 114.4 (2) |
O2Wi—Co1—O1W | 91.48 (7) | C1—C2—S1 | 111.63 (16) |
O2W—Co1—O1W | 88.52 (7) | C1—C2—H2A | 109.3 |
O1Wi—Co1—O1W | 180.0 | S1—C2—H2A | 109.3 |
O2Wi—Co1—N1i | 87.28 (7) | C1—C2—H2B | 109.3 |
O2W—Co1—N1i | 92.72 (7) | S1—C2—H2B | 109.3 |
O1Wi—Co1—N1i | 90.07 (6) | H2A—C2—H2B | 108.0 |
O1W—Co1—N1i | 89.93 (6) | N1—C3—C4 | 123.78 (18) |
O2Wi—Co1—N1 | 92.72 (7) | N1—C3—H3 | 118.1 |
O2W—Co1—N1 | 87.28 (7) | C4—C3—H3 | 118.1 |
O1Wi—Co1—N1 | 89.93 (6) | C3—C4—C5 | 119.23 (18) |
O1W—Co1—N1 | 90.07 (6) | C3—C4—H4 | 120.4 |
N1i—Co1—N1 | 180.0 | C5—C4—H4 | 120.4 |
C5—S1—C2 | 102.29 (10) | C4—C5—C6 | 117.35 (17) |
Co1—O1W—H1W | 116.8 | C4—C5—S1 | 125.34 (15) |
Co1—O1W—H2W | 111.7 | C6—C5—S1 | 117.27 (15) |
H1W—O1W—H2W | 109.0 | C7—C6—C5 | 119.40 (19) |
Co1—O2W—H3W | 118.7 | C7—C6—H6 | 120.3 |
Co1—O2W—H4W | 125.3 | C5—C6—H6 | 120.3 |
H3W—O2W—H4W | 113.0 | N1—C7—C6 | 123.38 (18) |
C3—N1—C7 | 116.71 (16) | N1—C7—H7 | 118.3 |
C3—N1—Co1 | 122.00 (13) | C6—C7—H7 | 118.3 |
C7—N1—Co1 | 120.65 (13) | ||
O2Wi—Co1—N1—C3 | −59.79 (17) | Co1—N1—C3—C4 | −168.13 (16) |
O2W—Co1—N1—C3 | 120.21 (17) | N1—C3—C4—C5 | 0.2 (3) |
O1Wi—Co1—N1—C3 | −148.31 (17) | C3—C4—C5—C6 | −3.3 (3) |
O1W—Co1—N1—C3 | 31.69 (17) | C3—C4—C5—S1 | 174.30 (16) |
O2Wi—Co1—N1—C7 | 129.63 (17) | C2—S1—C5—C4 | 8.6 (2) |
O2W—Co1—N1—C7 | −50.37 (17) | C2—S1—C5—C6 | −173.75 (17) |
O1Wi—Co1—N1—C7 | 41.12 (17) | C4—C5—C6—C7 | 3.5 (3) |
O1W—Co1—N1—C7 | −138.88 (17) | S1—C5—C6—C7 | −174.29 (18) |
O1—C1—C2—S1 | −5.4 (3) | C3—N1—C7—C6 | −2.6 (3) |
O2—C1—C2—S1 | 175.01 (16) | Co1—N1—C7—C6 | 168.50 (19) |
C5—S1—C2—C1 | −176.55 (15) | C5—C6—C7—N1 | −0.6 (4) |
C7—N1—C3—C4 | 2.8 (3) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O1ii | 0.82 | 2.05 | 2.849 (2) | 163 |
O1W—H2W···O1iii | 0.82 | 1.95 | 2.757 (2) | 167 |
O2W—H3W···O2iii | 0.82 | 1.91 | 2.725 (2) | 176 |
O2W—H4W···O2iv | 0.82 | 1.95 | 2.743 (2) | 163 |
Symmetry codes: (ii) −x+2, y−1/2, −z+1/2; (iii) −x+2, −y+1, −z+1; (iv) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Co(C7H6NO2S)2(H2O)4] |
Mr | 467.37 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 12.173 (1), 10.479 (1), 7.523 (2) |
β (°) | 106.78 (3) |
V (Å3) | 918.8 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.21 |
Crystal size (mm) | 0.45 × 0.40 × 0.30 |
Data collection | |
Diffractometer | Siemens P4 diffractometer |
Absorption correction | ψ scan (XEMP; Siemens, 1994) |
Tmin, Tmax | 0.608, 0.684 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3491, 2651, 2283 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.102, 1.37 |
No. of reflections | 2651 |
No. of parameters | 125 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.41, −0.37 |
Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), enCIFer (Allen et al., 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O1i | 0.82 | 2.05 | 2.849 (2) | 163.1 |
O1W—H2W···O1ii | 0.82 | 1.95 | 2.757 (2) | 167.1 |
O2W—H3W···O2ii | 0.82 | 1.91 | 2.725 (2) | 176.2 |
O2W—H4W···O2iii | 0.82 | 1.95 | 2.743 (2) | 162.8 |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) −x+2, −y+1, −z+1; (iii) x−1, y, z. |
Acknowledgements
We thank the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences (grant Nos. 1/4454/07 and 1/0353/08).
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Chiang, W., Ho, D. M., Van Engen, D. & Thompson, M. E. (1993). Inorg. Chem. 32, 2886–2893. CSD CrossRef CAS Web of Science Google Scholar
Du, M. & Li, C.-P. (2006). Inorg. Chim. Acta, 359, 1690–1696. Web of Science CSD CrossRef CAS Google Scholar
Du, M., Zhao, X.-J. & Wang, Y. (2004). Dalton Trans. pp. 2065–2072. Web of Science CSD CrossRef Google Scholar
Fang, R.-Q., Zhang, X.-M., Wu, H.-S. & Ng, S. W. (2004). Acta Cryst. E60, m401–m402. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Kondo, M., Miyazawa, M., Irie, Y., Shinagawa, R., Horiba, T., Nakamura, A., Naito, T., Maeda, K., Utsuno, S. & Uchida, F. (2002). Chem. Commun. pp. 2156–2157. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1994). XSCANS and XEMP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Zhang, X.-M., Fang, R.-Q., Wu, H.-S. & Ng, S. W. (2004). Acta Cryst. E60, m135–m136. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Several transition metal coordination polymers that contain bridging 4-pyridylthioacetate ligands have been reported recently (Chiang et al., 1993; Du et al., 2004; Du & Li, 2006; Kondo et al., 2002). However, if the 4-pyridylthioacetate anions are coordinated only as terminal ligands there is a possibility that they may also be able to participate in a hydrogen-bonding network. As part of our efforts to investigate metal(II) complexes based on pyridyl-carboxylic acids, we report herein the crystal structure of the title compound, (I).
In the molecular structure of (I) (Fig. 1) the CoII atom lies on an inversion centre and adopts a distorted octahedral coordination geometry with the two N atoms of the pyridine rings of the 4-pyridylthioacetate anions and the four O atoms of the water molecules, where the two symmetry related 4-pyridylthioacetate ligands are in trans positions.
The bond lengths and angles may be compared with the corresponding values in the triclinic polymorph [Co(C7H6NO2S)2(H2O)4] [(II); Du et al., 2004]. In (II), the CoII atom displays similar distorted octahedral coordination geometry, but the angle between the plane through the pyridine rings and that through the four water O atoms of 87.9° is closer to a right angle than the angle of 77.8° in (I). Correspondingly, the distance between the two planes of pyridine rings in (II) is shorter (0.22 Å) than that (0.80 Å) in (I). On the other hand, complex (I) is isostructural with [Cu(C7H6NO2S)2(H2O)4] [(III); Fang et al., (2004)] and [Ni(C7H6NO2S)2(H2O)4] [(IV); Zhang et al., (2004)].
In the crystal structure, intermolecular O–H···O hydrogen bonds (Table 1) link the molecules to form a three-dimensional network. The molecules of (I) lying in layers parallel to the ac plane are linked by O1W–H2W···O1ii; O2W–H3W···O2ii and O2W–H4W···O2iii [Symmetry codes: (ii) -x + 2, -y + 1, -z + 1; (iii) x - 1, y, z] hydrogen bonds (Fig. 2). The hydrogen bonds between two coordinated water molecules O2W and two carboxylate groups through only one carboxylate O atom (O2) of the carboxylate group create R42(8) rings (Bernstein et al., 1995). On the other hand, both O atoms of the two carboxylate groups and two coordinated water molecules create R44(12) rings (Bernstein et al., 1995) in the triclinic polymorph (II). The hydrogen bonds O1W–H1W···O1i [Symmetry code: (i) -x + 2, y - 1/2, -z + 1/2] link the layers to form a 3-D hydrogen bonding network (Fig. 3).