organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Hydr­­oxy-1-methyl-3,4-di­hydro-2H-pyrrolium hydrogensulfate

aFaculty of Light Industrial and Chemical Engineering, Guangdong University of Technology, Guangzhou 510090, People's Republic of China
*Correspondence e-mail: corihr@yahoo.com.cn

(Received 17 June 2008; accepted 17 July 2008; online 31 July 2008)

The title compound, C5H10NO+·HSO4, has been synthesized by reaction of 1-methyl­pyrrolidin-2-one with H2SO4 in a 1:1 molar ratio. The substituted pyrrolium ring adopts an envelope conformation. The hydrogensulfate anions form infinite helical chains parallel to the a axis via strong O—H⋯O hydrogen bonds. The pyrrolium cations are pendant from the chains. These cations are the hydrogen donors in the strong O—H⋯O hydrogen bonds to the hydrogensulfates. In addition, there are weak C—H⋯O hydrogen bonds in the structure.

Related literature

For related literature, see: Forbes & Weaver (2004[Forbes, D. C. & Weaver, K. J. (2004). J. Mol. Catal. A Chem. 214, 129-132.]); Zhu et al. (2003[Zhu, H. P., Yang, F., Tang, J. & He, M. Y. (2003). Green Chem. 5, 38-39.]); Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 13. International Union of Crystallography, Monographs on Crystallography. Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C5H10NO+·HSO4

  • Mr = 197.21

  • Orthorhombic, P 21 21 21

  • a = 6.5418 (14) Å

  • b = 10.964 (2) Å

  • c = 11.614 (2) Å

  • V = 833.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 173 (2) K

  • 0.48 × 0.25 × 0.22 mm

Data collection
  • Bruker SMART 1K area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.841, Tmax = 0.922

  • 4132 measured reflections

  • 1578 independent reflections

  • 1519 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.089

  • S = 1.20

  • 1578 reflections

  • 113 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 609 Friedel pairs

  • Flack parameter: 0.01 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O5i 0.84 1.75 2.569 (3) 164
O1—H1⋯O2 0.84 1.70 2.540 (2) 177
C2—H2A⋯O5ii 0.99 2.45 3.250 (3) 137
C5—H5C⋯O2iii 0.98 2.59 3.488 (3) 152
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1-methyl-2-hydroxyl-pyrrolium hydrogensulfate is applied in the green chemical engineering field as a replacement of volatile organic solvents (Forbes et al., 2004) or as a catalyst for esterification (Zhu et al., 2003).

In the title structure, the bond distances and angles are normal. The most important structural feature is presence of strong intermolecular O—H···O hydrogen bonds (Desiraju & Steiner, 1999) that interconnect the hydrogensulfate anions (Tab. 1). The hydrogensulfates form infinite left-handed helical chains along the axis a. The hydrogensulfates are acceptors of another short hydrogen O—H···O bond donated by the 1-methyl-2-hydroxyl-pyrrolium cations (Tab. 1). In addition, there are also C—H···O weak hydrogen bonds present in the structure (Tab. 1).

The unconstrained refinement of the hydroxyl hydrogens resulted in the less probable distances: 0.92 (4) and 0.72 (4)Å for O1-H1 and O3-H3, respectively.

Related literature top

For related literature, see: Forbes & Weaver (2004); Zhu et al. (2003); Desiraju & Steiner (1999).

Experimental top

The title compound was prepared by the reaction of 1-methylpyrrolidin-2-one and H2SO4 in 1:1 mole ratio. 3.675 g (0.0375 mol) H2SO4 was added dropwise under stirring at room temperature to a boiling flask containing 3.712 g (0.0375 mol) of 1-methylpyrrolidin-2-one. Then the mixture was heated to 373 K. After 2 h, the mixture was cooled to room temperature and the title compound was obtained. Its crystals of were obtained from petroleum/ethyl acetate (v/v = 1/1) by solvent evaporation at 4° C. The longest dimension of the crystals was about 10 mm. The compound's identity was confirmed by IR and NMR spectra. 1H NMR in CD3CN (500 MHz): 5.4–6.3(H),3.59 (t, 7 Hz, 2H), 2.94 (s, 3H), 2.74(t, 8 Hz, 2H), 2.10 (m, 8 Hz, 2H).

Refinement top

All the H atoms were discernible in the difference Fourier maps. However, the H atoms were constrained in a riding-motion approximation. C—Hmethyl 0.98, C—Hmethylene0.99, O—H 0.84 Å. Uiso(Hmethylene)=1.2Ueq(Cmethylene); Uiso(Hmethyl)=1.5Ueq(Cmethyl); Uiso(HO)=1.5(O).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART (Bruker, 1999); data reduction: SAINT [or SAINT-Plus?] (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecules in the asymmetric unit of the title compound, with anisotropic displacement parameters drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the O—H···O hydrogen-bond pattern. The H atoms that are not involved in the O—H···O hydrogen bonds have been omitted for the sake of clarity. The chains of the hydrogensulfates are oriented parallel to the crystallographic axis a. Symmetry codes: (I) x - 1/2,0.5 - y,-z; (II) x + 1/2,0.5 - y,-z.
5-Hydroxy-1-methyl-3,4-dihydro-2H-pyrrolium hydrogensulfate top
Crystal data top
C5H10NO+·HSO4F(000) = 416
Mr = 197.21Dx = 1.573 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3942 reflections
a = 6.5418 (14) Åθ = 2.6–27.0°
b = 10.964 (2) ŵ = 0.37 mm1
c = 11.614 (2) ÅT = 173 K
V = 833.0 (3) Å3Prism, colourless
Z = 40.48 × 0.25 × 0.22 mm
Data collection top
Bruker SMART 1K area-detector
diffractometer
1578 independent reflections
Radiation source: medium-focus sealed tube1519 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 78
Tmin = 0.841, Tmax = 0.922k = 1312
4132 measured reflectionsl = 1014
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.047P)2 + 0.264P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max < 0.001
S = 1.20Δρmax = 0.28 e Å3
1578 reflectionsΔρmin = 0.36 e Å3
113 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.020 (4)
41 constraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (9)
Secondary atom site location: difference Fourier map
Crystal data top
C5H10NO+·HSO4V = 833.0 (3) Å3
Mr = 197.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.5418 (14) ŵ = 0.37 mm1
b = 10.964 (2) ÅT = 173 K
c = 11.614 (2) Å0.48 × 0.25 × 0.22 mm
Data collection top
Bruker SMART 1K area-detector
diffractometer
1578 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1519 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 0.922Rint = 0.023
4132 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.089Δρmax = 0.28 e Å3
S = 1.20Δρmin = 0.36 e Å3
1578 reflectionsAbsolute structure: Flack (1983)
113 parametersAbsolute structure parameter: 0.01 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6096 (4)0.42511 (19)0.26605 (17)0.0238 (5)
C20.5508 (4)0.3055 (2)0.31637 (19)0.0275 (5)
H2A0.56670.23890.25960.033*
H2B0.40780.30680.34430.033*
C30.7017 (4)0.2912 (2)0.4163 (2)0.0346 (6)
H3A0.63690.31420.49020.042*
H3B0.75070.20600.42190.042*
C40.8773 (4)0.3774 (2)0.38749 (19)0.0296 (5)
H4A0.92590.42070.45710.035*
H4B0.99320.33260.35260.035*
C50.8878 (4)0.5749 (2)0.2701 (2)0.0309 (5)
H5A0.85210.59410.19020.046*
H5B1.03610.56440.27660.046*
H5C0.84380.64180.32030.046*
N10.7857 (3)0.46269 (17)0.30466 (16)0.0242 (4)
O10.5090 (3)0.48791 (14)0.19136 (14)0.0299 (4)
H10.40100.45080.17390.045*
O50.1546 (3)0.27995 (19)0.05492 (17)0.0434 (5)
O30.1165 (2)0.40674 (14)0.01936 (15)0.0318 (4)
H30.17240.34070.03820.048*
O40.1944 (3)0.49886 (18)0.03734 (17)0.0418 (5)
O20.1898 (3)0.37202 (16)0.13185 (14)0.0308 (4)
S10.11940 (8)0.38873 (5)0.01336 (4)0.02365 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0289 (12)0.0234 (10)0.0192 (9)0.0026 (10)0.0002 (9)0.0042 (7)
C20.0325 (12)0.0242 (10)0.0257 (10)0.0049 (10)0.0011 (9)0.0005 (9)
C30.0380 (14)0.0303 (12)0.0355 (13)0.0013 (12)0.0029 (11)0.0070 (10)
C40.0296 (12)0.0289 (11)0.0302 (10)0.0052 (12)0.0059 (10)0.0043 (9)
C50.0342 (14)0.0237 (11)0.0346 (11)0.0064 (11)0.0021 (11)0.0001 (8)
N10.0266 (9)0.0213 (9)0.0246 (9)0.0022 (9)0.0012 (7)0.0014 (7)
O10.0322 (9)0.0284 (8)0.0290 (8)0.0007 (7)0.0092 (7)0.0032 (6)
O50.0456 (12)0.0447 (11)0.0398 (9)0.0131 (9)0.0127 (8)0.0166 (8)
O30.0246 (9)0.0263 (8)0.0445 (9)0.0001 (7)0.0038 (8)0.0019 (7)
O40.0416 (10)0.0427 (11)0.0411 (11)0.0084 (9)0.0052 (8)0.0160 (8)
O20.0332 (9)0.0338 (9)0.0253 (8)0.0011 (8)0.0057 (6)0.0015 (7)
S10.0244 (3)0.0233 (3)0.0232 (3)0.0004 (2)0.0032 (2)0.00028 (19)
Geometric parameters (Å, º) top
C1—O11.288 (3)C4—H4B0.9900
C1—N11.303 (3)C5—N11.457 (3)
C1—C21.486 (3)C5—H5A0.9800
C2—C31.532 (3)C5—H5B0.9800
C2—H2A0.9900C5—H5C0.9800
C2—H2B0.9900O1—H10.8400
C3—C41.525 (4)O5—S11.4507 (19)
C3—H3A0.9900O3—S11.5576 (17)
C3—H3B0.9900O3—H30.8400
C4—N11.469 (3)O4—S11.4302 (19)
C4—H4A0.9900O2—S11.4626 (17)
O1—C1—N1121.0 (2)C3—C4—H4B111.1
O1—C1—C2127.2 (2)H4A—C4—H4B109.1
N1—C1—C2111.9 (2)N1—C5—H5A109.5
C1—C2—C3102.82 (19)N1—C5—H5B109.5
C1—C2—H2A111.2H5A—C5—H5B109.5
C3—C2—H2A111.2N1—C5—H5C109.5
C1—C2—H2B111.2H5A—C5—H5C109.5
C3—C2—H2B111.2H5B—C5—H5C109.5
H2A—C2—H2B109.1C1—N1—C5125.3 (2)
C4—C3—C2104.78 (19)C1—N1—C4112.62 (19)
C4—C3—H3A110.8C5—N1—C4122.1 (2)
C2—C3—H3A110.8C1—O1—H1109.5
C4—C3—H3B110.8S1—O3—H3109.5
C2—C3—H3B110.8O4—S1—O5114.49 (13)
H3A—C3—H3B108.9O4—S1—O2112.65 (11)
N1—C4—C3103.36 (19)O5—S1—O2111.19 (11)
N1—C4—H4A111.1O4—S1—O3104.56 (11)
C3—C4—H4A111.1O5—S1—O3106.63 (11)
N1—C4—H4B111.1O2—S1—O3106.60 (10)
O1—C1—C2—C3168.1 (2)C2—C1—N1—C5178.53 (19)
N1—C1—C2—C313.3 (3)O1—C1—N1—C4179.01 (19)
C1—C2—C3—C420.2 (2)C2—C1—N1—C40.3 (3)
C2—C3—C4—N120.1 (2)C3—C4—N1—C113.0 (3)
O1—C1—N1—C50.2 (4)C3—C4—N1—C5168.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O5i0.841.752.569 (3)164
O1—H1···O20.841.702.540 (2)177
C2—H2A···O5ii0.992.453.250 (3)137
C5—H5C···O2iii0.982.593.488 (3)152
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H10NO+·HSO4
Mr197.21
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)6.5418 (14), 10.964 (2), 11.614 (2)
V3)833.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.48 × 0.25 × 0.22
Data collection
DiffractometerBruker SMART 1K area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.841, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
4132, 1578, 1519
Rint0.023
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.089, 1.20
No. of reflections1578
No. of parameters113
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.36
Absolute structureFlack (1983)
Absolute structure parameter0.01 (9)

Computer programs: SMART (Bruker, 1999), SAINT [or SAINT-Plus?] (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O5i0.841.752.569 (3)163.9
O1—H1···O20.841.702.540 (2)176.6
C2—H2A···O5ii0.992.453.250 (3)137
C5—H5C···O2iii0.982.593.488 (3)152
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by Guangdong Provincial Science Foundation.

References

First citationBruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 13. International Union of Crystallography, Monographs on Crystallography. Oxford University Press.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationForbes, D. C. & Weaver, K. J. (2004). J. Mol. Catal. A Chem. 214, 129–132.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H. P., Yang, F., Tang, J. & He, M. Y. (2003). Green Chem. 5, 38–39.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds