inorganic compounds
A new polymorph of Lu(PO3)3
aUnité de Recherches de Matériaux de Terres Rares, Centre National de Recherches en Sciences des Matériaux, BP 95 Hammam-Lif 2050, Tunisia
*Correspondence e-mail: mokhtar.ferid@inrst.rnrt.tn
A new polymorph of lutetium polyphosphate, Lu(PO3)3, was found to be isotypic with the trigonal form of Yb(PO3)3. Two of the three Lu atoms occupy special positions (Wyckoff positions 3a and 3b, ). The atomic arrangement consists of infinite helical polyphosphate chains running along the c axis, with a repeat period of 12 PO4 tetrahedra, joined with LuO6 octahedra.
Related literature
For syntheses and optical properties, see: Briche et al. (2006); Jouini, Férid, Gacon, Grosvalet et al. (2003); Jouini, Férid, Gacon & Trabelsi-Ayadi (2003); Ternane et al. (2005); Graia et al. (2003); Anisimova et al. (1992). For the monoclinic polymorph of Lu(PO3)3, see: Höppe & Sedlmaier (2007); Yuan et al. (2008).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808021995/fi2065sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808021995/fi2065Isup2.hkl
Single crystals of Lu(PO3)3 were grown by a
method. Lutetium oxide was dissolved in an excess of phosphoric acid using the molar ratio Lu:P = 1:20. The resulting solution was heated in a vitreous graphite crucible at 573 K for 5 days. The obtained colourless crystals were then isolated from the acid solution using hot water.The highest peak and the deepest hole are located 0.75Å and 0.57 Å, respectively from O10 and Lu3.
Data collection: APEX2 (Bruker, 2005); cell
APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Lu(PO3)3 | Dx = 3.587 Mg m−3 |
Mr = 411.88 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3 | Cell parameters from 25 reflections |
Hall symbol: -R 3 | θ = 2.8–34.1° |
a = 20.9106 (6) Å | µ = 13.59 mm−1 |
c = 12.0859 (7) Å | T = 100 K |
V = 4576.6 (3) Å3 | Cube, colourless |
Z = 24 | 0.18 × 0.18 × 0.17 mm |
F(000) = 4512 |
Bruker APEXII CCD area-detector diffractometer | 4170 independent reflections |
Radiation source: fine-focus sealed tube | 3609 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
ω scans | θmax = 34.2°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −32→32 |
Tmin = 0.102, Tmax = 0.104 | k = −32→32 |
25139 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.0212P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.061 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 2.34 e Å−3 |
4170 reflections | Δρmin = −2.07 e Å−3 |
159 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.000061 (8) |
Lu(PO3)3 | Z = 24 |
Mr = 411.88 | Mo Kα radiation |
Trigonal, R3 | µ = 13.59 mm−1 |
a = 20.9106 (6) Å | T = 100 K |
c = 12.0859 (7) Å | 0.18 × 0.18 × 0.17 mm |
V = 4576.6 (3) Å3 |
Bruker APEXII CCD area-detector diffractometer | 4170 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3609 reflections with I > 2σ(I) |
Tmin = 0.102, Tmax = 0.104 | Rint = 0.054 |
25139 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 159 parameters |
wR(F2) = 0.061 | 0 restraints |
S = 1.05 | Δρmax = 2.34 e Å−3 |
4170 reflections | Δρmin = −2.07 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Lu1 | 0.6667 | 0.3333 | 0.3333 | 0.00741 (8) | |
Lu2 | 0.6667 | 0.3333 | −0.1667 | 0.01207 (9) | |
Lu3 | 0.440661 (9) | 0.365196 (10) | 0.096806 (14) | 0.00780 (5) | |
P1 | 0.63820 (6) | 0.45920 (6) | 0.16119 (9) | 0.00821 (19) | |
P2 | 0.50313 (6) | 0.54494 (6) | 0.16810 (9) | 0.0096 (2) | |
P3 | 0.39267 (6) | 0.30556 (6) | 0.37383 (10) | 0.0111 (2) | |
P4 | 0.50120 (6) | 0.25039 (6) | −0.01904 (10) | 0.0107 (2) | |
O1 | 0.44368 (17) | 0.46669 (17) | 0.1552 (3) | 0.0132 (6) | |
O2 | 0.34108 (18) | 0.22020 (17) | 0.3991 (3) | 0.0132 (6) | |
O3 | 0.54706 (18) | 0.58558 (18) | 0.0709 (3) | 0.0141 (6) | |
O4 | 0.45503 (18) | 0.27392 (18) | 0.0416 (3) | 0.0168 (7) | |
O5 | 0.55847 (17) | 0.42399 (18) | 0.1374 (3) | 0.0175 (7) | |
O6 | 0.45659 (17) | 0.19780 (19) | −0.1185 (3) | 0.0155 (7) | |
O7 | 0.66627 (18) | 0.41823 (18) | 0.2253 (3) | 0.0190 (7) | |
O8 | 0.57293 (19) | 0.3097 (2) | −0.0609 (3) | 0.0247 (8) | |
O9 | 0.6655 (2) | 0.5377 (2) | 0.2137 (4) | 0.0351 (11) | |
O10 | 0.5156 (2) | 0.1948 (2) | 0.0471 (3) | 0.0315 (10) | |
O11 | 0.3569 (2) | 0.3473 (2) | 0.4088 (4) | 0.0298 (9) | |
O12 | 0.4182 (3) | 0.3127 (2) | 0.2586 (3) | 0.0364 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Lu1 | 0.00684 (11) | 0.00684 (11) | 0.00854 (19) | 0.00342 (6) | 0.000 | 0.000 |
Lu2 | 0.01014 (13) | 0.01014 (13) | 0.0159 (2) | 0.00507 (6) | 0.000 | 0.000 |
Lu3 | 0.00810 (8) | 0.00796 (8) | 0.00662 (8) | 0.00347 (7) | 0.00035 (6) | 0.00000 (6) |
P1 | 0.0086 (5) | 0.0070 (5) | 0.0084 (5) | 0.0034 (4) | −0.0005 (4) | −0.0006 (4) |
P2 | 0.0133 (5) | 0.0095 (5) | 0.0072 (5) | 0.0065 (4) | −0.0008 (4) | −0.0007 (4) |
P3 | 0.0150 (5) | 0.0121 (5) | 0.0095 (5) | 0.0093 (4) | 0.0006 (4) | 0.0032 (4) |
P4 | 0.0115 (5) | 0.0132 (5) | 0.0106 (5) | 0.0084 (4) | −0.0009 (4) | 0.0000 (4) |
O1 | 0.0157 (15) | 0.0117 (14) | 0.0132 (15) | 0.0076 (13) | 0.0006 (12) | −0.0027 (12) |
O2 | 0.0192 (16) | 0.0124 (15) | 0.0079 (14) | 0.0077 (13) | 0.0020 (12) | 0.0008 (11) |
O3 | 0.0216 (17) | 0.0164 (16) | 0.0055 (14) | 0.0104 (14) | 0.0015 (12) | −0.0001 (12) |
O4 | 0.0141 (16) | 0.0152 (16) | 0.0215 (18) | 0.0076 (13) | 0.0028 (13) | −0.0036 (13) |
O5 | 0.0089 (14) | 0.0147 (16) | 0.0269 (19) | 0.0044 (13) | −0.0040 (13) | −0.0065 (14) |
O6 | 0.0120 (15) | 0.0265 (18) | 0.0117 (15) | 0.0125 (14) | −0.0042 (12) | −0.0051 (13) |
O7 | 0.0154 (16) | 0.0188 (17) | 0.0264 (19) | 0.0110 (14) | 0.0048 (14) | 0.0145 (14) |
O8 | 0.0126 (16) | 0.027 (2) | 0.028 (2) | 0.0050 (15) | 0.0040 (14) | −0.0063 (16) |
O9 | 0.023 (2) | 0.030 (2) | 0.060 (3) | 0.0199 (18) | −0.019 (2) | −0.030 (2) |
O10 | 0.063 (3) | 0.025 (2) | 0.021 (2) | 0.033 (2) | −0.0207 (19) | −0.0072 (16) |
O11 | 0.0202 (19) | 0.0148 (17) | 0.058 (3) | 0.0114 (15) | 0.0067 (18) | −0.0006 (18) |
O12 | 0.063 (3) | 0.022 (2) | 0.0141 (19) | 0.014 (2) | 0.0127 (19) | 0.0068 (15) |
Lu1—O7i | 2.207 (3) | Lu3—O3x | 2.229 (3) |
Lu1—O7ii | 2.207 (3) | P1—O5 | 1.475 (3) |
Lu1—O7iii | 2.207 (3) | P1—O7 | 1.477 (3) |
Lu1—O7iv | 2.207 (3) | P1—O10iii | 1.569 (4) |
Lu1—O7 | 2.207 (3) | P1—O9 | 1.578 (4) |
Lu1—O7v | 2.207 (3) | P2—O3 | 1.472 (3) |
Lu2—O8vi | 2.180 (3) | P2—O1 | 1.488 (3) |
Lu2—O8iv | 2.180 (3) | P2—O6xi | 1.585 (3) |
Lu2—O8iii | 2.180 (3) | P2—O2ii | 1.593 (3) |
Lu2—O8 | 2.180 (3) | P3—O11 | 1.467 (4) |
Lu2—O8vii | 2.180 (3) | P3—O12 | 1.472 (4) |
Lu2—O8viii | 2.180 (3) | P3—O9i | 1.573 (4) |
Lu3—O11ix | 2.134 (3) | P3—O2 | 1.587 (3) |
Lu3—O12 | 2.176 (4) | P4—O8 | 1.478 (4) |
Lu3—O4 | 2.180 (3) | P4—O4 | 1.478 (3) |
Lu3—O5 | 2.189 (3) | P4—O10 | 1.560 (4) |
Lu3—O1 | 2.207 (3) | P4—O6 | 1.581 (3) |
O7i—Lu1—O7ii | 88.57 (14) | O4—Lu3—O5 | 87.21 (12) |
O7i—Lu1—O7iii | 180.0 | O11ix—Lu3—O1 | 91.99 (13) |
O7ii—Lu1—O7iii | 91.43 (14) | O12—Lu3—O1 | 95.32 (14) |
O7i—Lu1—O7iv | 91.43 (14) | O4—Lu3—O1 | 171.70 (12) |
O7ii—Lu1—O7iv | 180.0 | O5—Lu3—O1 | 84.56 (12) |
O7iii—Lu1—O7iv | 88.57 (14) | O11ix—Lu3—O3x | 88.69 (15) |
O7i—Lu1—O7 | 91.43 (14) | O12—Lu3—O3x | 174.96 (15) |
O7ii—Lu1—O7 | 91.43 (14) | O4—Lu3—O3x | 95.25 (12) |
O7iii—Lu1—O7 | 88.57 (14) | O5—Lu3—O3x | 96.14 (13) |
O7iv—Lu1—O7 | 88.57 (14) | O1—Lu3—O3x | 84.56 (12) |
O7i—Lu1—O7v | 88.57 (14) | O5—P1—O7 | 119.4 (2) |
O7ii—Lu1—O7v | 88.57 (14) | O5—P1—O10iii | 106.7 (2) |
O7iii—Lu1—O7v | 91.43 (14) | O7—P1—O10iii | 110.3 (2) |
O7iv—Lu1—O7v | 91.43 (14) | O5—P1—O9 | 109.15 (19) |
O7—Lu1—O7v | 180.0 | O7—P1—O9 | 110.6 (2) |
O8vi—Lu2—O8iv | 180.0 | O10iii—P1—O9 | 98.7 (3) |
O8vi—Lu2—O8iii | 90.92 (15) | O3—P2—O1 | 119.23 (19) |
O8iv—Lu2—O8iii | 89.08 (15) | O3—P2—O6xi | 105.71 (18) |
O8vi—Lu2—O8 | 90.92 (15) | O1—P2—O6xi | 109.44 (19) |
O8iv—Lu2—O8 | 89.08 (15) | O3—P2—O2ii | 112.19 (18) |
O8iii—Lu2—O8 | 89.08 (15) | O1—P2—O2ii | 106.01 (18) |
O8vi—Lu2—O8vii | 89.08 (15) | O6xi—P2—O2ii | 103.12 (18) |
O8iv—Lu2—O8vii | 90.92 (15) | O11—P3—O12 | 118.6 (3) |
O8iii—Lu2—O8vii | 180.0 | O11—P3—O9i | 105.0 (2) |
O8—Lu2—O8vii | 90.92 (15) | O12—P3—O9i | 108.6 (3) |
O8vi—Lu2—O8viii | 89.08 (15) | O11—P3—O2 | 110.6 (2) |
O8iv—Lu2—O8viii | 90.92 (15) | O12—P3—O2 | 107.7 (2) |
O8iii—Lu2—O8viii | 90.92 (15) | O9i—P3—O2 | 105.49 (19) |
O8—Lu2—O8viii | 180.0 | O8—P4—O4 | 116.6 (2) |
O8vii—Lu2—O8viii | 89.08 (15) | O8—P4—O10 | 107.9 (2) |
O11ix—Lu3—O12 | 86.28 (18) | O4—P4—O10 | 113.3 (2) |
O11ix—Lu3—O4 | 96.31 (13) | O8—P4—O6 | 108.8 (2) |
O12—Lu3—O4 | 85.59 (14) | O4—P4—O6 | 110.62 (18) |
O11ix—Lu3—O5 | 173.76 (15) | O10—P4—O6 | 97.91 (19) |
O12—Lu3—O5 | 88.86 (16) |
Symmetry codes: (i) x−y+1/3, x−1/3, −z+2/3; (ii) y+1/3, −x+y+2/3, −z+2/3; (iii) −x+y+1, −x+1, z; (iv) −y+1, x−y, z; (v) −x+4/3, −y+2/3, −z+2/3; (vi) y+1/3, −x+y+2/3, −z−1/3; (vii) x−y+1/3, x−1/3, −z−1/3; (viii) −x+4/3, −y+2/3, −z−1/3; (ix) −x+y+1/3, −x+2/3, z−1/3; (x) −x+1, −y+1, −z; (xi) −y+2/3, x−y+1/3, z+1/3. |
Experimental details
Crystal data | |
Chemical formula | Lu(PO3)3 |
Mr | 411.88 |
Crystal system, space group | Trigonal, R3 |
Temperature (K) | 100 |
a, c (Å) | 20.9106 (6), 12.0859 (7) |
V (Å3) | 4576.6 (3) |
Z | 24 |
Radiation type | Mo Kα |
µ (mm−1) | 13.59 |
Crystal size (mm) | 0.18 × 0.18 × 0.17 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.102, 0.104 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25139, 4170, 3609 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.790 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.061, 1.05 |
No. of reflections | 4170 |
No. of parameters | 159 |
Δρmax, Δρmin (e Å−3) | 2.34, −2.07 |
Computer programs: APEX2 (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001).
Acknowledgements
This work was supported by the Ministry of Higher Education, Scientific Research and Technology of Tunisia.
References
Anisimova, N. Y., Trunov, V. K., Karamanovskaya, N. B. & Chudinova, N. N. (1992). Neorg. Mater. 28, 441–444. CAS Google Scholar
Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Briche, S., Zambon, D., Boyer, D., Chadeyron, G. & Mahiou, R. (2006). Opt. Mater. 28, 615–620. Web of Science CrossRef CAS Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Graia, M., Driss, A. & Jouini, T. (2003). Solid State Sci. 5, 393–402. Web of Science CrossRef CAS Google Scholar
Höppe, H. A. & Sedlmaier, S. J. (2007). Inorg. Chem. 46, 3467–3474. Web of Science PubMed Google Scholar
Jouini, A., Férid, M., Gacon, J. C., Grosvalet, L., Thozet, A. & Trabelsi-Ayadi, M. (2003). Mater. Res. Bull. 38, 1613–1622. Web of Science CrossRef CAS Google Scholar
Jouini, A., Férid, M., Gacon, J. C. & Trabelsi-Ayadi, M. (2003). Opt. Mater. 24, 175–180. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ternane, R., Férid, M., Panczer, G., Trabelsi-Ayadi, M. & Boulon, G. (2005). Opt. Mater. 27, 1832–1838. Web of Science CrossRef CAS Google Scholar
Yuan, J. L., Zhang, H., Zhao, J. T., Chen, H. H., Yang, X. X. & Zhang, G. B. (2008). Opt. Mater. 30, 1369–1374. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
There is considerable scientific and technological interest in the synthesis, structure, and properties of yttrium and rare earth polyphosphates of the formula Ln(PO3)3, because these compounds offer thermal stability and richness of formulations and structures (Briche et al., 2006, Jouini, Férid, Gacon, Grosvalet et al., 2003, Jouini, Férid, Gacon & Trabelsi-Ayadi, 2003, Ternane et al., 2005, Graia et al., 2003). In this paper, we report the preparation and crystal structure refinement of the polyphosphate Lu(PO3)3, crystallizing in space group R-3 . The existence of the trigonal polymorph was originally reported by Anisimova for the Yb(PO3)3 polyphosphate (Anisimova et al., 1992). The monoclinic polymorph of Lu(PO3)3 was recently reported by Höppe and Yuan (Höppe & Sedlmaier, 2007, Yuan et al., 2008). The atomic arrangement of these structures is characterized by a three-dimensional framework built of (PO3)n chains that are formed by corner-sharing of PO4 tetrahedra. These two polymorphs differ by the polyphosphate chains configuration. The chains that were observed in monoclinic Lu(PO3)3 form infinite zigzag chains (PO3)n that extend along c with a period of six tetrahedra. In trigonal Lu(PO3)3, the (PO3)n chains are helical with a period of 12 tetrahedra (Fig.1) and are arranged about the 31 helical axis. The chains are joined to each other by LuO6 octahedra (Fig 2.), no oxygen atom is shared between adjacent LuO6 octahedra. Figure 3 shows the projection of Lu(PO3)3 with anisotropic displacement parameters drawn at the 50% probability level.