inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new polymorph of Lu(PO3)3

aUnité de Recherches de Matériaux de Terres Rares, Centre National de Recherches en Sciences des Matériaux, BP 95 Hammam-Lif 2050, Tunisia
*Correspondence e-mail: mokhtar.ferid@inrst.rnrt.tn

(Received 23 June 2008; accepted 14 July 2008; online 19 July 2008)

A new polymorph of lutetium polyphosphate, Lu(PO3)3, was found to be isotypic with the trigonal form of Yb(PO3)3. Two of the three Lu atoms occupy special positions (Wyckoff positions 3a and 3b, site symmetry [\overline{3}]). The atomic arrangement consists of infinite helical polyphosphate chains running along the c axis, with a repeat period of 12 PO4 tetra­hedra, joined with LuO6 octa­hedra.

Related literature

For syntheses and optical properties, see: Briche et al. (2006[Briche, S., Zambon, D., Boyer, D., Chadeyron, G. & Mahiou, R. (2006). Opt. Mater. 28, 615-620.]); Jouini, Férid, Gacon, Grosvalet et al. (2003[Jouini, A., Férid, M., Gacon, J. C., Grosvalet, L., Thozet, A. & Trabelsi-Ayadi, M. (2003). Mater. Res. Bull. 38, 1613-1622.]); Jouini, Férid, Gacon & Trabelsi-Ayadi (2003[Jouini, A., Férid, M., Gacon, J. C. & Trabelsi-Ayadi, M. (2003). Opt. Mater. 24, 175-180.]); Ternane et al. (2005[Ternane, R., Férid, M., Panczer, G., Trabelsi-Ayadi, M. & Boulon, G. (2005). Opt. Mater. 27, 1832-1838.]); Graia et al. (2003[Graia, M., Driss, A. & Jouini, T. (2003). Solid State Sci. 5, 393-402.]); Anisimova et al. (1992[Anisimova, N. Y., Trunov, V. K., Karamanovskaya, N. B. & Chudinova, N. N. (1992). Neorg. Mater. 28, 441-444.]). For the monoclinic polymorph of Lu(PO3)3, see: Höppe & Sedlmaier (2007[Höppe, H. A. & Sedlmaier, S. J. (2007). Inorg. Chem. 46, 3467-3474.]); Yuan et al. (2008[Yuan, J. L., Zhang, H., Zhao, J. T., Chen, H. H., Yang, X. X. & Zhang, G. B. (2008). Opt. Mater. 30, 1369-1374.]).

Experimental

Crystal data
  • Lu(PO3)3

  • Mr = 411.88

  • Trigonal, [R \overline 3]

  • a = 20.9106 (6) Å

  • c = 12.0859 (7) Å

  • V = 4576.6 (3) Å3

  • Z = 24

  • Mo Kα radiation

  • μ = 13.59 mm−1

  • T = 100 (2) K

  • 0.18 × 0.18 × 0.17 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.102, Tmax = 0.104

  • 25139 measured reflections

  • 4170 independent reflections

  • 3609 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.060

  • S = 1.05

  • 4170 reflections

  • 159 parameters

  • Δρmax = 2.34 e Å−3

  • Δρmin = −2.07 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There is considerable scientific and technological interest in the synthesis, structure, and properties of yttrium and rare earth polyphosphates of the formula Ln(PO3)3, because these compounds offer thermal stability and richness of formulations and structures (Briche et al., 2006, Jouini, Férid, Gacon, Grosvalet et al., 2003, Jouini, Férid, Gacon & Trabelsi-Ayadi, 2003, Ternane et al., 2005, Graia et al., 2003). In this paper, we report the preparation and crystal structure refinement of the polyphosphate Lu(PO3)3, crystallizing in space group R-3 . The existence of the trigonal polymorph was originally reported by Anisimova for the Yb(PO3)3 polyphosphate (Anisimova et al., 1992). The monoclinic polymorph of Lu(PO3)3 was recently reported by Höppe and Yuan (Höppe & Sedlmaier, 2007, Yuan et al., 2008). The atomic arrangement of these structures is characterized by a three-dimensional framework built of (PO3)n chains that are formed by corner-sharing of PO4 tetrahedra. These two polymorphs differ by the polyphosphate chains configuration. The chains that were observed in monoclinic Lu(PO3)3 form infinite zigzag chains (PO3)n that extend along c with a period of six tetrahedra. In trigonal Lu(PO3)3, the (PO3)n chains are helical with a period of 12 tetrahedra (Fig.1) and are arranged about the 31 helical axis. The chains are joined to each other by LuO6 octahedra (Fig 2.), no oxygen atom is shared between adjacent LuO6 octahedra. Figure 3 shows the projection of Lu(PO3)3 with anisotropic displacement parameters drawn at the 50% probability level.

Related literature top

For syntheses and optical properties, see: Briche et al. (2006); Jouini, Férid, Gacon, Grosvalet et al. (2003); Jouini, Férid, Gacon & Trabelsi-Ayadi (2003); Ternane et al. (2005); Graia et al. (2003); Anisimova et al. (1992). For the monoclinic polymorph of Lu(PO3)3, see: Höppe & Sedlmaier (2007); Yuan et al. (2008).

Experimental top

Single crystals of Lu(PO3)3 were grown by a flux method. Lutetium oxide was dissolved in an excess of phosphoric acid using the molar ratio Lu:P = 1:20. The resulting solution was heated in a vitreous graphite crucible at 573 K for 5 days. The obtained colourless crystals were then isolated from the acid solution using hot water.

Refinement top

The highest peak and the deepest hole are located 0.75Å and 0.57 Å, respectively from O10 and Lu3.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A projection of the helical (PO3)n chains along b.
[Figure 2] Fig. 2. A projection of Lu(PO3)3 along c, showing the arrangement of the LuO6 octahedra and PO4 tetrahedra.
[Figure 3] Fig. 3. Projection of the Lu(PO3)3 polyphosphate, showing the lutetium coordination with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes : (i) -y, x-y, z; (ii) -x+y, -x, z; (iii)-x+1/3, -y+2/3, -z+2/3; (iv) y+1/3, -x+y+2/3, -z+2/3; (v) x-y+1/3, x+2/3, -z+2/3; (vi) -x, -y, -z; (vii) -x+y+1/3, -x+2/3, z+2/3.]
lutetium polyphosphate top
Crystal data top
Lu(PO3)3Dx = 3.587 Mg m3
Mr = 411.88Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 25 reflections
Hall symbol: -R 3θ = 2.8–34.1°
a = 20.9106 (6) ŵ = 13.59 mm1
c = 12.0859 (7) ÅT = 100 K
V = 4576.6 (3) Å3Cube, colourless
Z = 240.18 × 0.18 × 0.17 mm
F(000) = 4512
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4170 independent reflections
Radiation source: fine-focus sealed tube3609 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 34.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3232
Tmin = 0.102, Tmax = 0.104k = 3232
25139 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0212P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.061(Δ/σ)max = 0.001
S = 1.05Δρmax = 2.34 e Å3
4170 reflectionsΔρmin = 2.07 e Å3
159 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.000061 (8)
Crystal data top
Lu(PO3)3Z = 24
Mr = 411.88Mo Kα radiation
Trigonal, R3µ = 13.59 mm1
a = 20.9106 (6) ÅT = 100 K
c = 12.0859 (7) Å0.18 × 0.18 × 0.17 mm
V = 4576.6 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4170 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3609 reflections with I > 2σ(I)
Tmin = 0.102, Tmax = 0.104Rint = 0.054
25139 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032159 parameters
wR(F2) = 0.0610 restraints
S = 1.05Δρmax = 2.34 e Å3
4170 reflectionsΔρmin = 2.07 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Lu10.66670.33330.33330.00741 (8)
Lu20.66670.33330.16670.01207 (9)
Lu30.440661 (9)0.365196 (10)0.096806 (14)0.00780 (5)
P10.63820 (6)0.45920 (6)0.16119 (9)0.00821 (19)
P20.50313 (6)0.54494 (6)0.16810 (9)0.0096 (2)
P30.39267 (6)0.30556 (6)0.37383 (10)0.0111 (2)
P40.50120 (6)0.25039 (6)0.01904 (10)0.0107 (2)
O10.44368 (17)0.46669 (17)0.1552 (3)0.0132 (6)
O20.34108 (18)0.22020 (17)0.3991 (3)0.0132 (6)
O30.54706 (18)0.58558 (18)0.0709 (3)0.0141 (6)
O40.45503 (18)0.27392 (18)0.0416 (3)0.0168 (7)
O50.55847 (17)0.42399 (18)0.1374 (3)0.0175 (7)
O60.45659 (17)0.19780 (19)0.1185 (3)0.0155 (7)
O70.66627 (18)0.41823 (18)0.2253 (3)0.0190 (7)
O80.57293 (19)0.3097 (2)0.0609 (3)0.0247 (8)
O90.6655 (2)0.5377 (2)0.2137 (4)0.0351 (11)
O100.5156 (2)0.1948 (2)0.0471 (3)0.0315 (10)
O110.3569 (2)0.3473 (2)0.4088 (4)0.0298 (9)
O120.4182 (3)0.3127 (2)0.2586 (3)0.0364 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Lu10.00684 (11)0.00684 (11)0.00854 (19)0.00342 (6)0.0000.000
Lu20.01014 (13)0.01014 (13)0.0159 (2)0.00507 (6)0.0000.000
Lu30.00810 (8)0.00796 (8)0.00662 (8)0.00347 (7)0.00035 (6)0.00000 (6)
P10.0086 (5)0.0070 (5)0.0084 (5)0.0034 (4)0.0005 (4)0.0006 (4)
P20.0133 (5)0.0095 (5)0.0072 (5)0.0065 (4)0.0008 (4)0.0007 (4)
P30.0150 (5)0.0121 (5)0.0095 (5)0.0093 (4)0.0006 (4)0.0032 (4)
P40.0115 (5)0.0132 (5)0.0106 (5)0.0084 (4)0.0009 (4)0.0000 (4)
O10.0157 (15)0.0117 (14)0.0132 (15)0.0076 (13)0.0006 (12)0.0027 (12)
O20.0192 (16)0.0124 (15)0.0079 (14)0.0077 (13)0.0020 (12)0.0008 (11)
O30.0216 (17)0.0164 (16)0.0055 (14)0.0104 (14)0.0015 (12)0.0001 (12)
O40.0141 (16)0.0152 (16)0.0215 (18)0.0076 (13)0.0028 (13)0.0036 (13)
O50.0089 (14)0.0147 (16)0.0269 (19)0.0044 (13)0.0040 (13)0.0065 (14)
O60.0120 (15)0.0265 (18)0.0117 (15)0.0125 (14)0.0042 (12)0.0051 (13)
O70.0154 (16)0.0188 (17)0.0264 (19)0.0110 (14)0.0048 (14)0.0145 (14)
O80.0126 (16)0.027 (2)0.028 (2)0.0050 (15)0.0040 (14)0.0063 (16)
O90.023 (2)0.030 (2)0.060 (3)0.0199 (18)0.019 (2)0.030 (2)
O100.063 (3)0.025 (2)0.021 (2)0.033 (2)0.0207 (19)0.0072 (16)
O110.0202 (19)0.0148 (17)0.058 (3)0.0114 (15)0.0067 (18)0.0006 (18)
O120.063 (3)0.022 (2)0.0141 (19)0.014 (2)0.0127 (19)0.0068 (15)
Geometric parameters (Å, º) top
Lu1—O7i2.207 (3)Lu3—O3x2.229 (3)
Lu1—O7ii2.207 (3)P1—O51.475 (3)
Lu1—O7iii2.207 (3)P1—O71.477 (3)
Lu1—O7iv2.207 (3)P1—O10iii1.569 (4)
Lu1—O72.207 (3)P1—O91.578 (4)
Lu1—O7v2.207 (3)P2—O31.472 (3)
Lu2—O8vi2.180 (3)P2—O11.488 (3)
Lu2—O8iv2.180 (3)P2—O6xi1.585 (3)
Lu2—O8iii2.180 (3)P2—O2ii1.593 (3)
Lu2—O82.180 (3)P3—O111.467 (4)
Lu2—O8vii2.180 (3)P3—O121.472 (4)
Lu2—O8viii2.180 (3)P3—O9i1.573 (4)
Lu3—O11ix2.134 (3)P3—O21.587 (3)
Lu3—O122.176 (4)P4—O81.478 (4)
Lu3—O42.180 (3)P4—O41.478 (3)
Lu3—O52.189 (3)P4—O101.560 (4)
Lu3—O12.207 (3)P4—O61.581 (3)
O7i—Lu1—O7ii88.57 (14)O4—Lu3—O587.21 (12)
O7i—Lu1—O7iii180.0O11ix—Lu3—O191.99 (13)
O7ii—Lu1—O7iii91.43 (14)O12—Lu3—O195.32 (14)
O7i—Lu1—O7iv91.43 (14)O4—Lu3—O1171.70 (12)
O7ii—Lu1—O7iv180.0O5—Lu3—O184.56 (12)
O7iii—Lu1—O7iv88.57 (14)O11ix—Lu3—O3x88.69 (15)
O7i—Lu1—O791.43 (14)O12—Lu3—O3x174.96 (15)
O7ii—Lu1—O791.43 (14)O4—Lu3—O3x95.25 (12)
O7iii—Lu1—O788.57 (14)O5—Lu3—O3x96.14 (13)
O7iv—Lu1—O788.57 (14)O1—Lu3—O3x84.56 (12)
O7i—Lu1—O7v88.57 (14)O5—P1—O7119.4 (2)
O7ii—Lu1—O7v88.57 (14)O5—P1—O10iii106.7 (2)
O7iii—Lu1—O7v91.43 (14)O7—P1—O10iii110.3 (2)
O7iv—Lu1—O7v91.43 (14)O5—P1—O9109.15 (19)
O7—Lu1—O7v180.0O7—P1—O9110.6 (2)
O8vi—Lu2—O8iv180.0O10iii—P1—O998.7 (3)
O8vi—Lu2—O8iii90.92 (15)O3—P2—O1119.23 (19)
O8iv—Lu2—O8iii89.08 (15)O3—P2—O6xi105.71 (18)
O8vi—Lu2—O890.92 (15)O1—P2—O6xi109.44 (19)
O8iv—Lu2—O889.08 (15)O3—P2—O2ii112.19 (18)
O8iii—Lu2—O889.08 (15)O1—P2—O2ii106.01 (18)
O8vi—Lu2—O8vii89.08 (15)O6xi—P2—O2ii103.12 (18)
O8iv—Lu2—O8vii90.92 (15)O11—P3—O12118.6 (3)
O8iii—Lu2—O8vii180.0O11—P3—O9i105.0 (2)
O8—Lu2—O8vii90.92 (15)O12—P3—O9i108.6 (3)
O8vi—Lu2—O8viii89.08 (15)O11—P3—O2110.6 (2)
O8iv—Lu2—O8viii90.92 (15)O12—P3—O2107.7 (2)
O8iii—Lu2—O8viii90.92 (15)O9i—P3—O2105.49 (19)
O8—Lu2—O8viii180.0O8—P4—O4116.6 (2)
O8vii—Lu2—O8viii89.08 (15)O8—P4—O10107.9 (2)
O11ix—Lu3—O1286.28 (18)O4—P4—O10113.3 (2)
O11ix—Lu3—O496.31 (13)O8—P4—O6108.8 (2)
O12—Lu3—O485.59 (14)O4—P4—O6110.62 (18)
O11ix—Lu3—O5173.76 (15)O10—P4—O697.91 (19)
O12—Lu3—O588.86 (16)
Symmetry codes: (i) xy+1/3, x1/3, z+2/3; (ii) y+1/3, x+y+2/3, z+2/3; (iii) x+y+1, x+1, z; (iv) y+1, xy, z; (v) x+4/3, y+2/3, z+2/3; (vi) y+1/3, x+y+2/3, z1/3; (vii) xy+1/3, x1/3, z1/3; (viii) x+4/3, y+2/3, z1/3; (ix) x+y+1/3, x+2/3, z1/3; (x) x+1, y+1, z; (xi) y+2/3, xy+1/3, z+1/3.

Experimental details

Crystal data
Chemical formulaLu(PO3)3
Mr411.88
Crystal system, space groupTrigonal, R3
Temperature (K)100
a, c (Å)20.9106 (6), 12.0859 (7)
V3)4576.6 (3)
Z24
Radiation typeMo Kα
µ (mm1)13.59
Crystal size (mm)0.18 × 0.18 × 0.17
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.102, 0.104
No. of measured, independent and
observed [I > 2σ(I)] reflections
25139, 4170, 3609
Rint0.054
(sin θ/λ)max1)0.790
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.061, 1.05
No. of reflections4170
No. of parameters159
Δρmax, Δρmin (e Å3)2.34, 2.07

Computer programs: APEX2 (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001).

 

Acknowledgements

This work was supported by the Ministry of Higher Education, Scientific Research and Technology of Tunisia.

References

First citationAnisimova, N. Y., Trunov, V. K., Karamanovskaya, N. B. & Chudinova, N. N. (1992). Neorg. Mater. 28, 441–444.  CAS Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBriche, S., Zambon, D., Boyer, D., Chadeyron, G. & Mahiou, R. (2006). Opt. Mater. 28, 615–620.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGraia, M., Driss, A. & Jouini, T. (2003). Solid State Sci. 5, 393–402.  Web of Science CrossRef CAS Google Scholar
First citationHöppe, H. A. & Sedlmaier, S. J. (2007). Inorg. Chem. 46, 3467–3474.  Web of Science PubMed Google Scholar
First citationJouini, A., Férid, M., Gacon, J. C., Grosvalet, L., Thozet, A. & Trabelsi-Ayadi, M. (2003). Mater. Res. Bull. 38, 1613–1622.  Web of Science CrossRef CAS Google Scholar
First citationJouini, A., Férid, M., Gacon, J. C. & Trabelsi-Ayadi, M. (2003). Opt. Mater. 24, 175–180.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTernane, R., Férid, M., Panczer, G., Trabelsi-Ayadi, M. & Boulon, G. (2005). Opt. Mater. 27, 1832–1838.  Web of Science CrossRef CAS Google Scholar
First citationYuan, J. L., Zhang, H., Zhao, J. T., Chen, H. H., Yang, X. X. & Zhang, G. B. (2008). Opt. Mater. 30, 1369–1374.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds