metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(tert-butyl isocyanide-κC)carbonylnickel(0)

aInstitut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany
*Correspondence e-mail: wolfgang.imhof@uni-jena.de

(Received 28 May 2008; accepted 1 July 2008; online 5 July 2008)

The title compound, [Ni(C5H9N)3(CO)], was prepared from Ni(CO)4 and a tenfold excess of tert-butyl isocyanide. It crystallizes with two symmetry-independent mol­ecules per asymmetric unit. The central Ni atom of each independent mol­ecule has a nearly perfect tetra­hedral coordination environment, comprising one carbon monoxide and three isocyanide ligands. The title compound is the first structurally characterized Ni0 compound with a mixed CO/RNC coordination.

Related literature

For related literature, see: Braga et al. (1993[Braga, D., Grepioni, F. & Orpen, A. G. (1993). Organometallics, 12, 1481-1483.]); Farrugia & Evans (2005[Farrugia, L. J. & Evans, C. (2005). J. Phys. Chem. A, 109, 8834-8848.]); Hahn et al. (2004[Hahn, F. E., Münder, M. & Fröhlich, P. (2004). Z. Naturforsch. Teil B, 59, 850-854.]); Ladell et al. (1952[Ladell, J., Post, B. & Fankuchen, I. (1952). Acta Cryst. 5, 795-800.]); Bigorgne (1963a[Bigorgne, M. (1963a). Bull. Soc. Chim. Fr. pp. 295-303.],b[Bigorgne, M. (1963b). J. Organomet. Chem. 1, 101-119.]); Dönnecke & Imhof (2003[Dönnecke, D. & Imhof, W. (2003). Dalton Trans. pp. 2737-2744.]); Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, IUCr Monographs on Crystallography No. 9. Oxford Science Publications.]); Halbauer et al. (2006[Halbauer, K., Dönnecke, D., Görls, H. & Imhof, W. (2006). Z. Anorg. Allg. Chem. 632, 1477-1482.], 2007[Halbauer, K., Görls, H., Fidler, T. & Imhof, W. (2007). J. Organomet. Chem. 692, 1898-1911.]); Imhof & Halbauer (2006[Imhof, W. & Halbauer, K. (2006). Acta Cryst. E62, m1514-m1516.]); Imhof, Halbauer, Dönnecke & Görls (2006[Imhof, W., Halbauer, K., Dönnecke, D. & Görls, H. (2006). Acta Cryst. E62, m462-m464.]); Ostuka et al. (1969[Ostuka, S., Nakamura, Y. & Yoshida, T. (1969). J. Am. Chem. Soc. 91, 6994-6999.], 1971[Ostuka, S., Yoshida, T. & Tatsuno, Y. (1971). J. Am. Chem. Soc. 93, 6462-6469.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C5H9N)3(CO)]

  • Mr = 336.11

  • Monoclinic, P 21 /n

  • a = 17.1621 (7) Å

  • b = 14.5687 (5) Å

  • c = 17.1627 (7) Å

  • β = 113.179 (3)°

  • V = 3944.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 183 (2) K

  • 0.06 × 0.05 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 26227 measured reflections

  • 9006 independent reflections

  • 5006 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.136

  • S = 1.01

  • 9006 reflections

  • 397 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1990[Siemens (1990). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97 and XP.

Supporting information


Comment top

Some of us recently published the synthesis of cyano complexes from the reaction of metal carbonyls with an excess of tert-butylisocyanide or iso-octylisocyanide, respectively (M = Ru: Dönnecke & Imhof (2003), Imhof & Halbauer (2006); M = Fe: Halbauer et al. (2006); M = Mn: Halbauer et al. (2007)). Mononuclear metal carbonyls like Fe(CO)5 or Mo(CO)6 under the same conditions do not react to give M(II) cyano complexes but yield substitution products of the corresponding carbonyl precursors (M = Fe: Halbauer et al. (2006); M = Mo: Imhof et al. (2006)). Due to the enhanced reactivity of Ni(CO)4 we nevertheless attempted the synthesis of complexes of the type [Ni(CN)2(tBuNC)4] from the reaction of Ni(CO)4 with an excess of the corresponding isocyanide leading to the formation of the title compound.

The molecular structure of one of the symmetry independent molecules of the title compound is depicted in Fig. 1. As it is expected the central nickel atom is almost perfectly tetrahedrally coordinated by three isocyanide and one carbon monoxide ligand. The metal carbon bond lengths of the isocyanide carbons atom are about 11 pm in average longer compared to the Ni—CO bond reflecting the higher π-acceptor properties of the latter. Both CO and isocyanide ligands are nearly not bent out of linearity. The bond lengths of the two molecules in the asymmetric unit are identical within experimental errors. In contrast to this observation the bond angles show slight deviations which may be caused by the bulkiness of the tert-butyl groups connected with packing effects. As it is expected the shortest intermolecular distances are of the C—H···O type. But whereas O1B is engaged in the three shortest interactions observed (C6A—H6AC···O1B 2.721 (8) Å; C11A—H11B···O1B 2.817 (8) Å; C16A—H16A···O1B 2.876 (8)), O1A shows only one contact below 3 Å (C16B—H16E···O1A 2.949 (9) Å). All of these contacts are well in the range discussed by Desiraju & Steiner as C—H···O hydrogen bonds (Desiraju & Steiner (1999).

With tBuNC as the ligand only [Ni(CO)2(tBuNC)2] (Ostuka et al. (1971)) and [Ni(tBuNC)4] (Ostuka et al. (1969)) were reported but not structurally characterized. The same is true for the compounds [Ni(CO)4-n(RNC)n] (R = Me, Et, nBu, Ph; n = 1, 2, 3, 4; Bigorgne (1963a,b)). The only complexes to be structurally characterized were the homoleptic [Ni(RNC)4] (R = Ph, 2,6-Me—Ph, 2-NO2—Ph; Hahn et al. (2004)) and Ni(CO)4 itself (Farrugia & Evans (2005); Braga et al. (1993); Ladell et al. (1952)). So the title compound is the first [Ni(CO)4-n(RNC)n] compound to be structurally characterized.

Related literature top

For related literature, see: Braga et al. (1993); Farrugia & Evans (2005); Hahn et al. (2004); Ladell et al. (1952); Bigorgne (1963a, 1963b); Dönnecke & Imhof (2003); Desiraju & Steiner (1999); Halbauer et al. (2006, 2007); Imhof & Halbauer (2006); Imhof, Halbauer, Dönnecke & Görls (2006); Ostuka et al. (1969, 1971).

Experimental top

0.3 ml of a 2 M solution of Ni(CO)4 (0.059 mmol) in toluene and 0.7 ml tert. butylisocyanide (5.86 mmol) together with another 3 ml of anhydrous toluene are transferred into a stainless steel autoclave and are heated to 130°C for 18 h. After cooling down the autoclave the resulting solution is transferrd to a Schlenk tube, all volatile material is evaporated and the resulting red oily residue is dissolved in anhydrous light petroleum (b.p. 40–60°C). After three days at -20°C the title compound crystallizes as colorless crystals. Yield: 12 mg (59%). IR (KBr pellets) [cm-1]: 2984m, 2936m, 2873w, 2140m, 2090 s, 2057 s, 2001m, 1920vs, 1914vs, 1453m, 1393m, 1369m, 1229m, 1208m. MS (DEI) [m/z(%)]: 336 (1) [MH+], 307 (13) [M+ - CO], 252 (65) [M+ - tBuNC], 224 (51) [Ni(tBuNC)2]+, 195 (10) [Ni(CO)(tBuNC)H]+, 168 (100) [Ni(tBuNC)(CN)H]+, 141 (16) [Ni(tBuNC)]+, 112 (99) [Ni(CO)(CN)]+. 1H-NMR (400 MHz, CDCl3, 298 K) [p.p.m.]: 1.41(s). 13C-NMR (400 MHz, CDCl3, 298 K) [p.p.m.]: 30.54 (CH3), 55.83 (C), 151.89 (NC), 197.87 (CO).

Refinement top

Hydrogen atoms were calculated in idealized positions and refined with distances of 0.96 Å. All hydrogen atoms were refined using a riding model with Uiso(H) = 1.5 times Uiso(C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and XP (Siemens, 1990).

Figures top
[Figure 1] Fig. 1. Molecular structure of one of the symmetry independent molecules of the title compound showing the labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.
Tris(tert-butyl isocyanide-κC)carbonylnickel(0) top
Crystal data top
[Ni(C5H9N)3(CO)]F(000) = 1440
Mr = 336.11Dx = 1.132 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 26227 reflections
a = 17.1621 (7) Åθ = 2.6–27.5°
b = 14.5687 (5) ŵ = 0.99 mm1
c = 17.1627 (7) ÅT = 183 K
β = 113.179 (3)°Prism, colourless
V = 3944.8 (3) Å30.06 × 0.05 × 0.05 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
5006 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.083
Graphite monochromatorθmax = 27.5°, θmin = 2.6°
ϕ and ω scansh = 1822
26227 measured reflectionsk = 1718
9006 independent reflectionsl = 1922
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.2606P]
where P = (Fo2 + 2Fc2)/3
9006 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Ni(C5H9N)3(CO)]V = 3944.8 (3) Å3
Mr = 336.11Z = 8
Monoclinic, P21/nMo Kα radiation
a = 17.1621 (7) ŵ = 0.99 mm1
b = 14.5687 (5) ÅT = 183 K
c = 17.1627 (7) Å0.06 × 0.05 × 0.05 mm
β = 113.179 (3)°
Data collection top
Nonius KappaCCD
diffractometer
5006 reflections with I > 2σ(I)
26227 measured reflectionsRint = 0.083
9006 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.01Δρmax = 0.59 e Å3
9006 reflectionsΔρmin = 0.58 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni1A0.05645 (3)0.23726 (3)0.89365 (3)0.03256 (13)
O1A0.1424 (2)0.3476 (2)1.0444 (2)0.0930 (11)
N1A0.15666 (18)0.27062 (19)0.78571 (19)0.0442 (7)
N2A0.13150 (19)0.27889 (19)0.8137 (2)0.0474 (8)
N3A0.06472 (17)0.03062 (18)0.91591 (19)0.0406 (7)
C1A0.1073 (3)0.3018 (3)0.9861 (3)0.0495 (10)
C2A0.1142 (2)0.2584 (2)0.8233 (2)0.0368 (8)
C3A0.2158 (2)0.2906 (3)0.7461 (2)0.0495 (10)
C4A0.2853 (2)0.3508 (3)0.8056 (3)0.0604 (11)
H4AA0.31320.31940.86000.091*
H4AB0.26080.40870.81450.091*
H4AC0.32690.36360.78100.091*
C5A0.2521 (3)0.2004 (3)0.7310 (3)0.0850 (16)
H5AA0.27910.16760.78480.128*
H5AB0.29430.21280.70700.128*
H5AC0.20640.16270.69130.128*
C6A0.1655 (3)0.3404 (4)0.6631 (3)0.0858 (16)
H6AA0.13870.39500.67490.129*
H6AB0.12180.29930.62520.129*
H6AC0.20380.35870.63600.129*
C7A0.0591 (2)0.2639 (2)0.8422 (2)0.0389 (8)
C8A0.2222 (2)0.2960 (3)0.7798 (3)0.0517 (10)
C9A0.2462 (3)0.3409 (4)0.6944 (3)0.0969 (18)
H9AA0.22010.40180.70160.145*
H9AB0.30800.34700.66720.145*
H9AC0.22620.30300.65880.145*
C10A0.2666 (3)0.2032 (3)0.7710 (3)0.0737 (13)
H10A0.25090.16350.73330.111*
H10B0.32810.21240.74700.111*
H10C0.24910.17430.82680.111*
C11A0.2407 (3)0.3558 (3)0.8424 (3)0.0732 (13)
H11A0.21070.41440.84870.110*
H11B0.22150.32470.89740.110*
H11C0.30180.36720.82170.110*
C12A0.0622 (2)0.1099 (2)0.9093 (2)0.0377 (8)
C13A0.0707 (2)0.0698 (2)0.9185 (2)0.0369 (8)
C14A0.0192 (2)0.1076 (2)0.8829 (3)0.0506 (10)
H14A0.04890.08630.82450.076*
H14B0.04920.08610.91760.076*
H14C0.01730.17490.88380.076*
C15A0.1184 (2)0.0983 (2)0.8643 (2)0.0495 (10)
H15A0.08670.07860.80570.074*
H15B0.12480.16520.86610.074*
H15C0.17460.06950.88620.074*
C16A0.1176 (2)0.0972 (2)1.0110 (2)0.0458 (9)
H16A0.17350.06791.03370.069*
H16B0.12450.16411.01500.069*
H16C0.08500.07741.04370.069*
Ni1B0.03653 (3)0.74217 (3)0.61221 (3)0.03316 (13)
O1B0.21523 (19)0.7099 (2)0.5102 (2)0.0873 (11)
N1B0.06832 (18)0.66226 (18)0.52198 (19)0.0408 (7)
N2B0.03902 (19)0.9488 (2)0.62247 (19)0.0462 (8)
N3B0.0221 (2)0.64140 (19)0.7800 (2)0.0467 (8)
C1B0.1440 (3)0.7201 (3)0.5515 (3)0.0493 (10)
C2B0.0296 (2)0.6961 (2)0.5572 (2)0.0355 (8)
C3B0.1153 (2)0.6134 (2)0.4808 (3)0.0440 (9)
C4B0.1229 (6)0.5173 (4)0.5100 (7)0.245 (6)
H4BA0.06620.49120.49510.368*
H4BB0.15400.51520.57160.368*
H4BC0.15350.48160.48260.368*
C5B0.0701 (4)0.6220 (6)0.3882 (4)0.175 (4)
H5BA0.01660.58800.36970.262*
H5BB0.10530.59700.36010.262*
H5BC0.05820.68690.37310.262*
C6B0.2014 (3)0.6551 (4)0.5071 (4)0.101 (2)
H6BA0.19600.71880.48740.152*
H6BB0.23460.62010.48220.152*
H6BC0.23000.65370.56900.152*
C7B0.0316 (2)0.8695 (2)0.6218 (2)0.0361 (8)
C8B0.0605 (3)1.0458 (2)0.6121 (3)0.0574 (11)
C9B0.0215 (5)1.0972 (4)0.6294 (5)0.160 (4)
H9BA0.06171.08440.68740.241*
H9BB0.01001.16330.62290.241*
H9BC0.04571.07720.58920.241*
C10B0.1210 (6)1.0587 (4)0.5234 (3)0.190 (5)
H10D0.17381.02600.51430.286*
H10E0.09641.03450.48490.286*
H10F0.13301.12430.51230.286*
C11B0.0955 (3)1.0733 (3)0.6757 (3)0.0795 (15)
H11D0.14451.03470.66890.119*
H11E0.11311.13780.66690.119*
H11F0.05181.06550.73290.119*
C12B0.0011 (2)0.6833 (2)0.7177 (3)0.0423 (9)
C13B0.0452 (2)0.5740 (2)0.8480 (2)0.0468 (10)
C14B0.1115 (3)0.5123 (3)0.8381 (4)0.0912 (18)
H14D0.08820.48310.78210.137*
H14E0.12810.46500.88220.137*
H14F0.16130.54900.84350.137*
C15B0.0784 (4)0.6238 (3)0.9314 (3)0.0905 (18)
H15D0.12950.65810.93730.136*
H15E0.09210.57930.97780.136*
H15F0.03510.66650.93350.136*
C16B0.0329 (3)0.5185 (3)0.8384 (3)0.0729 (13)
H16D0.05240.48440.78490.109*
H16E0.07790.56000.83830.109*
H16F0.01890.47530.88580.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni1A0.0291 (2)0.0315 (2)0.0424 (3)0.00252 (17)0.0198 (2)0.00508 (19)
O1A0.107 (3)0.100 (3)0.059 (2)0.005 (2)0.017 (2)0.029 (2)
N1A0.0384 (17)0.0591 (18)0.0423 (19)0.0001 (14)0.0235 (16)0.0023 (14)
N2A0.0310 (18)0.0544 (19)0.059 (2)0.0067 (14)0.0195 (16)0.0065 (15)
N3A0.0365 (17)0.0355 (17)0.055 (2)0.0067 (12)0.0233 (15)0.0101 (13)
C1A0.054 (3)0.052 (2)0.049 (3)0.0049 (18)0.027 (2)0.001 (2)
C2A0.0321 (18)0.0364 (18)0.042 (2)0.0037 (14)0.0146 (16)0.0029 (15)
C3A0.037 (2)0.084 (3)0.036 (2)0.0044 (19)0.0229 (19)0.004 (2)
C4A0.044 (3)0.087 (3)0.056 (3)0.008 (2)0.025 (2)0.004 (2)
C5A0.073 (3)0.107 (4)0.101 (4)0.001 (3)0.062 (3)0.023 (3)
C6A0.046 (3)0.167 (5)0.049 (3)0.006 (3)0.024 (2)0.028 (3)
C7A0.038 (2)0.0364 (18)0.048 (2)0.0006 (15)0.0237 (19)0.0067 (16)
C8A0.029 (2)0.080 (3)0.047 (3)0.0111 (18)0.0161 (19)0.016 (2)
C9A0.054 (3)0.165 (5)0.074 (4)0.024 (3)0.027 (3)0.052 (4)
C10A0.046 (3)0.108 (4)0.062 (3)0.013 (2)0.016 (2)0.001 (3)
C11A0.055 (3)0.090 (3)0.087 (4)0.013 (2)0.041 (3)0.005 (3)
C12A0.0289 (19)0.040 (2)0.050 (3)0.0031 (14)0.0220 (18)0.0062 (16)
C13A0.038 (2)0.0294 (17)0.048 (2)0.0064 (14)0.0219 (18)0.0076 (15)
C14A0.041 (2)0.043 (2)0.068 (3)0.0038 (16)0.023 (2)0.0006 (18)
C15A0.046 (2)0.059 (2)0.048 (3)0.0130 (18)0.023 (2)0.0020 (18)
C16A0.053 (2)0.042 (2)0.046 (3)0.0088 (16)0.024 (2)0.0057 (17)
Ni1B0.0321 (2)0.0330 (2)0.0378 (3)0.00067 (17)0.0174 (2)0.00341 (19)
O1B0.0411 (19)0.140 (3)0.085 (3)0.0278 (18)0.0283 (18)0.053 (2)
N1B0.0389 (17)0.0412 (16)0.049 (2)0.0042 (13)0.0247 (16)0.0002 (14)
N2B0.052 (2)0.0366 (17)0.044 (2)0.0012 (13)0.0119 (16)0.0018 (13)
N3B0.059 (2)0.0396 (17)0.047 (2)0.0062 (14)0.0271 (18)0.0058 (15)
C1B0.043 (2)0.060 (2)0.053 (3)0.0105 (18)0.027 (2)0.0198 (19)
C2B0.0324 (19)0.0351 (18)0.038 (2)0.0013 (14)0.0129 (17)0.0000 (15)
C3B0.041 (2)0.043 (2)0.058 (3)0.0052 (15)0.030 (2)0.0093 (18)
C4B0.374 (13)0.045 (3)0.525 (18)0.053 (5)0.401 (14)0.044 (6)
C5B0.056 (4)0.388 (13)0.071 (5)0.054 (5)0.014 (3)0.090 (6)
C6B0.045 (3)0.172 (5)0.094 (4)0.019 (3)0.037 (3)0.065 (4)
C7B0.034 (2)0.043 (2)0.032 (2)0.0000 (15)0.0128 (17)0.0001 (15)
C8B0.096 (3)0.0279 (19)0.053 (3)0.0079 (19)0.034 (3)0.0045 (17)
C9B0.202 (8)0.051 (3)0.311 (12)0.035 (4)0.189 (8)0.033 (5)
C10B0.348 (12)0.101 (4)0.046 (4)0.130 (6)0.005 (5)0.005 (3)
C11B0.123 (4)0.054 (3)0.077 (4)0.022 (3)0.056 (3)0.008 (2)
C12B0.049 (2)0.0350 (19)0.052 (3)0.0004 (15)0.029 (2)0.0063 (18)
C13B0.066 (3)0.0312 (19)0.048 (3)0.0040 (17)0.028 (2)0.0081 (17)
C14B0.104 (4)0.064 (3)0.132 (5)0.031 (3)0.074 (4)0.039 (3)
C15B0.147 (5)0.059 (3)0.044 (3)0.022 (3)0.015 (3)0.004 (2)
C16B0.090 (4)0.056 (3)0.076 (4)0.013 (2)0.037 (3)0.007 (2)
Geometric parameters (Å, º) top
Ni1A—C1A1.753 (4)Ni1B—C1B1.755 (4)
Ni1A—C2A1.864 (3)Ni1B—C7B1.861 (3)
Ni1A—C7A1.867 (4)Ni1B—C2B1.864 (3)
Ni1A—C12A1.872 (3)Ni1B—C12B1.874 (4)
O1A—C1A1.155 (5)O1B—C1B1.156 (4)
N1A—C2A1.162 (4)N1B—C2B1.169 (4)
N1A—C3A1.457 (4)N1B—C3B1.451 (4)
N2A—C7A1.162 (4)N2B—C7B1.163 (4)
N2A—C8A1.453 (4)N2B—C8B1.454 (4)
N3A—C12A1.159 (4)N3B—C12B1.158 (4)
N3A—C13A1.466 (4)N3B—C13B1.457 (5)
C3A—C4A1.509 (5)C3B—C5B1.475 (7)
C3A—C5A1.519 (6)C3B—C4B1.475 (6)
C3A—C6A1.526 (5)C3B—C6B1.493 (5)
C4A—H4AA0.9800C4B—H4BA0.9800
C4A—H4AB0.9800C4B—H4BB0.9800
C4A—H4AC0.9800C4B—H4BC0.9800
C5A—H5AA0.9800C5B—H5BA0.9800
C5A—H5AB0.9800C5B—H5BB0.9800
C5A—H5AC0.9800C5B—H5BC0.9800
C6A—H6AA0.9800C6B—H6BA0.9800
C6A—H6AB0.9800C6B—H6BB0.9800
C6A—H6AC0.9800C6B—H6BC0.9800
C8A—C9A1.507 (6)C8B—C10B1.479 (7)
C8A—C11A1.511 (5)C8B—C11B1.492 (5)
C8A—C10A1.529 (6)C8B—C9B1.515 (7)
C9A—H9AA0.9800C9B—H9BA0.9800
C9A—H9AB0.9800C9B—H9BB0.9800
C9A—H9AC0.9800C9B—H9BC0.9800
C10A—H10A0.9800C10B—H10D0.9800
C10A—H10B0.9800C10B—H10E0.9800
C10A—H10C0.9800C10B—H10F0.9800
C11A—H11A0.9800C11B—H11D0.9800
C11A—H11B0.9800C11B—H11E0.9800
C11A—H11C0.9800C11B—H11F0.9800
C13A—C15A1.519 (4)C13B—C15B1.503 (6)
C13A—C16A1.523 (5)C13B—C16B1.517 (5)
C13A—C14A1.522 (5)C13B—C14B1.512 (5)
C14A—H14A0.9800C14B—H14D0.9800
C14A—H14B0.9800C14B—H14E0.9800
C14A—H14C0.9800C14B—H14F0.9800
C15A—H15A0.9800C15B—H15D0.9800
C15A—H15B0.9800C15B—H15E0.9800
C15A—H15C0.9800C15B—H15F0.9800
C16A—H16A0.9800C16B—H16D0.9800
C16A—H16B0.9800C16B—H16E0.9800
C16A—H16C0.9800C16B—H16F0.9800
C1A—Ni1A—C2A107.16 (16)C1B—Ni1B—C7B103.66 (16)
C1A—Ni1A—C7A111.99 (16)C1B—Ni1B—C2B109.91 (15)
C2A—Ni1A—C7A113.31 (15)C7B—Ni1B—C2B112.86 (14)
C1A—Ni1A—C12A114.96 (17)C1B—Ni1B—C12B111.80 (17)
C2A—Ni1A—C12A104.26 (13)C7B—Ni1B—C12B112.61 (14)
C7A—Ni1A—C12A105.07 (14)C2B—Ni1B—C12B106.11 (14)
C2A—N1A—C3A174.3 (4)C2B—N1B—C3B175.5 (3)
C7A—N2A—C8A178.4 (4)C7B—N2B—C8B171.2 (4)
C12A—N3A—C13A175.1 (3)C12B—N3B—C13B169.3 (4)
O1A—C1A—Ni1A176.1 (4)O1B—C1B—Ni1B176.7 (4)
N1A—C2A—Ni1A174.0 (3)N1B—C2B—Ni1B175.9 (3)
N1A—C3A—C4A108.1 (3)N1B—C3B—C5B109.0 (3)
N1A—C3A—C5A108.4 (3)N1B—C3B—C4B107.0 (3)
C4A—C3A—C5A110.5 (3)C5B—C3B—C4B112.7 (6)
N1A—C3A—C6A106.7 (3)N1B—C3B—C6B109.0 (3)
C4A—C3A—C6A111.2 (4)C5B—C3B—C6B109.3 (4)
C5A—C3A—C6A111.8 (4)C4B—C3B—C6B109.8 (5)
C3A—C4A—H4AA109.5C3B—C4B—H4BA109.5
C3A—C4A—H4AB109.5C3B—C4B—H4BB109.5
H4AA—C4A—H4AB109.5H4BA—C4B—H4BB109.5
C3A—C4A—H4AC109.5C3B—C4B—H4BC109.5
H4AA—C4A—H4AC109.5H4BA—C4B—H4BC109.5
H4AB—C4A—H4AC109.5H4BB—C4B—H4BC109.5
C3A—C5A—H5AA109.5C3B—C5B—H5BA109.5
C3A—C5A—H5AB109.5C3B—C5B—H5BB109.5
H5AA—C5A—H5AB109.5H5BA—C5B—H5BB109.5
C3A—C5A—H5AC109.5C3B—C5B—H5BC109.5
H5AA—C5A—H5AC109.5H5BA—C5B—H5BC109.5
H5AB—C5A—H5AC109.5H5BB—C5B—H5BC109.5
C3A—C6A—H6AA109.5C3B—C6B—H6BA109.5
C3A—C6A—H6AB109.5C3B—C6B—H6BB109.5
H6AA—C6A—H6AB109.5H6BA—C6B—H6BB109.5
C3A—C6A—H6AC109.5C3B—C6B—H6BC109.5
H6AA—C6A—H6AC109.5H6BA—C6B—H6BC109.5
H6AB—C6A—H6AC109.5H6BB—C6B—H6BC109.5
N2A—C7A—Ni1A176.7 (3)N2B—C7B—Ni1B171.8 (3)
N2A—C8A—C9A107.6 (3)N2B—C8B—C10B106.9 (3)
N2A—C8A—C11A107.8 (3)N2B—C8B—C11B109.1 (3)
C9A—C8A—C11A112.8 (4)C10B—C8B—C11B113.3 (5)
N2A—C8A—C10A107.5 (3)N2B—C8B—C9B106.6 (4)
C9A—C8A—C10A110.6 (4)C10B—C8B—C9B111.2 (5)
C11A—C8A—C10A110.2 (3)C11B—C8B—C9B109.5 (4)
C8A—C9A—H9AA109.5C8B—C9B—H9BA109.5
C8A—C9A—H9AB109.5C8B—C9B—H9BB109.5
H9AA—C9A—H9AB109.5H9BA—C9B—H9BB109.5
C8A—C9A—H9AC109.5C8B—C9B—H9BC109.5
H9AA—C9A—H9AC109.5H9BA—C9B—H9BC109.5
H9AB—C9A—H9AC109.5H9BB—C9B—H9BC109.5
C8A—C10A—H10A109.5C8B—C10B—H10D109.5
C8A—C10A—H10B109.5C8B—C10B—H10E109.5
H10A—C10A—H10B109.5H10D—C10B—H10E109.5
C8A—C10A—H10C109.5C8B—C10B—H10F109.5
H10A—C10A—H10C109.5H10D—C10B—H10F109.5
H10B—C10A—H10C109.5H10E—C10B—H10F109.5
C8A—C11A—H11A109.5C8B—C11B—H11D109.5
C8A—C11A—H11B109.5C8B—C11B—H11E109.5
H11A—C11A—H11B109.5H11D—C11B—H11E109.5
C8A—C11A—H11C109.5C8B—C11B—H11F109.5
H11A—C11A—H11C109.5H11D—C11B—H11F109.5
H11B—C11A—H11C109.5H11E—C11B—H11F109.5
N3A—C12A—Ni1A177.5 (3)N3B—C12B—Ni1B175.4 (3)
N3A—C13A—C15A107.6 (3)N3B—C13B—C15B108.6 (3)
N3A—C13A—C16A107.2 (3)N3B—C13B—C16B108.8 (3)
C15A—C13A—C16A112.0 (3)C15B—C13B—C16B110.4 (4)
N3A—C13A—C14A107.5 (3)N3B—C13B—C14B106.8 (3)
C15A—C13A—C14A111.2 (3)C15B—C13B—C14B112.0 (4)
C16A—C13A—C14A111.1 (3)C16B—C13B—C14B110.1 (3)
C13A—C14A—H14A109.5C13B—C14B—H14D109.5
C13A—C14A—H14B109.5C13B—C14B—H14E109.5
H14A—C14A—H14B109.5H14D—C14B—H14E109.5
C13A—C14A—H14C109.5C13B—C14B—H14F109.5
H14A—C14A—H14C109.5H14D—C14B—H14F109.5
H14B—C14A—H14C109.5H14E—C14B—H14F109.5
C13A—C15A—H15A109.5C13B—C15B—H15D109.5
C13A—C15A—H15B109.5C13B—C15B—H15E109.5
H15A—C15A—H15B109.5H15D—C15B—H15E109.5
C13A—C15A—H15C109.5C13B—C15B—H15F109.5
H15A—C15A—H15C109.5H15D—C15B—H15F109.5
H15B—C15A—H15C109.5H15E—C15B—H15F109.5
C13A—C16A—H16A109.5C13B—C16B—H16D109.5
C13A—C16A—H16B109.5C13B—C16B—H16E109.5
H16A—C16A—H16B109.5H16D—C16B—H16E109.5
C13A—C16A—H16C109.5C13B—C16B—H16F109.5
H16A—C16A—H16C109.5H16D—C16B—H16F109.5
H16B—C16A—H16C109.5H16E—C16B—H16F109.5

Experimental details

Crystal data
Chemical formula[Ni(C5H9N)3(CO)]
Mr336.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)183
a, b, c (Å)17.1621 (7), 14.5687 (5), 17.1627 (7)
β (°) 113.179 (3)
V3)3944.8 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.06 × 0.05 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
26227, 9006, 5006
Rint0.083
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.136, 1.01
No. of reflections9006
No. of parameters397
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.58

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and XP (Siemens, 1990).

 

Acknowledgements

The authors gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft. KH thanks the Free State of Thuringia for a PhD grant.

References

First citationBigorgne, M. (1963a). Bull. Soc. Chim. Fr. pp. 295–303.  Google Scholar
First citationBigorgne, M. (1963b). J. Organomet. Chem. 1, 101–119.  CrossRef CAS Web of Science Google Scholar
First citationBraga, D., Grepioni, F. & Orpen, A. G. (1993). Organometallics, 12, 1481–1483.  CSD CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, IUCr Monographs on Crystallography No. 9. Oxford Science Publications.  Google Scholar
First citationDönnecke, D. & Imhof, W. (2003). Dalton Trans. pp. 2737–2744.  Google Scholar
First citationFarrugia, L. J. & Evans, C. (2005). J. Phys. Chem. A, 109, 8834–8848.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHahn, F. E., Münder, M. & Fröhlich, P. (2004). Z. Naturforsch. Teil B, 59, 850–854.  Google Scholar
First citationHalbauer, K., Dönnecke, D., Görls, H. & Imhof, W. (2006). Z. Anorg. Allg. Chem. 632, 1477–1482.  Web of Science CSD CrossRef CAS Google Scholar
First citationHalbauer, K., Görls, H., Fidler, T. & Imhof, W. (2007). J. Organomet. Chem. 692, 1898–1911.  Web of Science CSD CrossRef CAS Google Scholar
First citationImhof, W. & Halbauer, K. (2006). Acta Cryst. E62, m1514–m1516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationImhof, W., Halbauer, K., Dönnecke, D. & Görls, H. (2006). Acta Cryst. E62, m462–m464.  CSD CrossRef IUCr Journals Google Scholar
First citationLadell, J., Post, B. & Fankuchen, I. (1952). Acta Cryst. 5, 795–800.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOstuka, S., Nakamura, Y. & Yoshida, T. (1969). J. Am. Chem. Soc. 91, 6994–6999.  Google Scholar
First citationOstuka, S., Yoshida, T. & Tatsuno, Y. (1971). J. Am. Chem. Soc. 93, 6462–6469.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1990). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds