metal-organic compounds
Tris(tert-butyl isocyanide-κC)carbonylnickel(0)
aInstitut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany
*Correspondence e-mail: wolfgang.imhof@uni-jena.de
The title compound, [Ni(C5H9N)3(CO)], was prepared from Ni(CO)4 and a tenfold excess of tert-butyl isocyanide. It crystallizes with two symmetry-independent molecules per The central Ni atom of each independent molecule has a nearly perfect tetrahedral coordination environment, comprising one carbon monoxide and three isocyanide ligands. The title compound is the first structurally characterized Ni0 compound with a mixed CO/RNC coordination.
Related literature
For related literature, see: Braga et al. (1993); Farrugia & Evans (2005); Hahn et al. (2004); Ladell et al. (1952); Bigorgne (1963a,b); Dönnecke & Imhof (2003); Desiraju & Steiner (1999); Halbauer et al. (2006, 2007); Imhof & Halbauer (2006); Imhof, Halbauer, Dönnecke & Görls (2006); Ostuka et al. (1969, 1971).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 1998); cell DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1990); software used to prepare material for publication: SHELXL97 and XP.
Supporting information
10.1107/S1600536808020138/fj2122sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808020138/fj2122Isup2.hkl
0.3 ml of a 2 M solution of Ni(CO)4 (0.059 mmol) in toluene and 0.7 ml tert. butylisocyanide (5.86 mmol) together with another 3 ml of anhydrous toluene are transferred into a stainless steel autoclave and are heated to 130°C for 18 h. After cooling down the autoclave the resulting solution is transferrd to a Schlenk tube, all volatile material is evaporated and the resulting red oily residue is dissolved in anhydrous light petroleum (b.p. 40–60°C). After three days at -20°C the title compound crystallizes as colorless crystals. Yield: 12 mg (59%). IR (KBr pellets) [cm-1]: 2984m, 2936m, 2873w, 2140m, 2090 s, 2057 s, 2001m, 1920vs, 1914vs, 1453m, 1393m, 1369m, 1229m, 1208m. MS (DEI) [m/z(%)]: 336 (1) [MH+], 307 (13) [M+ - CO], 252 (65) [M+ - tBuNC], 224 (51) [Ni(tBuNC)2]+, 195 (10) [Ni(CO)(tBuNC)H]+, 168 (100) [Ni(tBuNC)(CN)H]+, 141 (16) [Ni(tBuNC)]+, 112 (99) [Ni(CO)(CN)]+. 1H-NMR (400 MHz, CDCl3, 298 K) [p.p.m.]: 1.41(s). 13C-NMR (400 MHz, CDCl3, 298 K) [p.p.m.]: 30.54 (CH3), 55.83 (C), 151.89 (NC), 197.87 (CO).
Hydrogen atoms were calculated in idealized positions and refined with distances of 0.96 Å. All hydrogen atoms were refined using a riding model with Uiso(H) = 1.5 times Uiso(C).
Data collection: COLLECT (Nonius, 1998); cell
DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and XP (Siemens, 1990).Fig. 1. Molecular structure of one of the symmetry independent molecules of the title compound showing the labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. |
[Ni(C5H9N)3(CO)] | F(000) = 1440 |
Mr = 336.11 | Dx = 1.132 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 26227 reflections |
a = 17.1621 (7) Å | θ = 2.6–27.5° |
b = 14.5687 (5) Å | µ = 0.99 mm−1 |
c = 17.1627 (7) Å | T = 183 K |
β = 113.179 (3)° | Prism, colourless |
V = 3944.8 (3) Å3 | 0.06 × 0.05 × 0.05 mm |
Z = 8 |
Nonius KappaCCD diffractometer | 5006 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.083 |
Graphite monochromator | θmax = 27.5°, θmin = 2.6° |
ϕ and ω scans | h = −18→22 |
26227 measured reflections | k = −17→18 |
9006 independent reflections | l = −19→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.136 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0556P)2 + 0.2606P] where P = (Fo2 + 2Fc2)/3 |
9006 reflections | (Δ/σ)max = 0.001 |
397 parameters | Δρmax = 0.59 e Å−3 |
0 restraints | Δρmin = −0.58 e Å−3 |
[Ni(C5H9N)3(CO)] | V = 3944.8 (3) Å3 |
Mr = 336.11 | Z = 8 |
Monoclinic, P21/n | Mo Kα radiation |
a = 17.1621 (7) Å | µ = 0.99 mm−1 |
b = 14.5687 (5) Å | T = 183 K |
c = 17.1627 (7) Å | 0.06 × 0.05 × 0.05 mm |
β = 113.179 (3)° |
Nonius KappaCCD diffractometer | 5006 reflections with I > 2σ(I) |
26227 measured reflections | Rint = 0.083 |
9006 independent reflections |
R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.136 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.59 e Å−3 |
9006 reflections | Δρmin = −0.58 e Å−3 |
397 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1A | 0.05645 (3) | 0.23726 (3) | 0.89365 (3) | 0.03256 (13) | |
O1A | 0.1424 (2) | 0.3476 (2) | 1.0444 (2) | 0.0930 (11) | |
N1A | 0.15666 (18) | 0.27062 (19) | 0.78571 (19) | 0.0442 (7) | |
N2A | −0.13150 (19) | 0.27889 (19) | 0.8137 (2) | 0.0474 (8) | |
N3A | 0.06472 (17) | 0.03062 (18) | 0.91591 (19) | 0.0406 (7) | |
C1A | 0.1073 (3) | 0.3018 (3) | 0.9861 (3) | 0.0495 (10) | |
C2A | 0.1142 (2) | 0.2584 (2) | 0.8233 (2) | 0.0368 (8) | |
C3A | 0.2158 (2) | 0.2906 (3) | 0.7461 (2) | 0.0495 (10) | |
C4A | 0.2853 (2) | 0.3508 (3) | 0.8056 (3) | 0.0604 (11) | |
H4AA | 0.3132 | 0.3194 | 0.8600 | 0.091* | |
H4AB | 0.2608 | 0.4087 | 0.8145 | 0.091* | |
H4AC | 0.3269 | 0.3636 | 0.7810 | 0.091* | |
C5A | 0.2521 (3) | 0.2004 (3) | 0.7310 (3) | 0.0850 (16) | |
H5AA | 0.2791 | 0.1676 | 0.7848 | 0.128* | |
H5AB | 0.2943 | 0.2128 | 0.7070 | 0.128* | |
H5AC | 0.2064 | 0.1627 | 0.6913 | 0.128* | |
C6A | 0.1655 (3) | 0.3404 (4) | 0.6631 (3) | 0.0858 (16) | |
H6AA | 0.1387 | 0.3950 | 0.6749 | 0.129* | |
H6AB | 0.1218 | 0.2993 | 0.6252 | 0.129* | |
H6AC | 0.2038 | 0.3587 | 0.6360 | 0.129* | |
C7A | −0.0591 (2) | 0.2639 (2) | 0.8422 (2) | 0.0389 (8) | |
C8A | −0.2222 (2) | 0.2960 (3) | 0.7798 (3) | 0.0517 (10) | |
C9A | −0.2462 (3) | 0.3409 (4) | 0.6944 (3) | 0.0969 (18) | |
H9AA | −0.2201 | 0.4018 | 0.7016 | 0.145* | |
H9AB | −0.3080 | 0.3470 | 0.6672 | 0.145* | |
H9AC | −0.2262 | 0.3030 | 0.6588 | 0.145* | |
C10A | −0.2666 (3) | 0.2032 (3) | 0.7710 (3) | 0.0737 (13) | |
H10A | −0.2509 | 0.1635 | 0.7333 | 0.111* | |
H10B | −0.3281 | 0.2124 | 0.7470 | 0.111* | |
H10C | −0.2491 | 0.1743 | 0.8268 | 0.111* | |
C11A | −0.2407 (3) | 0.3558 (3) | 0.8424 (3) | 0.0732 (13) | |
H11A | −0.2107 | 0.4144 | 0.8487 | 0.110* | |
H11B | −0.2215 | 0.3247 | 0.8974 | 0.110* | |
H11C | −0.3018 | 0.3672 | 0.8217 | 0.110* | |
C12A | 0.0622 (2) | 0.1099 (2) | 0.9093 (2) | 0.0377 (8) | |
C13A | 0.0707 (2) | −0.0698 (2) | 0.9185 (2) | 0.0369 (8) | |
C14A | −0.0192 (2) | −0.1076 (2) | 0.8829 (3) | 0.0506 (10) | |
H14A | −0.0489 | −0.0863 | 0.8245 | 0.076* | |
H14B | −0.0492 | −0.0861 | 0.9176 | 0.076* | |
H14C | −0.0173 | −0.1749 | 0.8838 | 0.076* | |
C15A | 0.1184 (2) | −0.0983 (2) | 0.8643 (2) | 0.0495 (10) | |
H15A | 0.0867 | −0.0786 | 0.8057 | 0.074* | |
H15B | 0.1248 | −0.1652 | 0.8661 | 0.074* | |
H15C | 0.1746 | −0.0695 | 0.8862 | 0.074* | |
C16A | 0.1176 (2) | −0.0972 (2) | 1.0110 (2) | 0.0458 (9) | |
H16A | 0.1735 | −0.0679 | 1.0337 | 0.069* | |
H16B | 0.1245 | −0.1641 | 1.0150 | 0.069* | |
H16C | 0.0850 | −0.0774 | 1.0437 | 0.069* | |
Ni1B | −0.03653 (3) | 0.74217 (3) | 0.61221 (3) | 0.03316 (13) | |
O1B | −0.21523 (19) | 0.7099 (2) | 0.5102 (2) | 0.0873 (11) | |
N1B | 0.06832 (18) | 0.66226 (18) | 0.52198 (19) | 0.0408 (7) | |
N2B | −0.03902 (19) | 0.9488 (2) | 0.62247 (19) | 0.0462 (8) | |
N3B | 0.0221 (2) | 0.64140 (19) | 0.7800 (2) | 0.0467 (8) | |
C1B | −0.1440 (3) | 0.7201 (3) | 0.5515 (3) | 0.0493 (10) | |
C2B | 0.0296 (2) | 0.6961 (2) | 0.5572 (2) | 0.0355 (8) | |
C3B | 0.1153 (2) | 0.6134 (2) | 0.4808 (3) | 0.0440 (9) | |
C4B | 0.1229 (6) | 0.5173 (4) | 0.5100 (7) | 0.245 (6) | |
H4BA | 0.0662 | 0.4912 | 0.4951 | 0.368* | |
H4BB | 0.1540 | 0.5152 | 0.5716 | 0.368* | |
H4BC | 0.1535 | 0.4816 | 0.4826 | 0.368* | |
C5B | 0.0701 (4) | 0.6220 (6) | 0.3882 (4) | 0.175 (4) | |
H5BA | 0.0166 | 0.5880 | 0.3697 | 0.262* | |
H5BB | 0.1053 | 0.5970 | 0.3601 | 0.262* | |
H5BC | 0.0582 | 0.6869 | 0.3731 | 0.262* | |
C6B | 0.2014 (3) | 0.6551 (4) | 0.5071 (4) | 0.101 (2) | |
H6BA | 0.1960 | 0.7188 | 0.4874 | 0.152* | |
H6BB | 0.2346 | 0.6201 | 0.4822 | 0.152* | |
H6BC | 0.2300 | 0.6537 | 0.5690 | 0.152* | |
C7B | −0.0316 (2) | 0.8695 (2) | 0.6218 (2) | 0.0361 (8) | |
C8B | −0.0605 (3) | 1.0458 (2) | 0.6121 (3) | 0.0574 (11) | |
C9B | 0.0215 (5) | 1.0972 (4) | 0.6294 (5) | 0.160 (4) | |
H9BA | 0.0617 | 1.0844 | 0.6874 | 0.241* | |
H9BB | 0.0100 | 1.1633 | 0.6229 | 0.241* | |
H9BC | 0.0457 | 1.0772 | 0.5892 | 0.241* | |
C10B | −0.1210 (6) | 1.0587 (4) | 0.5234 (3) | 0.190 (5) | |
H10D | −0.1738 | 1.0260 | 0.5143 | 0.286* | |
H10E | −0.0964 | 1.0345 | 0.4849 | 0.286* | |
H10F | −0.1330 | 1.1243 | 0.5123 | 0.286* | |
C11B | −0.0955 (3) | 1.0733 (3) | 0.6757 (3) | 0.0795 (15) | |
H11D | −0.1445 | 1.0347 | 0.6689 | 0.119* | |
H11E | −0.1131 | 1.1378 | 0.6669 | 0.119* | |
H11F | −0.0518 | 1.0655 | 0.7329 | 0.119* | |
C12B | 0.0011 (2) | 0.6833 (2) | 0.7177 (3) | 0.0423 (9) | |
C13B | 0.0452 (2) | 0.5740 (2) | 0.8480 (2) | 0.0468 (10) | |
C14B | 0.1115 (3) | 0.5123 (3) | 0.8381 (4) | 0.0912 (18) | |
H14D | 0.0882 | 0.4831 | 0.7821 | 0.137* | |
H14E | 0.1281 | 0.4650 | 0.8822 | 0.137* | |
H14F | 0.1613 | 0.5490 | 0.8435 | 0.137* | |
C15B | 0.0784 (4) | 0.6238 (3) | 0.9314 (3) | 0.0905 (18) | |
H15D | 0.1295 | 0.6581 | 0.9373 | 0.136* | |
H15E | 0.0921 | 0.5793 | 0.9778 | 0.136* | |
H15F | 0.0351 | 0.6665 | 0.9335 | 0.136* | |
C16B | −0.0329 (3) | 0.5185 (3) | 0.8384 (3) | 0.0729 (13) | |
H16D | −0.0524 | 0.4844 | 0.7849 | 0.109* | |
H16E | −0.0779 | 0.5600 | 0.8383 | 0.109* | |
H16F | −0.0189 | 0.4753 | 0.8858 | 0.109* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1A | 0.0291 (2) | 0.0315 (2) | 0.0424 (3) | 0.00252 (17) | 0.0198 (2) | 0.00508 (19) |
O1A | 0.107 (3) | 0.100 (3) | 0.059 (2) | −0.005 (2) | 0.017 (2) | −0.029 (2) |
N1A | 0.0384 (17) | 0.0591 (18) | 0.0423 (19) | 0.0001 (14) | 0.0235 (16) | 0.0023 (14) |
N2A | 0.0310 (18) | 0.0544 (19) | 0.059 (2) | 0.0067 (14) | 0.0195 (16) | 0.0065 (15) |
N3A | 0.0365 (17) | 0.0355 (17) | 0.055 (2) | 0.0067 (12) | 0.0233 (15) | 0.0101 (13) |
C1A | 0.054 (3) | 0.052 (2) | 0.049 (3) | 0.0049 (18) | 0.027 (2) | 0.001 (2) |
C2A | 0.0321 (18) | 0.0364 (18) | 0.042 (2) | 0.0037 (14) | 0.0146 (16) | 0.0029 (15) |
C3A | 0.037 (2) | 0.084 (3) | 0.036 (2) | 0.0044 (19) | 0.0229 (19) | 0.004 (2) |
C4A | 0.044 (3) | 0.087 (3) | 0.056 (3) | −0.008 (2) | 0.025 (2) | 0.004 (2) |
C5A | 0.073 (3) | 0.107 (4) | 0.101 (4) | 0.001 (3) | 0.062 (3) | −0.023 (3) |
C6A | 0.046 (3) | 0.167 (5) | 0.049 (3) | 0.006 (3) | 0.024 (2) | 0.028 (3) |
C7A | 0.038 (2) | 0.0364 (18) | 0.048 (2) | 0.0006 (15) | 0.0237 (19) | 0.0067 (16) |
C8A | 0.029 (2) | 0.080 (3) | 0.047 (3) | 0.0111 (18) | 0.0161 (19) | 0.016 (2) |
C9A | 0.054 (3) | 0.165 (5) | 0.074 (4) | 0.024 (3) | 0.027 (3) | 0.052 (4) |
C10A | 0.046 (3) | 0.108 (4) | 0.062 (3) | −0.013 (2) | 0.016 (2) | 0.001 (3) |
C11A | 0.055 (3) | 0.090 (3) | 0.087 (4) | 0.013 (2) | 0.041 (3) | −0.005 (3) |
C12A | 0.0289 (19) | 0.040 (2) | 0.050 (3) | 0.0031 (14) | 0.0220 (18) | 0.0062 (16) |
C13A | 0.038 (2) | 0.0294 (17) | 0.048 (2) | 0.0064 (14) | 0.0219 (18) | 0.0076 (15) |
C14A | 0.041 (2) | 0.043 (2) | 0.068 (3) | −0.0038 (16) | 0.023 (2) | −0.0006 (18) |
C15A | 0.046 (2) | 0.059 (2) | 0.048 (3) | 0.0130 (18) | 0.023 (2) | 0.0020 (18) |
C16A | 0.053 (2) | 0.042 (2) | 0.046 (3) | 0.0088 (16) | 0.024 (2) | 0.0057 (17) |
Ni1B | 0.0321 (2) | 0.0330 (2) | 0.0378 (3) | −0.00067 (17) | 0.0174 (2) | −0.00341 (19) |
O1B | 0.0411 (19) | 0.140 (3) | 0.085 (3) | −0.0278 (18) | 0.0283 (18) | −0.053 (2) |
N1B | 0.0389 (17) | 0.0412 (16) | 0.049 (2) | 0.0042 (13) | 0.0247 (16) | −0.0002 (14) |
N2B | 0.052 (2) | 0.0366 (17) | 0.044 (2) | 0.0012 (13) | 0.0119 (16) | −0.0018 (13) |
N3B | 0.059 (2) | 0.0396 (17) | 0.047 (2) | 0.0062 (14) | 0.0271 (18) | 0.0058 (15) |
C1B | 0.043 (2) | 0.060 (2) | 0.053 (3) | −0.0105 (18) | 0.027 (2) | −0.0198 (19) |
C2B | 0.0324 (19) | 0.0351 (18) | 0.038 (2) | −0.0013 (14) | 0.0129 (17) | 0.0000 (15) |
C3B | 0.041 (2) | 0.043 (2) | 0.058 (3) | 0.0052 (15) | 0.030 (2) | −0.0093 (18) |
C4B | 0.374 (13) | 0.045 (3) | 0.525 (18) | 0.053 (5) | 0.401 (14) | 0.044 (6) |
C5B | 0.056 (4) | 0.388 (13) | 0.071 (5) | 0.054 (5) | 0.014 (3) | −0.090 (6) |
C6B | 0.045 (3) | 0.172 (5) | 0.094 (4) | −0.019 (3) | 0.037 (3) | −0.065 (4) |
C7B | 0.034 (2) | 0.043 (2) | 0.032 (2) | 0.0000 (15) | 0.0128 (17) | −0.0001 (15) |
C8B | 0.096 (3) | 0.0279 (19) | 0.053 (3) | 0.0079 (19) | 0.034 (3) | 0.0045 (17) |
C9B | 0.202 (8) | 0.051 (3) | 0.311 (12) | −0.035 (4) | 0.189 (8) | −0.033 (5) |
C10B | 0.348 (12) | 0.101 (4) | 0.046 (4) | 0.130 (6) | −0.005 (5) | 0.005 (3) |
C11B | 0.123 (4) | 0.054 (3) | 0.077 (4) | 0.022 (3) | 0.056 (3) | 0.008 (2) |
C12B | 0.049 (2) | 0.0350 (19) | 0.052 (3) | −0.0004 (15) | 0.029 (2) | −0.0063 (18) |
C13B | 0.066 (3) | 0.0312 (19) | 0.048 (3) | 0.0040 (17) | 0.028 (2) | 0.0081 (17) |
C14B | 0.104 (4) | 0.064 (3) | 0.132 (5) | 0.031 (3) | 0.074 (4) | 0.039 (3) |
C15B | 0.147 (5) | 0.059 (3) | 0.044 (3) | −0.022 (3) | 0.015 (3) | 0.004 (2) |
C16B | 0.090 (4) | 0.056 (3) | 0.076 (4) | −0.013 (2) | 0.037 (3) | 0.007 (2) |
Ni1A—C1A | 1.753 (4) | Ni1B—C1B | 1.755 (4) |
Ni1A—C2A | 1.864 (3) | Ni1B—C7B | 1.861 (3) |
Ni1A—C7A | 1.867 (4) | Ni1B—C2B | 1.864 (3) |
Ni1A—C12A | 1.872 (3) | Ni1B—C12B | 1.874 (4) |
O1A—C1A | 1.155 (5) | O1B—C1B | 1.156 (4) |
N1A—C2A | 1.162 (4) | N1B—C2B | 1.169 (4) |
N1A—C3A | 1.457 (4) | N1B—C3B | 1.451 (4) |
N2A—C7A | 1.162 (4) | N2B—C7B | 1.163 (4) |
N2A—C8A | 1.453 (4) | N2B—C8B | 1.454 (4) |
N3A—C12A | 1.159 (4) | N3B—C12B | 1.158 (4) |
N3A—C13A | 1.466 (4) | N3B—C13B | 1.457 (5) |
C3A—C4A | 1.509 (5) | C3B—C5B | 1.475 (7) |
C3A—C5A | 1.519 (6) | C3B—C4B | 1.475 (6) |
C3A—C6A | 1.526 (5) | C3B—C6B | 1.493 (5) |
C4A—H4AA | 0.9800 | C4B—H4BA | 0.9800 |
C4A—H4AB | 0.9800 | C4B—H4BB | 0.9800 |
C4A—H4AC | 0.9800 | C4B—H4BC | 0.9800 |
C5A—H5AA | 0.9800 | C5B—H5BA | 0.9800 |
C5A—H5AB | 0.9800 | C5B—H5BB | 0.9800 |
C5A—H5AC | 0.9800 | C5B—H5BC | 0.9800 |
C6A—H6AA | 0.9800 | C6B—H6BA | 0.9800 |
C6A—H6AB | 0.9800 | C6B—H6BB | 0.9800 |
C6A—H6AC | 0.9800 | C6B—H6BC | 0.9800 |
C8A—C9A | 1.507 (6) | C8B—C10B | 1.479 (7) |
C8A—C11A | 1.511 (5) | C8B—C11B | 1.492 (5) |
C8A—C10A | 1.529 (6) | C8B—C9B | 1.515 (7) |
C9A—H9AA | 0.9800 | C9B—H9BA | 0.9800 |
C9A—H9AB | 0.9800 | C9B—H9BB | 0.9800 |
C9A—H9AC | 0.9800 | C9B—H9BC | 0.9800 |
C10A—H10A | 0.9800 | C10B—H10D | 0.9800 |
C10A—H10B | 0.9800 | C10B—H10E | 0.9800 |
C10A—H10C | 0.9800 | C10B—H10F | 0.9800 |
C11A—H11A | 0.9800 | C11B—H11D | 0.9800 |
C11A—H11B | 0.9800 | C11B—H11E | 0.9800 |
C11A—H11C | 0.9800 | C11B—H11F | 0.9800 |
C13A—C15A | 1.519 (4) | C13B—C15B | 1.503 (6) |
C13A—C16A | 1.523 (5) | C13B—C16B | 1.517 (5) |
C13A—C14A | 1.522 (5) | C13B—C14B | 1.512 (5) |
C14A—H14A | 0.9800 | C14B—H14D | 0.9800 |
C14A—H14B | 0.9800 | C14B—H14E | 0.9800 |
C14A—H14C | 0.9800 | C14B—H14F | 0.9800 |
C15A—H15A | 0.9800 | C15B—H15D | 0.9800 |
C15A—H15B | 0.9800 | C15B—H15E | 0.9800 |
C15A—H15C | 0.9800 | C15B—H15F | 0.9800 |
C16A—H16A | 0.9800 | C16B—H16D | 0.9800 |
C16A—H16B | 0.9800 | C16B—H16E | 0.9800 |
C16A—H16C | 0.9800 | C16B—H16F | 0.9800 |
C1A—Ni1A—C2A | 107.16 (16) | C1B—Ni1B—C7B | 103.66 (16) |
C1A—Ni1A—C7A | 111.99 (16) | C1B—Ni1B—C2B | 109.91 (15) |
C2A—Ni1A—C7A | 113.31 (15) | C7B—Ni1B—C2B | 112.86 (14) |
C1A—Ni1A—C12A | 114.96 (17) | C1B—Ni1B—C12B | 111.80 (17) |
C2A—Ni1A—C12A | 104.26 (13) | C7B—Ni1B—C12B | 112.61 (14) |
C7A—Ni1A—C12A | 105.07 (14) | C2B—Ni1B—C12B | 106.11 (14) |
C2A—N1A—C3A | 174.3 (4) | C2B—N1B—C3B | 175.5 (3) |
C7A—N2A—C8A | 178.4 (4) | C7B—N2B—C8B | 171.2 (4) |
C12A—N3A—C13A | 175.1 (3) | C12B—N3B—C13B | 169.3 (4) |
O1A—C1A—Ni1A | 176.1 (4) | O1B—C1B—Ni1B | 176.7 (4) |
N1A—C2A—Ni1A | 174.0 (3) | N1B—C2B—Ni1B | 175.9 (3) |
N1A—C3A—C4A | 108.1 (3) | N1B—C3B—C5B | 109.0 (3) |
N1A—C3A—C5A | 108.4 (3) | N1B—C3B—C4B | 107.0 (3) |
C4A—C3A—C5A | 110.5 (3) | C5B—C3B—C4B | 112.7 (6) |
N1A—C3A—C6A | 106.7 (3) | N1B—C3B—C6B | 109.0 (3) |
C4A—C3A—C6A | 111.2 (4) | C5B—C3B—C6B | 109.3 (4) |
C5A—C3A—C6A | 111.8 (4) | C4B—C3B—C6B | 109.8 (5) |
C3A—C4A—H4AA | 109.5 | C3B—C4B—H4BA | 109.5 |
C3A—C4A—H4AB | 109.5 | C3B—C4B—H4BB | 109.5 |
H4AA—C4A—H4AB | 109.5 | H4BA—C4B—H4BB | 109.5 |
C3A—C4A—H4AC | 109.5 | C3B—C4B—H4BC | 109.5 |
H4AA—C4A—H4AC | 109.5 | H4BA—C4B—H4BC | 109.5 |
H4AB—C4A—H4AC | 109.5 | H4BB—C4B—H4BC | 109.5 |
C3A—C5A—H5AA | 109.5 | C3B—C5B—H5BA | 109.5 |
C3A—C5A—H5AB | 109.5 | C3B—C5B—H5BB | 109.5 |
H5AA—C5A—H5AB | 109.5 | H5BA—C5B—H5BB | 109.5 |
C3A—C5A—H5AC | 109.5 | C3B—C5B—H5BC | 109.5 |
H5AA—C5A—H5AC | 109.5 | H5BA—C5B—H5BC | 109.5 |
H5AB—C5A—H5AC | 109.5 | H5BB—C5B—H5BC | 109.5 |
C3A—C6A—H6AA | 109.5 | C3B—C6B—H6BA | 109.5 |
C3A—C6A—H6AB | 109.5 | C3B—C6B—H6BB | 109.5 |
H6AA—C6A—H6AB | 109.5 | H6BA—C6B—H6BB | 109.5 |
C3A—C6A—H6AC | 109.5 | C3B—C6B—H6BC | 109.5 |
H6AA—C6A—H6AC | 109.5 | H6BA—C6B—H6BC | 109.5 |
H6AB—C6A—H6AC | 109.5 | H6BB—C6B—H6BC | 109.5 |
N2A—C7A—Ni1A | 176.7 (3) | N2B—C7B—Ni1B | 171.8 (3) |
N2A—C8A—C9A | 107.6 (3) | N2B—C8B—C10B | 106.9 (3) |
N2A—C8A—C11A | 107.8 (3) | N2B—C8B—C11B | 109.1 (3) |
C9A—C8A—C11A | 112.8 (4) | C10B—C8B—C11B | 113.3 (5) |
N2A—C8A—C10A | 107.5 (3) | N2B—C8B—C9B | 106.6 (4) |
C9A—C8A—C10A | 110.6 (4) | C10B—C8B—C9B | 111.2 (5) |
C11A—C8A—C10A | 110.2 (3) | C11B—C8B—C9B | 109.5 (4) |
C8A—C9A—H9AA | 109.5 | C8B—C9B—H9BA | 109.5 |
C8A—C9A—H9AB | 109.5 | C8B—C9B—H9BB | 109.5 |
H9AA—C9A—H9AB | 109.5 | H9BA—C9B—H9BB | 109.5 |
C8A—C9A—H9AC | 109.5 | C8B—C9B—H9BC | 109.5 |
H9AA—C9A—H9AC | 109.5 | H9BA—C9B—H9BC | 109.5 |
H9AB—C9A—H9AC | 109.5 | H9BB—C9B—H9BC | 109.5 |
C8A—C10A—H10A | 109.5 | C8B—C10B—H10D | 109.5 |
C8A—C10A—H10B | 109.5 | C8B—C10B—H10E | 109.5 |
H10A—C10A—H10B | 109.5 | H10D—C10B—H10E | 109.5 |
C8A—C10A—H10C | 109.5 | C8B—C10B—H10F | 109.5 |
H10A—C10A—H10C | 109.5 | H10D—C10B—H10F | 109.5 |
H10B—C10A—H10C | 109.5 | H10E—C10B—H10F | 109.5 |
C8A—C11A—H11A | 109.5 | C8B—C11B—H11D | 109.5 |
C8A—C11A—H11B | 109.5 | C8B—C11B—H11E | 109.5 |
H11A—C11A—H11B | 109.5 | H11D—C11B—H11E | 109.5 |
C8A—C11A—H11C | 109.5 | C8B—C11B—H11F | 109.5 |
H11A—C11A—H11C | 109.5 | H11D—C11B—H11F | 109.5 |
H11B—C11A—H11C | 109.5 | H11E—C11B—H11F | 109.5 |
N3A—C12A—Ni1A | 177.5 (3) | N3B—C12B—Ni1B | 175.4 (3) |
N3A—C13A—C15A | 107.6 (3) | N3B—C13B—C15B | 108.6 (3) |
N3A—C13A—C16A | 107.2 (3) | N3B—C13B—C16B | 108.8 (3) |
C15A—C13A—C16A | 112.0 (3) | C15B—C13B—C16B | 110.4 (4) |
N3A—C13A—C14A | 107.5 (3) | N3B—C13B—C14B | 106.8 (3) |
C15A—C13A—C14A | 111.2 (3) | C15B—C13B—C14B | 112.0 (4) |
C16A—C13A—C14A | 111.1 (3) | C16B—C13B—C14B | 110.1 (3) |
C13A—C14A—H14A | 109.5 | C13B—C14B—H14D | 109.5 |
C13A—C14A—H14B | 109.5 | C13B—C14B—H14E | 109.5 |
H14A—C14A—H14B | 109.5 | H14D—C14B—H14E | 109.5 |
C13A—C14A—H14C | 109.5 | C13B—C14B—H14F | 109.5 |
H14A—C14A—H14C | 109.5 | H14D—C14B—H14F | 109.5 |
H14B—C14A—H14C | 109.5 | H14E—C14B—H14F | 109.5 |
C13A—C15A—H15A | 109.5 | C13B—C15B—H15D | 109.5 |
C13A—C15A—H15B | 109.5 | C13B—C15B—H15E | 109.5 |
H15A—C15A—H15B | 109.5 | H15D—C15B—H15E | 109.5 |
C13A—C15A—H15C | 109.5 | C13B—C15B—H15F | 109.5 |
H15A—C15A—H15C | 109.5 | H15D—C15B—H15F | 109.5 |
H15B—C15A—H15C | 109.5 | H15E—C15B—H15F | 109.5 |
C13A—C16A—H16A | 109.5 | C13B—C16B—H16D | 109.5 |
C13A—C16A—H16B | 109.5 | C13B—C16B—H16E | 109.5 |
H16A—C16A—H16B | 109.5 | H16D—C16B—H16E | 109.5 |
C13A—C16A—H16C | 109.5 | C13B—C16B—H16F | 109.5 |
H16A—C16A—H16C | 109.5 | H16D—C16B—H16F | 109.5 |
H16B—C16A—H16C | 109.5 | H16E—C16B—H16F | 109.5 |
Experimental details
Crystal data | |
Chemical formula | [Ni(C5H9N)3(CO)] |
Mr | 336.11 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 183 |
a, b, c (Å) | 17.1621 (7), 14.5687 (5), 17.1627 (7) |
β (°) | 113.179 (3) |
V (Å3) | 3944.8 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.99 |
Crystal size (mm) | 0.06 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 26227, 9006, 5006 |
Rint | 0.083 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.136, 1.01 |
No. of reflections | 9006 |
No. of parameters | 397 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.59, −0.58 |
Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and XP (Siemens, 1990).
Acknowledgements
The authors gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft. KH thanks the Free State of Thuringia for a PhD grant.
References
Bigorgne, M. (1963a). Bull. Soc. Chim. Fr. pp. 295–303. Google Scholar
Bigorgne, M. (1963b). J. Organomet. Chem. 1, 101–119. CrossRef CAS Web of Science Google Scholar
Braga, D., Grepioni, F. & Orpen, A. G. (1993). Organometallics, 12, 1481–1483. CSD CrossRef CAS Web of Science Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, IUCr Monographs on Crystallography No. 9. Oxford Science Publications. Google Scholar
Dönnecke, D. & Imhof, W. (2003). Dalton Trans. pp. 2737–2744. Google Scholar
Farrugia, L. J. & Evans, C. (2005). J. Phys. Chem. A, 109, 8834–8848. Web of Science CrossRef PubMed CAS Google Scholar
Hahn, F. E., Münder, M. & Fröhlich, P. (2004). Z. Naturforsch. Teil B, 59, 850–854. Google Scholar
Halbauer, K., Dönnecke, D., Görls, H. & Imhof, W. (2006). Z. Anorg. Allg. Chem. 632, 1477–1482. Web of Science CSD CrossRef CAS Google Scholar
Halbauer, K., Görls, H., Fidler, T. & Imhof, W. (2007). J. Organomet. Chem. 692, 1898–1911. Web of Science CSD CrossRef CAS Google Scholar
Imhof, W. & Halbauer, K. (2006). Acta Cryst. E62, m1514–m1516. Web of Science CSD CrossRef IUCr Journals Google Scholar
Imhof, W., Halbauer, K., Dönnecke, D. & Görls, H. (2006). Acta Cryst. E62, m462–m464. CSD CrossRef IUCr Journals Google Scholar
Ladell, J., Post, B. & Fankuchen, I. (1952). Acta Cryst. 5, 795–800. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Ostuka, S., Nakamura, Y. & Yoshida, T. (1969). J. Am. Chem. Soc. 91, 6994–6999. Google Scholar
Ostuka, S., Yoshida, T. & Tatsuno, Y. (1971). J. Am. Chem. Soc. 93, 6462–6469. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1990). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Some of us recently published the synthesis of cyano complexes from the reaction of metal carbonyls with an excess of tert-butylisocyanide or iso-octylisocyanide, respectively (M = Ru: Dönnecke & Imhof (2003), Imhof & Halbauer (2006); M = Fe: Halbauer et al. (2006); M = Mn: Halbauer et al. (2007)). Mononuclear metal carbonyls like Fe(CO)5 or Mo(CO)6 under the same conditions do not react to give M(II) cyano complexes but yield substitution products of the corresponding carbonyl precursors (M = Fe: Halbauer et al. (2006); M = Mo: Imhof et al. (2006)). Due to the enhanced reactivity of Ni(CO)4 we nevertheless attempted the synthesis of complexes of the type [Ni(CN)2(tBuNC)4] from the reaction of Ni(CO)4 with an excess of the corresponding isocyanide leading to the formation of the title compound.
The molecular structure of one of the symmetry independent molecules of the title compound is depicted in Fig. 1. As it is expected the central nickel atom is almost perfectly tetrahedrally coordinated by three isocyanide and one carbon monoxide ligand. The metal carbon bond lengths of the isocyanide carbons atom are about 11 pm in average longer compared to the Ni—CO bond reflecting the higher π-acceptor properties of the latter. Both CO and isocyanide ligands are nearly not bent out of linearity. The bond lengths of the two molecules in the asymmetric unit are identical within experimental errors. In contrast to this observation the bond angles show slight deviations which may be caused by the bulkiness of the tert-butyl groups connected with packing effects. As it is expected the shortest intermolecular distances are of the C—H···O type. But whereas O1B is engaged in the three shortest interactions observed (C6A—H6AC···O1B 2.721 (8) Å; C11A—H11B···O1B 2.817 (8) Å; C16A—H16A···O1B 2.876 (8)), O1A shows only one contact below 3 Å (C16B—H16E···O1A 2.949 (9) Å). All of these contacts are well in the range discussed by Desiraju & Steiner as C—H···O hydrogen bonds (Desiraju & Steiner (1999).
With tBuNC as the ligand only [Ni(CO)2(tBuNC)2] (Ostuka et al. (1971)) and [Ni(tBuNC)4] (Ostuka et al. (1969)) were reported but not structurally characterized. The same is true for the compounds [Ni(CO)4-n(RNC)n] (R = Me, Et, nBu, Ph; n = 1, 2, 3, 4; Bigorgne (1963a,b)). The only complexes to be structurally characterized were the homoleptic [Ni(RNC)4] (R = Ph, 2,6-Me—Ph, 2-NO2—Ph; Hahn et al. (2004)) and Ni(CO)4 itself (Farrugia & Evans (2005); Braga et al. (1993); Ladell et al. (1952)). So the title compound is the first [Ni(CO)4-n(RNC)n] compound to be structurally characterized.