metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new monoclinic polymorph of di­chlorido­tetra­kis(di­methyl sulfoxide)­ruthenium(II)

aSofia University, Faculty of Chemistry, 1 James Bourchier Boulevard, 1164 Sofia, Bulgaria, bDepartment of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, PA 15260, USA, and cDepartment of Advanced Materials Science and Engineering, Faculty of Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
*Correspondence e-mail: blc53@pitt.edu

(Received 3 June 2008; accepted 30 June 2008; online 12 July 2008)

The title compound, cis,fac-dichloridotetra­kis(dimethyl sulfoxide)-κ3S,κO-ruthenium(II), [RuCl2(C2H6OS)4], was obtained from newly synthesized ruthenium complexes of 3-amino-2-chloro­pyridine. The Ru atom has a distorted octa­hedral coordination with two cis-oriented chloride ligands and four dimethyl sulfoxide ligands. Three of the sulfoxide ligands are S-bonded in a fac configuration, while the fourth is O-bonded. The title compound represents a new, and fourth, polymorph of the complex. Two other monoclinic forms and an ortho­rhom­bic modification have been reported previously.

Related literature

For the geometric parameters and crystal structures of related polymorphs, see: Alessio et al. (1988[Alessio, E., Mestroni, G., Nardin, G., Attia, W. M., Calligaris, M., Sava, G. & Zorzet, S. (1988). Inorg. Chem. 27, 4099-4106.]); Attia & Calligaris (1987[Attia, W. M. & Calligaris, M. (1987). Acta Cryst. C43, 1426-1427.]); Galanski et al. (2003[Galanski, M., Arion, V. B., Jakupec, M. A. & Keppler, B. K. (2003). Curr. Pharm. Des. 9, 2078-2089.]); Mercer & Trotter (1975[Mercer, A. & Trotter, J. (1975). J. Chem. Soc. Dalton Trans. pp. 2480-2483.]); Pigge et al. (2005[Pigge, F. C., Coniglio, J. J. & Rath, N. P. (2005). Organometallics, 24, 5424-5430.]); Srivastava & Fronczek (2003[Srivastava, R. S. & Fronczek, F. R. (2003). Acta Cryst. E59, m427-m428.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl2(C2H6OS)4]

  • Mr = 484.48

  • Monoclinic, P 21 /c

  • a = 10.1479 (3) Å

  • b = 10.4626 (3) Å

  • c = 18.4280 (4) Å

  • β = 99.795 (14)°

  • V = 1928.04 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.53 mm−1

  • T = 290 (2) K

  • 0.29 × 0.26 × 0.25 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 7705 measured reflections

  • 3777 independent reflections

  • 2953 reflections with I > 2σ(I)

  • Rint = 0.045

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.077

  • S = 1.03

  • 3777 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.64 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the field of medicinal chemistry ruthenium complexes have gained considerable attention as non-platinum anticancer agents (Galanski et al., 2003). In order to obtain new complexes with potential antitumor properties we studied the reactions of Ru(III) and 3-amino-2-chloropyridine (acp) under different conditions. We found that along with the complexation reaction a redox process also takes places leading to the formation of ruthenium complexes with the studied bidentate N-ligand in different oxidation states. The reported titled compound is a side product of this reaction.

The new polymorph modification of the title compound (Fig. 1) was obtained studying the substitution reaction of the acp-ligands from the inner coordination sphere of trans-[Ru(IV)Cl4(acp)2] in a hot DMSO solution (120–130 °C) (Fig. 3). The resulting orange crystals were determined by crystal structure analysis to be cis-RuCl2(DMSO)4 (Fig. 1). Two monoclinic (Mercer & Trotter, 1975; Alessio et al., 1988; Pigge et al., 2005) and one orthorhombic (Attia & Calligaris, 1987; Srivastava & Fronczek, 2003) modifications have been previously reported. The compound reported here is also monoclinic with similar type of ruthenium coordination but different three-dimensional arrangement of the structural units. Of the four DMSO ligands, three are S-coordinated, with Ru–S distances of 2.240 (2), 2.264 (2) and 2.278 (2) Å. As already reported, the Ru–S distance trans to the O-bonded DMSO (2.240 (2) Å) is significantly shortened, being more than 0.02 Å shorter than the other two.

The 0.05 Å longer S—O distance in the O-bonded DMSO ligand, is indicative for the weakened double-bond character compared to the other three DMSO ligands. As it was mentioned above the only difference between the polymorphs is the three-dimensional arrangement of the structural units. The difference is easily recognized if the number and arrangement of short O···H contacts between the neighboring entities is considered.

We calculated the O···H contacts with distances shorter than the sum of Van der Waals radii (e.g. less than 2.5 Å) for all previously reported polymorphs and for the second title compound.

In the case of the orthorhombic structure there is only one such contact of 2.296 Å between O3(S-bonded DMSO) and H6(O-bonded DMSO) (Srivastava & Fronczek, 2003); for the same polymorph refined earlier by Attia & Calligaris, 1987, the obtained distance is 2.391 Å and occurs between O3 and H5 atoms). The structural units connected by that short contact are chain-like arranged along c axis. Similar arrangement of the structural units is observed in the monoclinic modifications with β angle close to 90° (Mercer & Trotter, 1975; Pigge et al., 2005). The obtained O···H distances are 2.375 and 2.443 Å for the structures reported in 1995 and 2005 respectively. In the second monoclinic polymorph with β angle of 116.8° there are no O···H contacts below 2.5 Å, the shortest one is of 2.546 Å and occurs between O2 and H7 (both oxygen and hydrogen atoms belong to S-bonded DMSO molecules). Nevertheless, the arrangement of the units connected through the "shortest" contact is chain-like and is analogous to the one in the other polymorphs.

In the structure of (I) there are two O···H contacts shorter than 2.5 Å, both between atoms belonging to only S-bonded DMSO molecules. As it is shown in Fig. 2 the structural units are connected by the described contacts in two directions in a layer–like arrangement differing from the chain-like one found in earlier reported polymorphs.

Related literature top

For the geometrical parameters and crystal structures of related polymorphs, see: Alessio et al. (1988); Attia & Calligaris (1987); Galanski et al. (2003); Mercer & Trotter (1975); Pigge et al. (2005); Srivastava & Fronczek (2003).

Experimental top

Compound (I) was obtained from a 1M HCl hydrochloric-water solution of RuCl3.H2O (0.3 mmol, 0.0633 g) and 3-amino-2-chloropyridine (2.4 mmol, 0.3085 g). The mixture was left for 48 h at ambient temperature. The obtainedSome H[RuCl5OH].2H2O together with the main product trans-[Ru(III)Cl4(acp)2][Hacp] were separated by sieving. A sample of the purified trans-[Ru(III)Cl4(acp)2][Hacp] (0.5 g, 0.96 mmol) was dissolved in 2 ml DMSO and the solution was heated at (135±5 °C) for 30 min. The solution was then cooled to room temperature. Clear yellow-orange crystals of cis,fac-[Ru(II)Cl2(C2H6OS)4] were obtained several days later by slow diffusion of acetone and a few drops of diethyl ether into the solution.

Refinement top

The methyl H atoms were placed in idealized positions (C—Hmethyl = 0.96 Å). All H atoms were constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the structure and the atom-numbering scheme of (I) showing 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecular packing in (I). Short contacts are represented by dotted lines. All H atoms except those involved in the short contacts have been omitted. [Symmetry codes: (i) -x, y - 1/2,1/2 - z; (ii) -x1, -y, 1 - z].
[Figure 3] Fig. 3. The preparation of the title compound.
cis,fac-dichloridotetrakis(dimethyl sulfoxide)-κ3S,κO-ruthenium(II) top
Crystal data top
[RuCl2(C2H6OS)4]F(000) = 984
Mr = 484.48Dx = 1.669 Mg m3
Monoclinic, P21/cMelting point: not measured K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.1479 (3) ÅCell parameters from 22 reflections
b = 10.4626 (3) Åθ = 18.2–19.2°
c = 18.4280 (4) ŵ = 1.53 mm1
β = 99.795 (14)°T = 290 K
V = 1928.04 (12) Å3Prism, orange
Z = 40.29 × 0.26 × 0.25 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.045
Radiation source: Enraf Nonius FR590θmax = 26.0°, θmin = 2.0°
Graphite monochromatorh = 012
non–profiled ω/2θ scansk = 1212
7705 measured reflectionsl = 2222
3777 independent reflections3 standard reflections every 120 min
2953 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0294P)2]
where P = (Fo2 + 2Fc2)/3
3777 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[RuCl2(C2H6OS)4]V = 1928.04 (12) Å3
Mr = 484.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.1479 (3) ŵ = 1.53 mm1
b = 10.4626 (3) ÅT = 290 K
c = 18.4280 (4) Å0.29 × 0.26 × 0.25 mm
β = 99.795 (14)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.045
7705 measured reflections3 standard reflections every 120 min
3777 independent reflections intensity decay: 1%
2953 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.03Δρmax = 0.36 e Å3
3777 reflectionsΔρmin = 0.64 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.2531 (3)0.0625 (3)0.32395 (16)0.0530 (8)
O210.0063 (3)0.0806 (3)0.41116 (15)0.0465 (7)
O310.0400 (3)0.1627 (3)0.23279 (15)0.0543 (8)
O410.2122 (3)0.4088 (2)0.42297 (14)0.0400 (6)
C120.5002 (4)0.0204 (5)0.3510 (2)0.0603 (13)
H12A0.55310.09580.34870.09*
H12B0.52830.04480.32030.09*
H12C0.51160.00950.40090.09*
C130.3327 (5)0.0822 (4)0.2244 (2)0.0566 (13)
H13A0.24480.10370.19920.085*
H13B0.36270.00570.20360.085*
H13C0.39310.15090.21920.085*
C220.1268 (5)0.2105 (4)0.5245 (2)0.0557 (12)
H22A0.08380.29060.51040.084*
H22B0.2140.2260.55270.084*
H22C0.07420.1630.55380.084*
C230.2246 (4)0.0186 (4)0.4854 (2)0.0539 (12)
H23A0.31440.00270.50770.081*
H23B0.22650.08320.44860.081*
H23C0.17690.05020.52240.081*
C320.0494 (4)0.3293 (5)0.3199 (2)0.0556 (12)
H32A0.02070.39820.35320.083*
H32B0.0870.26250.34570.083*
H32C0.11580.35990.28030.083*
C330.1154 (5)0.4007 (4)0.2276 (2)0.0583 (13)
H33A0.1910.38420.20390.087*
H33B0.1320.47590.25760.087*
H33C0.03720.41340.19090.087*
C420.2707 (6)0.6430 (4)0.3906 (3)0.0814 (19)
H42A0.28910.62650.34210.122*
H42B0.31930.71740.41050.122*
H42C0.17660.65750.38810.122*
C430.2747 (6)0.5653 (6)0.5310 (3)0.094 (2)
H43A0.29690.50160.56860.141*
H43B0.18030.58150.52340.141*
H43C0.32230.64280.5460.141*
Ru10.26756 (3)0.23282 (3)0.374946 (14)0.02744 (9)
Cl10.44805 (10)0.21704 (9)0.48035 (5)0.0419 (2)
Cl20.41776 (11)0.35631 (11)0.31431 (6)0.0504 (3)
S110.32820 (10)0.05696 (9)0.31955 (5)0.0368 (2)
S210.14273 (9)0.12074 (9)0.44360 (5)0.0336 (2)
S310.08979 (10)0.26855 (9)0.28370 (5)0.0367 (2)
S410.32033 (11)0.50995 (9)0.44793 (6)0.0416 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.069 (2)0.0322 (15)0.0534 (18)0.0047 (15)0.0011 (16)0.0051 (13)
O210.0335 (15)0.0581 (18)0.0453 (16)0.0134 (13)0.0011 (13)0.0070 (14)
O310.0523 (18)0.0505 (18)0.0508 (18)0.0058 (15)0.0175 (15)0.0114 (14)
O410.0403 (15)0.0342 (14)0.0439 (16)0.0031 (12)0.0024 (13)0.0058 (12)
C120.046 (3)0.073 (3)0.056 (3)0.024 (2)0.007 (2)0.014 (2)
C130.072 (3)0.071 (3)0.027 (2)0.020 (3)0.009 (2)0.005 (2)
C220.063 (3)0.070 (3)0.037 (2)0.018 (2)0.019 (2)0.010 (2)
C230.053 (3)0.051 (3)0.056 (3)0.001 (2)0.005 (2)0.023 (2)
C320.041 (2)0.071 (3)0.052 (3)0.021 (2)0.002 (2)0.001 (2)
C330.073 (3)0.058 (3)0.041 (2)0.009 (3)0.001 (2)0.020 (2)
C420.101 (4)0.033 (2)0.096 (4)0.009 (3)0.023 (4)0.012 (3)
C430.129 (6)0.099 (5)0.059 (3)0.055 (4)0.029 (4)0.043 (3)
Ru10.02955 (16)0.02723 (15)0.02414 (15)0.00181 (12)0.00061 (11)0.00173 (12)
Cl10.0378 (5)0.0465 (6)0.0364 (5)0.0057 (4)0.0081 (4)0.0024 (4)
Cl20.0538 (7)0.0539 (6)0.0456 (6)0.0136 (5)0.0145 (5)0.0090 (5)
S110.0389 (5)0.0376 (5)0.0310 (5)0.0053 (4)0.0018 (4)0.0038 (4)
S210.0341 (5)0.0369 (5)0.0285 (5)0.0058 (4)0.0010 (4)0.0031 (4)
S310.0396 (5)0.0357 (5)0.0311 (5)0.0054 (4)0.0045 (4)0.0015 (4)
S410.0448 (6)0.0339 (5)0.0433 (6)0.0039 (4)0.0007 (5)0.0037 (4)
Geometric parameters (Å, º) top
O11—S111.473 (3)C32—S311.779 (4)
O21—S211.473 (3)C32—H32A0.96
O31—S311.484 (3)C32—H32B0.96
O41—S411.538 (3)C32—H32C0.96
O41—Ru12.158 (3)C33—S311.772 (4)
C12—S111.784 (4)C33—H33A0.96
C12—H12A0.96C33—H33B0.96
C12—H12B0.96C33—H33C0.96
C12—H12C0.96C42—S411.769 (4)
C13—S111.781 (4)C42—H42A0.96
C13—H13A0.96C42—H42B0.96
C13—H13B0.96C42—H42C0.96
C13—H13C0.96C43—S411.770 (5)
C22—S211.792 (4)C43—H43A0.96
C22—H22A0.96C43—H43B0.96
C22—H22B0.96C43—H43C0.96
C22—H22C0.96Ru1—S112.2404 (10)
C23—S211.786 (4)Ru1—S212.2640 (10)
C23—H23A0.96Ru1—S312.2780 (10)
C23—H23B0.96Ru1—Cl22.4126 (11)
C23—H23C0.96Ru1—Cl12.4380 (10)
S41—O41—Ru1119.18 (15)S41—C43—H43A109.5
S11—C12—H12A109.5S41—C43—H43B109.5
S11—C12—H12B109.5H43A—C43—H43B109.5
H12A—C12—H12B109.5S41—C43—H43C109.5
S11—C12—H12C109.5H43A—C43—H43C109.5
H12A—C12—H12C109.5H43B—C43—H43C109.5
H12B—C12—H12C109.5O41—Ru1—S11176.60 (8)
S11—C13—H13A109.5O41—Ru1—S2190.19 (8)
S11—C13—H13B109.5S11—Ru1—S2193.00 (4)
H13A—C13—H13B109.5O41—Ru1—S3186.21 (7)
S11—C13—H13C109.5S11—Ru1—S3192.46 (3)
H13A—C13—H13C109.5S21—Ru1—S3192.82 (4)
H13B—C13—H13C109.5O41—Ru1—Cl287.83 (8)
S21—C22—H22A109.5S11—Ru1—Cl289.12 (4)
S21—C22—H22B109.5S21—Ru1—Cl2173.64 (4)
H22A—C22—H22B109.5S31—Ru1—Cl293.07 (4)
S21—C22—H22C109.5O41—Ru1—Cl186.78 (7)
H22A—C22—H22C109.5S11—Ru1—Cl194.59 (4)
H22B—C22—H22C109.5S21—Ru1—Cl186.31 (3)
S21—C23—H23A109.5S31—Ru1—Cl1172.93 (4)
S21—C23—H23B109.5Cl2—Ru1—Cl187.54 (4)
H23A—C23—H23B109.5O11—S11—C13106.3 (2)
S21—C23—H23C109.5O11—S11—C12106.7 (2)
H23A—C23—H23C109.5C13—S11—C1299.4 (2)
H23B—C23—H23C109.5O11—S11—Ru1119.14 (14)
S31—C32—H32A109.5C13—S11—Ru1112.43 (15)
S31—C32—H32B109.5C12—S11—Ru1110.94 (15)
H32A—C32—H32B109.5O21—S21—C23106.15 (19)
S31—C32—H32C109.5O21—S21—C22106.02 (19)
H32A—C32—H32C109.5C23—S21—C2299.8 (2)
H32B—C32—H32C109.5O21—S21—Ru1119.85 (12)
S31—C33—H33A109.5C23—S21—Ru1113.59 (15)
S31—C33—H33B109.5C22—S21—Ru1109.35 (15)
H33A—C33—H33B109.5O31—S31—C33106.36 (19)
S31—C33—H33C109.5O31—S31—C32107.3 (2)
H33A—C33—H33C109.5C33—S31—C3298.3 (2)
H33B—C33—H33C109.5O31—S31—Ru1119.07 (12)
S41—C42—H42A109.5C33—S31—Ru1112.47 (16)
S41—C42—H42B109.5C32—S31—Ru1111.21 (14)
H42A—C42—H42B109.5O41—S41—C42104.3 (2)
S41—C42—H42C109.5O41—S41—C43101.9 (2)
H42A—C42—H42C109.5C42—S41—C4399.7 (3)
H42B—C42—H42C109.5
S41—O41—Ru1—S21135.85 (16)S11—Ru1—S21—C2345.78 (17)
S41—O41—Ru1—S31131.33 (16)S31—Ru1—S21—C23138.39 (17)
S41—O41—Ru1—Cl238.11 (16)Cl1—Ru1—S21—C2348.64 (17)
S41—O41—Ru1—Cl149.55 (16)O41—Ru1—S21—C2224.90 (19)
S21—Ru1—S11—O1115.75 (14)S11—Ru1—S21—C22156.27 (17)
S31—Ru1—S11—O1177.21 (14)S31—Ru1—S21—C22111.12 (17)
Cl2—Ru1—S11—O11170.25 (14)Cl1—Ru1—S21—C2261.86 (17)
Cl1—Ru1—S11—O11102.29 (14)O41—Ru1—S31—O31165.41 (17)
S21—Ru1—S11—C13141.01 (18)S11—Ru1—S31—O3117.72 (16)
S31—Ru1—S11—C1348.05 (18)S21—Ru1—S31—O3175.41 (16)
Cl2—Ru1—S11—C1344.99 (18)Cl2—Ru1—S31—O31106.97 (16)
Cl1—Ru1—S11—C13132.46 (18)O41—Ru1—S31—C3369.24 (19)
S21—Ru1—S11—C12108.64 (18)S11—Ru1—S31—C33107.63 (18)
S31—Ru1—S11—C12158.40 (18)S21—Ru1—S31—C33159.24 (17)
Cl2—Ru1—S11—C1265.36 (18)Cl2—Ru1—S31—C3318.38 (18)
Cl1—Ru1—S11—C1222.10 (18)O41—Ru1—S31—C3239.94 (19)
O41—Ru1—S21—O2197.69 (16)S11—Ru1—S31—C32143.19 (18)
S11—Ru1—S21—O2181.13 (15)S21—Ru1—S31—C3250.06 (18)
S31—Ru1—S21—O2111.48 (15)Cl2—Ru1—S31—C32127.56 (18)
Cl1—Ru1—S21—O21175.54 (15)Ru1—O41—S41—C42116.2 (2)
O41—Ru1—S21—C23135.40 (18)Ru1—O41—S41—C43140.4 (3)

Experimental details

Crystal data
Chemical formula[RuCl2(C2H6OS)4]
Mr484.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)10.1479 (3), 10.4626 (3), 18.4280 (4)
β (°) 99.795 (14)
V3)1928.04 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.53
Crystal size (mm)0.29 × 0.26 × 0.25
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7705, 3777, 2953
Rint0.045
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.077, 1.03
No. of reflections3777
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.64

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was supported by the Scientific Fund of Sofia University (project No. 039). RPN thanks the Japan Society for the Promotion of Science (JSPS) for financial support.

References

First citationAlessio, E., Mestroni, G., Nardin, G., Attia, W. M., Calligaris, M., Sava, G. & Zorzet, S. (1988). Inorg. Chem. 27, 4099–4106.  CSD CrossRef CAS Web of Science Google Scholar
First citationAttia, W. M. & Calligaris, M. (1987). Acta Cryst. C43, 1426–1427.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGalanski, M., Arion, V. B., Jakupec, M. A. & Keppler, B. K. (2003). Curr. Pharm. Des. 9, 2078–2089.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMercer, A. & Trotter, J. (1975). J. Chem. Soc. Dalton Trans. pp. 2480–2483.  CSD CrossRef Web of Science Google Scholar
First citationPigge, F. C., Coniglio, J. J. & Rath, N. P. (2005). Organometallics, 24, 5424–5430.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, R. S. & Fronczek, F. R. (2003). Acta Cryst. E59, m427–m428.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds