organic compounds
1-(4-Bromophenyl)-3-(4-ethoxyphenyl)prop-2-en-1-one
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my
The title compound, C17H15BrO2, consists of two substituted benzene rings connected by a prop-2-en-1-one group. The molecule is nearly planar and adopts an E configuration. The dihedral angle between the two benzene rings is 8.51 (19)°. The enone plane makes dihedral angles of 11.06 (19) and 7.69 (19)°, respectively, with the bromophenyl and ethoxyphenyl rings. The molecules are linked by C—H⋯O hydrogen bonds to form a zigzag ribbon-like structure along the b direction. The is stabilized by weak intra- and intermolecular C—H⋯O interactions.
Related literature
For hydrogen-bond motifs, see: Bernstein et al. (1995). For similar structures, see: Fun et al. (2008); Patil, Fun et al. (2007); Patil, Ng et al. (2007). For background on see: Chopra et al. (2007); Fichou et al. (1988); Goto et al. (1991); Gu, Ji, Patil & Dharmaprakash (2008); Gu, Ji, Patil, Dharmaprakash & Wang (2008); Sathiya Moorthi, Chinnakali, Nanjundan, Radhika et al. (2005); Sathiya Moorthi, Chinnakali, Nanjundan, Selvam et al. (2005); Schmalle et al. (1990); Uchida et al. (1998); Wang et al. (2004); Zhao et al. (2000).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808021776/fl2206sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808021776/fl2206Isup2.hkl
The title compound was synthesized by the condensation of 4-ethoxybenzaldehyde (0.01 mol, 1.39 ml) with 4-bromoacetophenone (0.01 mol, 1.99 g) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 20%). After stirring for 3 h, the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 4 h. The resulting crude solid was filtered and dried. Single crystals were obtained by recrystallization from acetone.
All H atoms were placed in calculated positions, with C—H = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic and CH, C—H = 0.97 Å, Uiso = 1.2Ueq(C) for CH2 and C—H = 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.78 Å from Br1 and the deepest hole is located at 0.84 Å from Br1.
Data collection: APEX2 (Bruker, 2005); cell
APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).C17H15BrO2 | F(000) = 336 |
Mr = 331.19 | Dx = 1.565 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 2620 reflections |
a = 3.9855 (1) Å | θ = 1.2–29.0° |
b = 10.0681 (3) Å | µ = 2.92 mm−1 |
c = 17.5270 (4) Å | T = 100 K |
β = 92.227 (2)° | Block, colorless |
V = 702.77 (3) Å3 | 0.47 × 0.17 × 0.09 mm |
Z = 2 |
Bruker SMART APEXII CCD area-detector diffractometer | 2620 independent reflections |
Radiation source: fine-focus sealed tube | 2339 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 8.33 pixels mm-1 | θmax = 29.0°, θmin = 1.2° |
ω scans | h = −5→5 |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | k = −13→8 |
Tmin = 0.340, Tmax = 0.781 | l = −23→23 |
7696 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.095 | w = 1/[σ2(Fo2) + (0.0562P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
2620 reflections | Δρmax = 0.98 e Å−3 |
182 parameters | Δρmin = −0.53 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 640 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.013 (13) |
C17H15BrO2 | V = 702.77 (3) Å3 |
Mr = 331.19 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 3.9855 (1) Å | µ = 2.92 mm−1 |
b = 10.0681 (3) Å | T = 100 K |
c = 17.5270 (4) Å | 0.47 × 0.17 × 0.09 mm |
β = 92.227 (2)° |
Bruker SMART APEXII CCD area-detector diffractometer | 2620 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2339 reflections with I > 2σ(I) |
Tmin = 0.340, Tmax = 0.781 | Rint = 0.033 |
7696 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.095 | Δρmax = 0.98 e Å−3 |
S = 1.08 | Δρmin = −0.53 e Å−3 |
2620 reflections | Absolute structure: Flack (1983), 640 Friedel pairs |
182 parameters | Absolute structure parameter: 0.013 (13) |
1 restraint |
Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.43528 (8) | 0.23538 (6) | 0.502628 (18) | 0.02637 (12) | |
O1 | −0.1514 (7) | 0.6546 (3) | 0.77360 (17) | 0.0282 (7) | |
O2 | 0.5201 (7) | 0.5258 (3) | 1.22900 (16) | 0.0234 (6) | |
C1 | 0.0563 (11) | 0.5256 (4) | 0.6436 (3) | 0.0234 (9) | |
H1A | −0.0604 | 0.6052 | 0.6379 | 0.028* | |
C2 | 0.1400 (10) | 0.4543 (4) | 0.5789 (2) | 0.0210 (8) | |
H2A | 0.0835 | 0.4859 | 0.5302 | 0.025* | |
C3 | 0.3114 (9) | 0.3340 (4) | 0.5890 (2) | 0.0195 (8) | |
C4 | 0.3966 (9) | 0.2855 (4) | 0.6611 (2) | 0.0229 (8) | |
H4A | 0.5097 | 0.2051 | 0.6669 | 0.027* | |
C5 | 0.3112 (10) | 0.3583 (4) | 0.7242 (2) | 0.0216 (8) | |
H5A | 0.3659 | 0.3258 | 0.7728 | 0.026* | |
C6 | 0.1443 (10) | 0.4796 (4) | 0.7165 (2) | 0.0197 (8) | |
C7 | 0.0421 (11) | 0.5603 (4) | 0.7834 (2) | 0.0241 (9) | |
C8 | 0.1824 (10) | 0.5255 (5) | 0.8602 (2) | 0.0249 (9) | |
H8A | 0.3356 | 0.4561 | 0.8655 | 0.030* | |
C9 | 0.0927 (10) | 0.5921 (4) | 0.9221 (2) | 0.0236 (9) | |
H9A | −0.0626 | 0.6601 | 0.9142 | 0.028* | |
C10 | 0.2115 (10) | 0.5700 (4) | 1.0008 (2) | 0.0219 (8) | |
C11 | 0.4006 (10) | 0.4600 (4) | 1.0240 (3) | 0.0235 (9) | |
H11A | 0.4597 | 0.3979 | 0.9876 | 0.028* | |
C12 | 0.5036 (10) | 0.4399 (4) | 1.0993 (2) | 0.0241 (9) | |
H12A | 0.6252 | 0.3643 | 1.1133 | 0.029* | |
C13 | 0.4243 (10) | 0.5332 (4) | 1.1541 (2) | 0.0220 (8) | |
C14 | 0.2317 (10) | 0.6439 (4) | 1.1322 (2) | 0.0228 (9) | |
H14A | 0.1741 | 0.7059 | 1.1687 | 0.027* | |
C15 | 0.1258 (10) | 0.6625 (4) | 1.0569 (2) | 0.0223 (8) | |
H15A | −0.0028 | 0.7365 | 1.0433 | 0.027* | |
C16 | 0.7128 (11) | 0.4120 (4) | 1.2541 (3) | 0.0247 (9) | |
H16A | 0.9075 | 0.4014 | 1.2231 | 0.030* | |
H16B | 0.5773 | 0.3322 | 1.2495 | 0.030* | |
C17 | 0.8217 (13) | 0.4350 (5) | 1.3364 (3) | 0.0328 (12) | |
H17A | 0.9605 | 0.3625 | 1.3541 | 0.049* | |
H17B | 0.6272 | 0.4407 | 1.3669 | 0.049* | |
H17C | 0.9465 | 0.5163 | 1.3406 | 0.049* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02618 (18) | 0.0284 (2) | 0.02459 (17) | −0.0013 (3) | 0.00238 (12) | −0.0061 (2) |
O1 | 0.0305 (16) | 0.0211 (17) | 0.0332 (16) | 0.0038 (13) | 0.0033 (13) | −0.0008 (13) |
O2 | 0.0222 (14) | 0.0203 (15) | 0.0275 (14) | 0.0029 (12) | −0.0015 (12) | −0.0018 (12) |
C1 | 0.026 (2) | 0.014 (2) | 0.030 (2) | −0.0016 (19) | 0.0027 (18) | 0.0004 (18) |
C2 | 0.0227 (19) | 0.019 (2) | 0.0218 (18) | −0.0029 (17) | 0.0000 (15) | 0.0045 (15) |
C3 | 0.0184 (17) | 0.017 (2) | 0.0229 (18) | −0.0049 (15) | 0.0036 (14) | −0.0029 (15) |
C4 | 0.0199 (17) | 0.0192 (18) | 0.029 (2) | 0.0005 (17) | −0.0002 (15) | 0.0007 (17) |
C5 | 0.0247 (19) | 0.017 (2) | 0.0226 (19) | −0.0001 (16) | −0.0030 (16) | 0.0040 (16) |
C6 | 0.021 (2) | 0.0155 (18) | 0.0222 (18) | −0.0033 (15) | 0.0012 (16) | −0.0020 (17) |
C7 | 0.026 (2) | 0.020 (2) | 0.027 (2) | −0.0048 (17) | 0.0057 (17) | 0.0006 (17) |
C8 | 0.0225 (19) | 0.020 (2) | 0.032 (2) | 0.0018 (17) | 0.0013 (17) | 0.0015 (18) |
C9 | 0.0233 (19) | 0.018 (2) | 0.029 (2) | −0.0030 (17) | 0.0013 (16) | −0.0010 (17) |
C10 | 0.0191 (18) | 0.018 (2) | 0.029 (2) | −0.0054 (16) | 0.0046 (15) | −0.0038 (16) |
C11 | 0.023 (2) | 0.016 (2) | 0.032 (2) | −0.0033 (16) | 0.0084 (16) | −0.0057 (16) |
C12 | 0.0209 (19) | 0.0152 (19) | 0.036 (2) | 0.0016 (17) | 0.0035 (17) | −0.0028 (18) |
C13 | 0.0178 (18) | 0.0172 (19) | 0.031 (2) | −0.0035 (16) | 0.0026 (16) | −0.0046 (17) |
C14 | 0.0220 (19) | 0.0169 (19) | 0.030 (2) | −0.0018 (16) | 0.0029 (16) | −0.0068 (17) |
C15 | 0.0201 (18) | 0.017 (2) | 0.030 (2) | −0.0004 (15) | 0.0011 (16) | −0.0030 (16) |
C16 | 0.024 (2) | 0.013 (2) | 0.037 (2) | −0.0003 (16) | −0.0013 (18) | 0.0026 (18) |
C17 | 0.032 (3) | 0.025 (2) | 0.042 (3) | −0.002 (2) | −0.003 (2) | 0.008 (2) |
Br1—C3 | 1.892 (4) | C9—C10 | 1.456 (6) |
O1—C7 | 1.231 (5) | C9—H9A | 0.9300 |
O2—C13 | 1.354 (5) | C10—C11 | 1.392 (6) |
O2—C16 | 1.438 (5) | C10—C15 | 1.406 (6) |
C1—C6 | 1.391 (6) | C11—C12 | 1.383 (6) |
C1—C2 | 1.393 (6) | C11—H11A | 0.9300 |
C1—H1A | 0.9300 | C12—C13 | 1.389 (6) |
C2—C3 | 1.399 (6) | C12—H12A | 0.9300 |
C2—H2A | 0.9300 | C13—C14 | 1.399 (6) |
C3—C4 | 1.385 (6) | C14—C15 | 1.383 (6) |
C4—C5 | 1.381 (6) | C14—H14A | 0.9300 |
C4—H4A | 0.9300 | C15—H15A | 0.9300 |
C5—C6 | 1.395 (6) | C16—C17 | 1.508 (6) |
C5—H5A | 0.9300 | C16—H16A | 0.9700 |
C6—C7 | 1.496 (6) | C16—H16B | 0.9700 |
C7—C8 | 1.480 (6) | C17—H17A | 0.9600 |
C8—C9 | 1.336 (6) | C17—H17B | 0.9600 |
C8—H8A | 0.9300 | C17—H17C | 0.9600 |
C13—O2—C16 | 117.9 (3) | C11—C10—C9 | 123.4 (4) |
C6—C1—C2 | 121.1 (4) | C15—C10—C9 | 118.8 (4) |
C6—C1—H1A | 119.5 | C12—C11—C10 | 122.2 (4) |
C2—C1—H1A | 119.5 | C12—C11—H11A | 118.9 |
C1—C2—C3 | 118.3 (4) | C10—C11—H11A | 118.9 |
C1—C2—H2A | 120.8 | C11—C12—C13 | 119.6 (4) |
C3—C2—H2A | 120.8 | C11—C12—H12A | 120.2 |
C4—C3—C2 | 121.5 (4) | C13—C12—H12A | 120.2 |
C4—C3—Br1 | 118.9 (3) | O2—C13—C12 | 124.7 (4) |
C2—C3—Br1 | 119.6 (3) | O2—C13—C14 | 116.2 (4) |
C5—C4—C3 | 119.0 (4) | C12—C13—C14 | 119.1 (4) |
C5—C4—H4A | 120.5 | C15—C14—C13 | 121.0 (4) |
C3—C4—H4A | 120.5 | C15—C14—H14A | 119.5 |
C4—C5—C6 | 121.2 (4) | C13—C14—H14A | 119.5 |
C4—C5—H5A | 119.4 | C14—C15—C10 | 120.3 (4) |
C6—C5—H5A | 119.4 | C14—C15—H15A | 119.8 |
C1—C6—C5 | 118.9 (4) | C10—C15—H15A | 119.8 |
C1—C6—C7 | 118.2 (4) | O2—C16—C17 | 107.5 (4) |
C5—C6—C7 | 122.8 (4) | O2—C16—H16A | 110.2 |
O1—C7—C8 | 121.5 (4) | C17—C16—H16A | 110.2 |
O1—C7—C6 | 119.8 (4) | O2—C16—H16B | 110.2 |
C8—C7—C6 | 118.7 (4) | C17—C16—H16B | 110.2 |
C9—C8—C7 | 121.1 (4) | H16A—C16—H16B | 108.5 |
C9—C8—H8A | 119.4 | C16—C17—H17A | 109.5 |
C7—C8—H8A | 119.4 | C16—C17—H17B | 109.5 |
C8—C9—C10 | 127.2 (4) | H17A—C17—H17B | 109.5 |
C8—C9—H9A | 116.4 | C16—C17—H17C | 109.5 |
C10—C9—H9A | 116.4 | H17A—C17—H17C | 109.5 |
C11—C10—C15 | 117.8 (4) | H17B—C17—H17C | 109.5 |
C6—C1—C2—C3 | 0.9 (6) | C7—C8—C9—C10 | −179.4 (4) |
C1—C2—C3—C4 | 0.2 (6) | C8—C9—C10—C11 | −10.6 (7) |
C1—C2—C3—Br1 | −179.1 (3) | C8—C9—C10—C15 | 170.8 (4) |
C2—C3—C4—C5 | −0.3 (6) | C15—C10—C11—C12 | 0.1 (6) |
Br1—C3—C4—C5 | 179.0 (3) | C9—C10—C11—C12 | −178.5 (4) |
C3—C4—C5—C6 | −0.6 (6) | C10—C11—C12—C13 | −1.5 (6) |
C2—C1—C6—C5 | −1.8 (6) | C16—O2—C13—C12 | −1.2 (6) |
C2—C1—C6—C7 | −179.2 (4) | C16—O2—C13—C14 | 178.8 (3) |
C4—C5—C6—C1 | 1.6 (6) | C11—C12—C13—O2 | −178.0 (4) |
C4—C5—C6—C7 | 178.9 (4) | C11—C12—C13—C14 | 2.1 (6) |
C1—C6—C7—O1 | 9.3 (6) | O2—C13—C14—C15 | 178.8 (4) |
C5—C6—C7—O1 | −168.0 (4) | C12—C13—C14—C15 | −1.2 (6) |
C1—C6—C7—C8 | −169.7 (4) | C13—C14—C15—C10 | −0.2 (6) |
C5—C6—C7—C8 | 13.0 (6) | C11—C10—C15—C14 | 0.8 (6) |
O1—C7—C8—C9 | 2.8 (7) | C9—C10—C15—C14 | 179.4 (4) |
C6—C7—C8—C9 | −178.3 (4) | C13—O2—C16—C17 | 173.4 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···O2i | 0.93 | 2.57 | 3.257 (5) | 131 |
C9—H9A···O1 | 0.93 | 2.48 | 2.814 (5) | 102 |
C16—H16B···O1ii | 0.97 | 2.49 | 3.446 (5) | 170 |
Symmetry codes: (i) −x+1, y−1/2, −z+2; (ii) −x, y−1/2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C17H15BrO2 |
Mr | 331.19 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 100 |
a, b, c (Å) | 3.9855 (1), 10.0681 (3), 17.5270 (4) |
β (°) | 92.227 (2) |
V (Å3) | 702.77 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.92 |
Crystal size (mm) | 0.47 × 0.17 × 0.09 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.340, 0.781 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7696, 2620, 2339 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.682 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.095, 1.08 |
No. of reflections | 2620 |
No. of parameters | 182 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.98, −0.53 |
Absolute structure | Flack (1983), 640 Friedel pairs |
Absolute structure parameter | 0.013 (13) |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···O2i | 0.93 | 2.5727 | 3.257 (5) | 131 |
C9—H9A···O1 | 0.93 | 2.4766 | 2.814 (5) | 102 |
C16—H16B···O1ii | 0.97 | 2.4878 | 3.446 (5) | 170 |
Symmetry codes: (i) −x+1, y−1/2, −z+2; (ii) −x, y−1/2, −z+2. |
Footnotes
‡Additional correspondence author, e-mail: suchada.c@psu.ac.th.
Acknowledgements
This work is supported by the Department of Science and Technology (DST), Government of India, under grant No. SR/S2/LOP-17/2006. SC thanks the Prince of Songkla University for generous support. The authors also thank the Universiti Sains Malaysia for the Research University Golden Goose Grant No. 1001/PFIZIK/811012.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chopra, D., Mohan, T. P., Vishalakshi, B. & Guru Row, T. N. (2007). Acta Cryst. C63, o704–o710. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn J. Appl. Phys. 39, 3798–3813. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fun, H.-K., Chantrapromma, S., Patil, P. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1356–o1357. Web of Science CSD CrossRef IUCr Journals Google Scholar
Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth. 108, 688–698. CrossRef CAS Web of Science Google Scholar
Gu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008). J. Appl. Phys. 103, 103511. Web of Science CrossRef Google Scholar
Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett. 92, 091118. Web of Science CrossRef Google Scholar
Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497–o2498. Web of Science CSD CrossRef IUCr Journals Google Scholar
Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o59–o60. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Radhika, R., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o480–o482. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Selvam, P., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o743–o745. Web of Science CSD CrossRef IUCr Journals Google Scholar
Schmalle, H. W., Adiwidjaja, G., Jarchow, O. H., Hausen, B. M. & Wollenweber, E. (1990). Acta Cryst. C46, 1712–1715. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdureyim, A. & Watanebe, Y. (1998). Mol. Cryst. Liq. Cryst. 314, 135–140. Web of Science CrossRef Google Scholar
Wang, L., Zhang, Y., Lu, C.-R. & Zhang, D.-C. (2004). Acta Cryst. C60, o696–o698. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Zhao, B., Lu, W.-Q., Zhou, Z.-H. & Wu, Y. (2000). J. Mater. Chem. 10, 1513–1517. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chalcone and its derivatives have received much attention due to their interesting biological (Nel et al., 1998) and non-linear optical properties (Chopra et al., 2007; Sathiya Moorthi, Chinnakali, Nanjundan, Radhika et al., 2005; Sathiya Moorthi, Chinnakali, Nanjundan, Selvam et al., 2005; Schmalle et al., 1990; Wang et al., 2004; Gu, Ji, Patil & Dharmaprakash, 2008; Gu, Ji, Patil, Dharmaprakash & Wang, 2008). Understanding the origin and magnitude of nonlinearity in such exotic molecules is very important from both a fundamental point of view and for its wide range of applications. Some chalcone derivatives exhibiting second harmonic generation (SHG) also possess other attributes such as transparency in the relevant wavelengths, ability to withstand laser irradiation, and chemical stability (Fichou et al., 1988; Goto et al., 1991; Uchida et al., 1998; Zhao et al., 2000). We previously reported the crystal structure of a related chalcone derivative, 1-(3-bromophenyl)-3-(4-ethoxyphenyl) prop-2-en-1-one, (II) (Fun et al., 2008). In our continuing systematic study, we report here the structure of the title compound, (I) which also crystallized in a non-centrosymmetric space group and, as with (II), it should exhibit second-order nonlinear optical properties.
The molecular structure of (I) (Fig. 1) consists of two planar six-membered rings C1–C6 (ring A) and C10–C15 (ring B), with maximum deviations of 0.009 (4) and -0.010 (4) Å for atoms C6 (ring A) and C12(ring B), respectively. The molecule exists in an E configuration with respect to the C8=C9 double bond [1.336 (6) Å]: the torsion angle C7–C8–C9–C10 = -179.4 (4)°. The molecule is nearly planar with a dihedral angle between rings A and B of 8.51 (19)° [10.09 (11)° in (II) by Fun et al., 2008]. The mean plane C through enone unit (C7–C9/O1) makes dihedral angles of 11.06 (19)° and 7.69 (19)° with the planes of rings A and B, respectively [the corresponding values are 12.05 (11)° and 9.87 (11)° in (II)]. The ethoxy group itself is slightly twisted as indicated by the torsion angle C13—O2—C16—C17 = 173.4 (4)° but co-planar with the attached benzene ring B with the torsion angle C16/O2/C13/C12 = -1.2 (6)°. A weak C9–H9A···O1 intramolecular interaction (Fig. 1) generates an S(5) ring motif (Bernstein et al., 1995). The overall conformation of (I) is flatter than that observed for (II) which can be attributed to the different positions of the Br substituent on ring A (para in (I) and meta in (II). The bond distances and angles in (I) have normal values and are comparable with a number of closely related structures (Fun et al., 2008; Patil, Fun et al., 2007; Patil, Ng et al., 2007).
In the crystal packing, the molecules are arranged in an anti-parallel manner and linked by weak C—H···O interactions (Table 1) into a zigzag ribbon-like structure along the b direction (Fig. 2 and Fig. 3). Similar packing characteristics were observed in (II) (Fun et al., 2008). In (I) the same weak C—H···O (C16—H16B···O1) interaction is involved in the ribbon-linkage but there is also an additional weak C—H···O interaction which links the molecules (Table 1). This is also due to the different positions of the meta and para Br substitutions in (I) and (II) which made (I) more favourable for the C—H···O contacts.