organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(4-Fluoro­benzyl­­idene)-3,4,5-tri­meth­oxy­benzohydrazide

aSchool of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
*Correspondence e-mail: daohanghe@yahoo.com.cn

(Received 8 July 2008; accepted 27 July 2008; online 31 July 2008)

The title compound, C17H17FN2O4, is of inter­est due to its potential pharmaceutical and agrochemical activity. All three meth­oxy groups are twisted with respect to the attached aromatic ring [C—C—O—C torsion angles = 10.43 (18), 97.38 (14), −19.34 (17)°] and the phenyl ring makes a dihedral angle of 40.6 (2)° with the plane through the remaining atoms in the mol­ecule. Inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains running along the c axis.

Related literature

For related literature, see: Bernardino et al. (2006[Bernardino, A. M. R., Gomes, A. O., Charret, K. S., Freita, A. C. C., Machado, G. M. C., Canto-Cavalheiro, M. M., Leon, L. L. & Amaral, V. F. (2006). Eur. J. Med. Chem. 41, 80-87.]); Ganjali et al. (2006[Ganjali, M. R., Faridbod, F., Norouzi, P. & Adib, M. (2006). Sens. Actuators B, 120, 119-124.]); Gardner et al. (1991[Gardner, T. S., Weins, R. & Lee, J. (1991). J. Org. Chem. 26, 1514-1530.]); Lin et al. (2005[Lin, H., Feng, Y. L. & Gao, S. (2005). Chin. J. Struct. Chem. 24, 375-378.]); Patole et al. (2003[Patole, J., Sandbhor, U., Padhye, S., Deobagkar, D. N., Anson, C. E. & Powell, A. (2003). Bioorg. Med. Chem. Lett. 13, 51-55.]); Liu et al. (2006[Liu, H.-Y., Wang, H.-Y., Gao, F., Lu, Z.-S. & Niu, D.-Z. (2006). Acta Cryst. E62, o5259-o5260.]); Zhou et al. (2005[Zhou, Y. Z., Li, J. F., Tu, S. J. & Zhang, M. (2005). Chin. J. Struct. Chem., 24, 1193-1197.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17FN2O4

  • Mr = 332.33

  • Monoclinic, P 21 /c

  • a = 7.9194 (4) Å

  • b = 26.2496 (13) Å

  • c = 8.1271 (4) Å

  • β = 105.5470 (10)°

  • V = 1627.65 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 (2) K

  • 0.48 × 0.37 × 0.25 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.935, Tmax = 0.974

  • 9603 measured reflections

  • 3558 independent reflections

  • 2856 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.104

  • S = 1.07

  • 3558 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.88 1.96 2.8238 (13) 167
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Molecules involving Schiff bases are of interest due to their biological activity as pharmaceuticals and agrochemicals (Bernardino et al., 2006; Ganjali et al., 2006; Gardner et al., 1991; Patole et al., 2003;). In addition, Schiff base ligands have attracted much attention because they can readily form stable complexes with most metal ions (Lin et al., 2005; Zhou et al., 2005). We report herein the synthesis and crystal structure of the Schiff base compound (I), obtained by the condensation of 3,4,5-trimethoxybenzohydrazide and 4-fluorobenzaldehyde.

All three methoxy groups are twisted with respect their attached aromatic ring (10.41°, 97.38°, -19.34°, respectively) and the phenyl ring itself makes a dihedral angle of 40.64° with the plane through the remaining atoms (C7 through F1) in the molecule(Fig. 1). Similar geometry has been observed in a related hydrazone analogue (Liu et al., 2006). The bond lengths and bond angles are within normal ranges. Intermolecular N—H···O hydrogen bonds link the molecules into chains running along the c axis that help stabilize the molecular structure (Fig. 2).

Related literature top

For related literature, see: Bernardino et al. (2006); Ganjali et al. (2006); Gardner et al. (1991); Lin et al. (2005); Patole et al. (2003); Liu et al. (2006); Zhou et al. (2005).

Experimental top

A mixture of 3,4,5-trimethoxybenzohydrazide (1 mmol) and 4-fluorobenzaldehyde (1 mmol) in anhydrous ethanol (10 ml) was refluxed at 80 °C for 2 h. When the solution was cooled to room temperature(25 °C), some white needles separated out. After filtration, colorless single crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution at room temperature.

Refinement top

All H atoms were placed in geometrically idealized positions and refined as riding, with N—H = 0.88 Å, C—H = 0.95 (aromatic and N=CH), 0.98 (methyl) Å and Uiso(H) = xUeq(C, N), where x = 1.5 for the methyl, x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The Structure of the title compound, with the atom numbering. Displacement ellipsoids are the 50% probability level.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the a axis. The dashed lines represent the hydrogen bonding interactions.
(I) top
Crystal data top
C17H17FN2O4F(000) = 696
Mr = 332.33Dx = 1.356 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5449 reflections
a = 7.9194 (4) Åθ = 2.7–27.0°
b = 26.2496 (13) ŵ = 0.11 mm1
c = 8.1271 (4) ÅT = 173 K
β = 105.547 (1)°Block, colorless
V = 1627.65 (14) Å30.48 × 0.37 × 0.25 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3558 independent reflections
Radiation source: fine-focus sealed tube2856 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 27.1°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 106
Tmin = 0.935, Tmax = 0.974k = 3333
9603 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.3099P]
where P = (Fo2 + 2Fc2)/3
3558 reflections(Δ/σ)max = 0.001
220 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C17H17FN2O4V = 1627.65 (14) Å3
Mr = 332.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9194 (4) ŵ = 0.11 mm1
b = 26.2496 (13) ÅT = 173 K
c = 8.1271 (4) Å0.48 × 0.37 × 0.25 mm
β = 105.547 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3558 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2856 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.974Rint = 0.018
9603 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.07Δρmax = 0.27 e Å3
3558 reflectionsΔρmin = 0.21 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.63386 (15)0.68413 (4)0.23670 (15)0.0213 (3)
C20.65648 (16)0.63159 (5)0.23753 (15)0.0234 (3)
H20.72220.61480.33780.028*
C30.58205 (16)0.60404 (5)0.09044 (16)0.0242 (3)
C40.48089 (16)0.62887 (5)0.05539 (15)0.0240 (3)
C50.44513 (15)0.68070 (5)0.04828 (15)0.0233 (3)
C60.52479 (15)0.70882 (4)0.09643 (15)0.0222 (3)
H60.50510.74450.09970.027*
C70.73648 (15)0.71281 (4)0.39003 (15)0.0214 (2)
C80.94162 (16)0.83150 (5)0.43795 (16)0.0249 (3)
H80.92180.83790.31920.030*
C91.03374 (16)0.86967 (5)0.56060 (16)0.0249 (3)
C101.06439 (16)0.86332 (5)0.73717 (17)0.0274 (3)
H101.02870.83270.78040.033*
C111.14578 (19)0.90092 (5)0.84950 (18)0.0335 (3)
H111.16720.89650.96940.040*
C121.19497 (19)0.94501 (5)0.78240 (19)0.0365 (3)
C131.1702 (2)0.95280 (5)0.6106 (2)0.0373 (3)
H131.20760.98340.56900.045*
C141.08883 (19)0.91458 (5)0.49972 (18)0.0324 (3)
H141.07040.91910.38020.039*
C150.6792 (2)0.52504 (5)0.22518 (19)0.0372 (3)
H15A0.80230.53520.26880.056*
H15B0.67270.48850.19990.056*
H15C0.61660.53240.31140.056*
C160.5363 (2)0.59696 (6)0.30234 (19)0.0423 (4)
H16A0.55610.63040.34740.063*
H16B0.49030.57340.39740.063*
H16C0.64720.58380.23000.063*
C170.25329 (17)0.74833 (5)0.17173 (17)0.0300 (3)
H17A0.20880.74710.07030.045*
H17B0.15610.75510.27290.045*
H17C0.34060.77550.15840.045*
F11.27194 (14)0.98260 (3)0.89208 (12)0.0556 (3)
N10.79692 (13)0.75849 (4)0.35482 (12)0.0224 (2)
H10.77900.76840.24810.027*
N20.88701 (13)0.78964 (4)0.48641 (13)0.0225 (2)
O10.60103 (13)0.55283 (3)0.07321 (12)0.0323 (2)
O20.41211 (12)0.60182 (3)0.20300 (11)0.0294 (2)
O30.33239 (12)0.70067 (3)0.19160 (11)0.0308 (2)
O40.76599 (13)0.69488 (3)0.53497 (11)0.0292 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0232 (6)0.0219 (6)0.0196 (6)0.0017 (5)0.0073 (5)0.0015 (4)
C20.0266 (6)0.0214 (6)0.0214 (6)0.0002 (5)0.0049 (5)0.0018 (5)
C30.0279 (6)0.0181 (6)0.0265 (6)0.0025 (5)0.0071 (5)0.0009 (5)
C40.0250 (6)0.0233 (6)0.0224 (6)0.0051 (5)0.0040 (5)0.0036 (5)
C50.0218 (6)0.0253 (6)0.0216 (6)0.0008 (5)0.0038 (5)0.0020 (5)
C60.0243 (6)0.0188 (6)0.0236 (6)0.0000 (5)0.0067 (5)0.0000 (5)
C70.0248 (6)0.0208 (6)0.0186 (6)0.0033 (5)0.0059 (5)0.0009 (4)
C80.0272 (6)0.0243 (6)0.0217 (6)0.0010 (5)0.0039 (5)0.0024 (5)
C90.0222 (6)0.0220 (6)0.0289 (7)0.0012 (5)0.0040 (5)0.0035 (5)
C100.0257 (6)0.0251 (6)0.0296 (7)0.0002 (5)0.0044 (5)0.0019 (5)
C110.0352 (7)0.0342 (7)0.0276 (7)0.0028 (6)0.0026 (6)0.0050 (6)
C120.0365 (8)0.0271 (7)0.0398 (8)0.0053 (6)0.0002 (6)0.0114 (6)
C130.0407 (8)0.0254 (7)0.0429 (8)0.0066 (6)0.0061 (6)0.0000 (6)
C140.0369 (7)0.0286 (7)0.0295 (7)0.0027 (6)0.0054 (6)0.0002 (5)
C150.0513 (9)0.0191 (6)0.0347 (8)0.0005 (6)0.0004 (6)0.0027 (5)
C160.0440 (9)0.0516 (9)0.0317 (8)0.0087 (7)0.0109 (7)0.0147 (7)
C170.0272 (7)0.0311 (7)0.0302 (7)0.0052 (5)0.0049 (5)0.0054 (5)
F10.0731 (7)0.0357 (5)0.0470 (6)0.0186 (5)0.0030 (5)0.0153 (4)
N10.0281 (5)0.0222 (5)0.0156 (5)0.0024 (4)0.0034 (4)0.0018 (4)
N20.0227 (5)0.0221 (5)0.0208 (5)0.0009 (4)0.0026 (4)0.0048 (4)
O10.0456 (6)0.0178 (4)0.0289 (5)0.0011 (4)0.0021 (4)0.0013 (4)
O20.0314 (5)0.0283 (5)0.0252 (5)0.0056 (4)0.0018 (4)0.0067 (4)
O30.0347 (5)0.0280 (5)0.0235 (5)0.0041 (4)0.0028 (4)0.0004 (4)
O40.0448 (6)0.0223 (4)0.0186 (4)0.0007 (4)0.0055 (4)0.0006 (3)
Geometric parameters (Å, º) top
C1—C21.3905 (17)C11—C121.379 (2)
C1—C61.3921 (17)C11—H110.9500
C1—C71.4957 (16)C12—F11.3596 (15)
C2—C31.3862 (17)C12—C131.372 (2)
C2—H20.9500C13—C141.3866 (19)
C3—O11.3639 (14)C13—H130.9500
C3—C41.4008 (17)C14—H140.9500
C4—O21.3748 (14)C15—O11.4252 (16)
C4—C51.3941 (17)C15—H15A0.9800
C5—O31.3679 (14)C15—H15B0.9800
C5—C61.3886 (16)C15—H15C0.9800
C6—H60.9500C16—O21.4354 (17)
C7—O41.2312 (14)C16—H16A0.9800
C7—N11.3499 (15)C16—H16B0.9800
C8—N21.2808 (16)C16—H16C0.9800
C8—C91.4629 (17)C17—O31.4276 (15)
C8—H80.9500C17—H17A0.9800
C9—C141.3931 (18)C17—H17B0.9800
C9—C101.3997 (18)C17—H17C0.9800
C10—C111.3812 (18)N1—N21.3829 (13)
C10—H100.9500N1—H10.8800
C2—C1—C6121.11 (11)F1—C12—C11118.32 (13)
C2—C1—C7117.04 (10)C13—C12—C11123.28 (13)
C6—C1—C7121.82 (10)C12—C13—C14117.94 (13)
C3—C2—C1119.26 (11)C12—C13—H13121.0
C3—C2—H2120.4C14—C13—H13121.0
C1—C2—H2120.4C13—C14—C9121.10 (13)
O1—C3—C2124.72 (11)C13—C14—H14119.5
O1—C3—C4115.18 (11)C9—C14—H14119.5
C2—C3—C4120.10 (11)O1—C15—H15A109.5
O2—C4—C5120.19 (11)O1—C15—H15B109.5
O2—C4—C3120.06 (11)H15A—C15—H15B109.5
C5—C4—C3119.70 (11)O1—C15—H15C109.5
O3—C5—C6124.21 (11)H15A—C15—H15C109.5
O3—C5—C4115.61 (10)H15B—C15—H15C109.5
C6—C5—C4120.17 (11)O2—C16—H16A109.5
C5—C6—C1119.17 (11)O2—C16—H16B109.5
C5—C6—H6120.4H16A—C16—H16B109.5
C1—C6—H6120.4O2—C16—H16C109.5
O4—C7—N1123.72 (11)H16A—C16—H16C109.5
O4—C7—C1121.75 (11)H16B—C16—H16C109.5
N1—C7—C1114.51 (10)O3—C17—H17A109.5
N2—C8—C9121.72 (11)O3—C17—H17B109.5
N2—C8—H8119.1H17A—C17—H17B109.5
C9—C8—H8119.1O3—C17—H17C109.5
C14—C9—C10118.70 (12)H17A—C17—H17C109.5
C14—C9—C8118.95 (12)H17B—C17—H17C109.5
C10—C9—C8122.33 (12)C7—N1—N2120.01 (9)
C11—C10—C9120.96 (13)C7—N1—H1120.0
C11—C10—H10119.5N2—N1—H1120.0
C9—C10—H10119.5C8—N2—N1114.60 (10)
C12—C11—C10118.01 (13)C3—O1—C15116.73 (10)
C12—C11—H11121.0C4—O2—C16111.45 (10)
C10—C11—H11121.0C5—O3—C17116.46 (10)
F1—C12—C13118.41 (13)
C6—C1—C2—C36.01 (18)N2—C8—C9—C101.37 (19)
C7—C1—C2—C3171.90 (11)C14—C9—C10—C110.73 (19)
C1—C2—C3—O1177.13 (12)C8—C9—C10—C11177.48 (12)
C1—C2—C3—C41.92 (18)C9—C10—C11—C120.4 (2)
O1—C3—C4—O21.36 (17)C10—C11—C12—F1178.69 (12)
C2—C3—C4—O2177.77 (11)C10—C11—C12—C131.3 (2)
O1—C3—C4—C5176.35 (11)F1—C12—C13—C14178.91 (13)
C2—C3—C4—C54.53 (18)C11—C12—C13—C141.1 (2)
O2—C4—C5—O33.48 (17)C12—C13—C14—C90.1 (2)
C3—C4—C5—O3174.22 (11)C10—C9—C14—C131.0 (2)
O2—C4—C5—C6175.29 (11)C8—C9—C14—C13177.31 (12)
C3—C4—C5—C67.01 (18)O4—C7—N1—N24.82 (18)
O3—C5—C6—C1178.34 (11)C1—C7—N1—N2177.12 (9)
C4—C5—C6—C13.01 (17)C9—C8—N2—N1177.75 (10)
C2—C1—C6—C53.55 (17)C7—N1—N2—C8178.47 (11)
C7—C1—C6—C5174.26 (11)C2—C3—O1—C1510.43 (18)
C2—C1—C7—O435.84 (16)C4—C3—O1—C15170.49 (12)
C6—C1—C7—O4146.27 (12)C5—C4—O2—C1697.38 (14)
C2—C1—C7—N1142.27 (11)C3—C4—O2—C1684.92 (15)
C6—C1—C7—N135.63 (16)C6—C5—O3—C1719.34 (17)
N2—C8—C9—C14179.58 (12)C4—C5—O3—C17161.96 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.881.962.8238 (13)167
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H17FN2O4
Mr332.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.9194 (4), 26.2496 (13), 8.1271 (4)
β (°) 105.547 (1)
V3)1627.65 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.48 × 0.37 × 0.25
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.935, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
9603, 3558, 2856
Rint0.018
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.104, 1.07
No. of reflections3558
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.21

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.881.962.8238 (13)166.7
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

The authors thank the Natural Science Youth Foundation of South China University of Technology for financial assistance (E5050570).

References

First citationBernardino, A. M. R., Gomes, A. O., Charret, K. S., Freita, A. C. C., Machado, G. M. C., Canto-Cavalheiro, M. M., Leon, L. L. & Amaral, V. F. (2006). Eur. J. Med. Chem. 41, 80–87.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGanjali, M. R., Faridbod, F., Norouzi, P. & Adib, M. (2006). Sens. Actuators B, 120, 119–124.  Web of Science CrossRef CAS Google Scholar
First citationGardner, T. S., Weins, R. & Lee, J. (1991). J. Org. Chem. 26, 1514–1530.  CrossRef Web of Science Google Scholar
First citationLin, H., Feng, Y. L. & Gao, S. (2005). Chin. J. Struct. Chem. 24, 375–378.  CAS Google Scholar
First citationLiu, H.-Y., Wang, H.-Y., Gao, F., Lu, Z.-S. & Niu, D.-Z. (2006). Acta Cryst. E62, o5259–o5260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatole, J., Sandbhor, U., Padhye, S., Deobagkar, D. N., Anson, C. E. & Powell, A. (2003). Bioorg. Med. Chem. Lett. 13, 51–55.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, Y. Z., Li, J. F., Tu, S. J. & Zhang, M. (2005). Chin. J. Struct. Chem., 24, 1193–1197.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds