organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4′-Formyl­benzo-15-crown-5

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany, and bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, H Abdullaev 83, Tashkent 100125, Uzbekistan
*Correspondence e-mail: bahtier@academy.uzsci.net

(Received 18 April 2008; accepted 15 July 2008; online 19 July 2008)

In the title compound (systematic name: 17-formyl-2,5,8,11,14-penta­oxabicyclo­[13.4.0]nona­deca-15,17,19-triene), C15H20O6, the 15-crown-5 ring adopts a twisted conformation. The formyl group is coplanar with the benzene ring. The crystal packing is stabilized by C—H⋯O inter­actions involving the C=O group and ether O atoms as acceptors and methyl­ene CH groups as donors.

Related literature

The unsubstituted benzocrown ether was characterized by Pedersen (1967[Pedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017-7036.]) and its structure was described by Hanson (1978[Hanson, I. R. (1978). Acta Cryst. B34, 1026-1028.]), while Rogers and co-workers reported 4′-amino- and 4′-nitro-substituted compounds (Rogers, Huggins et al., 1992[Rogers, R. D., Huggins, S. E., Henry, R. F. & Bond, A. H. (1992). Supramol. Chem. 1, 59-63.]; Rogers, Henry & Rollins, 1992[Rogers, R. D., Henry, R. F. & Rollins, A. N. (1992). J. Inclusion Phenom. Macrocycl. Chem. 13, 219-232.]). For the synthesis of the title compound, see: Hyde et al. (1978[Hyde, E. M., Shaw, B. L. & Shepherd, I. (1978). J. Chem. Soc. Dalton Trans. pp. 1696-1705.]).

[Scheme 1]

Experimental

Crystal data
  • C15H20O6

  • Mr = 296.31

  • Monoclinic, P 21 /c

  • a = 18.0091 (8) Å

  • b = 9.6678 (4) Å

  • c = 8.1028 (3) Å

  • β = 91.262 (2)°

  • V = 1410.42 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 90 (2) K

  • 0.60 × 0.39 × 0.05 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.857, Tmax = 0.995

  • 18190 measured reflections

  • 4523 independent reflections

  • 3716 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.116

  • S = 1.00

  • 4523 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯O4i 0.99 2.55 3.3351 (10) 137
C14—H14A⋯O5ii 0.99 2.66 3.1700 (12) 112
C8—H8A⋯O1iii 0.99 2.66 3.3775 (13) 130
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is a derivative of benzo-15-crown-5 (Pedersen, 1967). It was prepared as part of our studies concerning fluorogenic receptor molecules with possible analytical applications. The O-C-C-O torsion angles within the polyether ring are (±)gauche [69.34° (10), -71.10°(8), -65.61°(11)) and anti (168.42°(9)]) resulting in a twisted crown ether conformation. In the title molecule, the dihedral angle between the aromatic ring plane and the mean plane of ether oxygen atoms is 20.67 (5)°. Worth to note, the torsion angle C3—C4—C7—O1 is 179.75 (10)°, indicating only a very small twist of the formyl group relative to the aromatic ring. Thus, in agreement with a previous report (Rogers, Huggins et al., 1992; Rogers, Henry & Rollins, 1992), the substituent on the benzene ring has negligible influence on the conformation of the benzo-15-crown-5 (Hanson, 1978). Owing to the absence of strong hydrogen bond donors, the crystal packing is stabilized by weak C—H···O hydrogen bonds, involving the O atoms of the crown ether and C==O group as acceptors, and the methylene C-H groups as donors (Table 1). In addition, ππ interaction has also been detected, resulting in a stacking of the molecules along the crystallographic c axis with a distance of 4.211 (2) Å between the centroids of two neighboring aromatic rings (Fig.2).

Related literature top

The unsubstituted benzocrown ether was characterized by Pedersen (1967) and its structure was described by Hanson (1978), while Rogers and co-workers reported 4'-amino- and 4'-nitro-substituted compounds (Rogers, Huggins et al., 1992; Rogers, Henry & Rollins, 1992). For the synthesis of the title compound, see: Hyde et al. (1978).

Experimental top

The title compound, 4'-formylbenzo-15-crown-5, was synthesized from benzo-15-crown-5 (Pedersen, 1967) which was reacted with N-methylformanilide and phoshoryl chloride (Hyde et al., 1978). Colourless needles of the title compound suitable for X-ray diffraction analysis were obtained by slow cooling and evaporation of a solution of n-heptane. Fast cooling of the solution resulted in the formation of an orthorhombic polymorph of the title compound.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 -0.99 Å, and Uiso=1.2–1.5 Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram, viewed down the c axis.
17-Formyl-2,5,8,11,14-pentaoxabicyclo[13.4.0]nonadeca-15,17,19-triene top
Crystal data top
C15H20O6F(000) = 632
Mr = 296.31Dx = 1.395 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9008 reflections
a = 18.0091 (8) Åθ = 2.4–33.3°
b = 9.6678 (4) ŵ = 0.11 mm1
c = 8.1028 (3) ÅT = 90 K
β = 91.262 (2)°Plate, colourless
V = 1410.42 (10) Å30.60 × 0.39 × 0.05 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4523 independent reflections
Radiation source: fine-focus sealed tube3716 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 31.1°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2623
Tmin = 0.857, Tmax = 0.995k = 1412
18190 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.3911P]
where P = (Fo2 + 2Fc2)/3
4523 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C15H20O6V = 1410.42 (10) Å3
Mr = 296.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.0091 (8) ŵ = 0.11 mm1
b = 9.6678 (4) ÅT = 90 K
c = 8.1028 (3) Å0.60 × 0.39 × 0.05 mm
β = 91.262 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4523 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3716 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.995Rint = 0.027
18190 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.00Δρmax = 0.28 e Å3
4523 reflectionsΔρmin = 0.22 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.03932 (4)0.76211 (8)0.74777 (10)0.02453 (17)
O20.18803 (4)0.54926 (7)0.45384 (9)0.01606 (14)
O30.25972 (4)0.29979 (8)0.55829 (10)0.02217 (17)
O40.42078 (4)0.40116 (8)0.32578 (9)0.01872 (15)
O50.41719 (4)0.72035 (7)0.34545 (8)0.01730 (15)
O60.26420 (4)0.75557 (7)0.36194 (9)0.01609 (14)
C10.15926 (5)0.67447 (9)0.49388 (11)0.01361 (17)
C20.09428 (5)0.69566 (10)0.57629 (11)0.01540 (17)
H20.06500.61900.60840.018*
C30.07132 (5)0.83094 (10)0.61289 (11)0.01618 (18)
C40.11385 (6)0.94299 (10)0.56708 (12)0.01868 (19)
H40.09841.03400.59400.022*
C50.17961 (6)0.92303 (10)0.48118 (12)0.01756 (18)
H50.20851.00020.44870.021*
C60.20225 (5)0.78964 (9)0.44389 (11)0.01396 (17)
C70.00239 (5)0.85268 (11)0.70205 (12)0.02018 (19)
H70.01090.94550.72620.024*
C80.14823 (5)0.43015 (9)0.50768 (13)0.01689 (18)
H8A0.09840.42690.45390.020*
H8B0.14220.43290.62880.020*
C90.19286 (5)0.30593 (10)0.46010 (14)0.0203 (2)
H9A0.16330.22090.47690.024*
H9B0.20520.31160.34180.024*
C100.32608 (5)0.28738 (10)0.46689 (14)0.0204 (2)
H10A0.31930.21400.38270.025*
H10B0.36720.25890.54250.025*
C110.34702 (5)0.42146 (10)0.38202 (12)0.01686 (18)
H11A0.31260.44080.28790.020*
H11B0.34530.49990.46040.020*
C120.44456 (5)0.49820 (11)0.20613 (12)0.01883 (19)
H12A0.40240.51850.12950.023*
H12B0.48440.45540.14100.023*
C130.47328 (5)0.63335 (11)0.27812 (12)0.01947 (19)
H13A0.51060.61220.36620.023*
H13B0.49880.68510.19050.023*
C140.37553 (5)0.79418 (10)0.22314 (11)0.01733 (18)
H14A0.35700.72970.13670.021*
H14B0.40740.86420.17050.021*
C150.31127 (5)0.86389 (10)0.30465 (11)0.01632 (18)
H15A0.32910.92170.39820.020*
H15B0.28400.92360.22470.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0197 (3)0.0272 (4)0.0269 (4)0.0004 (3)0.0049 (3)0.0043 (3)
O20.0180 (3)0.0094 (3)0.0211 (3)0.0007 (2)0.0051 (2)0.0003 (2)
O30.0173 (3)0.0243 (4)0.0250 (4)0.0025 (3)0.0044 (3)0.0089 (3)
O40.0157 (3)0.0198 (3)0.0208 (3)0.0011 (2)0.0037 (2)0.0046 (3)
O50.0187 (3)0.0205 (3)0.0127 (3)0.0001 (3)0.0001 (2)0.0022 (2)
O60.0177 (3)0.0122 (3)0.0186 (3)0.0023 (2)0.0052 (2)0.0007 (2)
C10.0164 (4)0.0108 (4)0.0137 (4)0.0004 (3)0.0004 (3)0.0002 (3)
C20.0164 (4)0.0140 (4)0.0158 (4)0.0003 (3)0.0005 (3)0.0001 (3)
C30.0175 (4)0.0163 (4)0.0148 (4)0.0023 (3)0.0001 (3)0.0014 (3)
C40.0233 (4)0.0129 (4)0.0199 (4)0.0028 (3)0.0012 (3)0.0017 (3)
C50.0222 (4)0.0119 (4)0.0186 (4)0.0003 (3)0.0011 (3)0.0007 (3)
C60.0159 (4)0.0133 (4)0.0127 (4)0.0004 (3)0.0002 (3)0.0006 (3)
C70.0195 (4)0.0209 (5)0.0201 (4)0.0039 (3)0.0009 (3)0.0053 (4)
C80.0161 (4)0.0112 (4)0.0235 (5)0.0019 (3)0.0035 (3)0.0015 (3)
C90.0171 (4)0.0124 (4)0.0314 (5)0.0006 (3)0.0021 (4)0.0001 (4)
C100.0169 (4)0.0171 (4)0.0274 (5)0.0023 (3)0.0044 (3)0.0054 (4)
C110.0162 (4)0.0154 (4)0.0191 (4)0.0003 (3)0.0033 (3)0.0001 (3)
C120.0193 (4)0.0218 (5)0.0156 (4)0.0005 (3)0.0043 (3)0.0017 (3)
C130.0156 (4)0.0230 (5)0.0199 (4)0.0019 (3)0.0023 (3)0.0025 (4)
C140.0185 (4)0.0208 (4)0.0127 (4)0.0019 (3)0.0009 (3)0.0043 (3)
C150.0194 (4)0.0141 (4)0.0156 (4)0.0040 (3)0.0008 (3)0.0027 (3)
Geometric parameters (Å, º) top
O1—C71.2168 (13)C7—H70.9500
O2—C11.3589 (11)C8—C91.5001 (13)
O2—C81.4296 (11)C8—H8A0.9900
O3—C101.4249 (12)C8—H8B0.9900
O3—C91.4297 (13)C9—H9A0.9900
O4—C121.4219 (12)C9—H9B0.9900
O4—C111.4275 (11)C10—C111.5189 (13)
O5—C141.4219 (12)C10—H10A0.9900
O5—C131.4318 (12)C10—H10B0.9900
O6—C61.3516 (11)C11—H11A0.9900
O6—C151.4311 (11)C11—H11B0.9900
C1—C21.3755 (12)C12—C131.5171 (15)
C1—C61.4202 (12)C12—H12A0.9900
C2—C31.4052 (13)C12—H12B0.9900
C2—H20.9500C13—H13A0.9900
C3—C41.3822 (13)C13—H13B0.9900
C3—C71.4651 (13)C14—C151.5044 (13)
C4—C51.4003 (13)C14—H14A0.9900
C4—H40.9500C14—H14B0.9900
C5—C61.3877 (13)C15—H15A0.9900
C5—H50.9500C15—H15B0.9900
C1—O2—C8116.64 (7)H9A—C9—H9B108.2
C10—O3—C9114.84 (8)O3—C10—C11112.51 (8)
C12—O4—C11115.04 (7)O3—C10—H10A109.1
C14—O5—C13113.27 (7)C11—C10—H10A109.1
C6—O6—C15118.83 (7)O3—C10—H10B109.1
O2—C1—C2125.56 (8)C11—C10—H10B109.1
O2—C1—C6114.66 (8)H10A—C10—H10B107.8
C2—C1—C6119.78 (8)O4—C11—C10105.62 (7)
C1—C2—C3119.90 (9)O4—C11—H11A110.6
C1—C2—H2120.0C10—C11—H11A110.6
C3—C2—H2120.0O4—C11—H11B110.6
C4—C3—C2120.36 (9)C10—C11—H11B110.6
C4—C3—C7120.03 (9)H11A—C11—H11B108.7
C2—C3—C7119.61 (9)O4—C12—C13114.29 (8)
C3—C4—C5120.35 (9)O4—C12—H12A108.7
C3—C4—H4119.8C13—C12—H12A108.7
C5—C4—H4119.8O4—C12—H12B108.7
C6—C5—C4119.47 (9)C13—C12—H12B108.7
C6—C5—H5120.3H12A—C12—H12B107.6
C4—C5—H5120.3O5—C13—C12114.52 (8)
O6—C6—C5125.67 (8)O5—C13—H13A108.6
O6—C6—C1114.21 (8)C12—C13—H13A108.6
C5—C6—C1120.12 (8)O5—C13—H13B108.6
O1—C7—C3125.61 (10)C12—C13—H13B108.6
O1—C7—H7117.2H13A—C13—H13B107.6
C3—C7—H7117.2O5—C14—C15108.54 (7)
O2—C8—C9106.94 (7)O5—C14—H14A110.0
O2—C8—H8A110.3C15—C14—H14A110.0
C9—C8—H8A110.3O5—C14—H14B110.0
O2—C8—H8B110.3C15—C14—H14B110.0
C9—C8—H8B110.3H14A—C14—H14B108.4
H8A—C8—H8B108.6O6—C15—C14106.35 (7)
O3—C9—C8109.85 (8)O6—C15—H15A110.5
O3—C9—H9A109.7C14—C15—H15A110.5
C8—C9—H9A109.7O6—C15—H15B110.5
O3—C9—H9B109.7C14—C15—H15B110.5
C8—C9—H9B109.7H15A—C15—H15B108.7
C8—O2—C1—C22.33 (13)C2—C1—C6—C51.40 (14)
C8—O2—C1—C6177.50 (8)C4—C3—C7—O1179.75 (10)
O2—C1—C2—C3178.83 (9)C2—C3—C7—O11.06 (16)
C6—C1—C2—C30.99 (14)C1—O2—C8—C9176.14 (8)
C1—C2—C3—C40.25 (14)C10—O3—C9—C8127.42 (9)
C1—C2—C3—C7179.43 (9)O2—C8—C9—O369.34 (10)
C2—C3—C4—C51.12 (15)C9—O3—C10—C1173.81 (11)
C7—C3—C4—C5179.71 (9)C12—O4—C11—C10164.16 (8)
C3—C4—C5—C60.71 (15)O3—C10—C11—O4168.42 (8)
C15—O6—C6—C51.01 (14)C11—O4—C12—C1382.80 (10)
C15—O6—C6—C1179.48 (8)C14—O5—C13—C1278.28 (10)
C4—C5—C6—O6179.97 (9)O4—C12—C13—O571.10 (11)
C4—C5—C6—C10.54 (14)C13—O5—C14—C15171.27 (8)
O2—C1—C6—O61.10 (12)C6—O6—C15—C14178.69 (8)
C2—C1—C6—O6179.06 (8)O5—C14—C15—O665.61 (9)
O2—C1—C6—C5178.45 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···O4i0.992.553.3351 (10)137
C14—H14A···O5ii0.992.663.1700 (12)112
C8—H8A···O1iii0.992.663.3775 (13)130
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H20O6
Mr296.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)90
a, b, c (Å)18.0091 (8), 9.6678 (4), 8.1028 (3)
β (°) 91.262 (2)
V3)1410.42 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.60 × 0.39 × 0.05
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.857, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
18190, 4523, 3716
Rint0.027
(sin θ/λ)max1)0.727
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.116, 1.00
No. of reflections4523
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.22

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···O4i0.992.553.3351 (10)137
C14—H14A···O5ii0.992.663.1700 (12)112
C8—H8A···O1iii0.992.663.3775 (13)130
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x, y+1, z+1.
 

Acknowledgements

Financial support from the German Federal Ministry of Economics and Technology (BMWi) under grant No. 16IN0218 `ChemoChips' is gratefully acknowledged. We thank Dr Tobias Gruber for fruitful discussions.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHanson, I. R. (1978). Acta Cryst. B34, 1026–1028.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHyde, E. M., Shaw, B. L. & Shepherd, I. (1978). J. Chem. Soc. Dalton Trans. pp. 1696–1705.  CrossRef Web of Science Google Scholar
First citationPedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017–7036.  CrossRef CAS Web of Science Google Scholar
First citationRogers, R. D., Henry, R. F. & Rollins, A. N. (1992). J. Inclusion Phenom. Macrocycl. Chem. 13, 219–232.  CrossRef CAS Google Scholar
First citationRogers, R. D., Huggins, S. E., Henry, R. F. & Bond, A. H. (1992). Supramol. Chem. 1, 59–63.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds