organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(5-Chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)carbon­yl]-N′-(4-hy­droxy­phen­yl)thio­urea

aDepartment of Biology and Environment Technology, Guiyang College, Guiyang 550005, People's Republic of China, bSchool of Chemistry and Environment Science, Guizhou University for Nationalities, Guiyang 550025, People's Republic of China, and cDepartment of Chemistry, College of Science, Tianjin University, Tianjin 300072, People's Republic of China
*Correspondence e-mail: haitangdu@gz139.com.cn

(Received 17 June 2008; accepted 26 June 2008; online 5 July 2008)

In the title compound, C18H15ClN4O2S, the pyrazole ring makes dihedral angles of 67.4 (1) and 12.5 (1)° with the phenyl and 4-hydroxy­phenyl groups, respectively; the two benzene rings are twisted by 60.1 (1)° with respect to each other. The thio­urea NH groups are involved in N—H⋯O and N—H⋯Cl intra­molecular hydrogen bonds. A hydrogen bond between the phenolic OH group and the pyrazole N atom connects mol­ecules into a one-dimensional polymeric structure.

Related literature

For related literature, see: Du et al. (2007[Du, H.-T., Lu, M., Zhou, W.-Y. & Sun, L.-L. (2007). Acta Cryst. E63, o4287.]); Saeed & Flörke (2007[Saeed, A. & Flörke, U. (2007). Acta Cryst. E63, o3695.]); Wang et al. (2007[Wang, J., Tian, L. & Liu, S.-Y. (2007). Acta Cryst. E63, o3667.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15ClN4O2S

  • Mr = 386.85

  • Triclinic, [P \overline 1]

  • a = 8.572 (2) Å

  • b = 10.429 (2) Å

  • c = 11.170 (2) Å

  • α = 99.936 (4)°

  • β = 105.817 (4)°

  • γ = 106.042 (4)°

  • V = 889.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 294 (2) K

  • 0.26 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.914, Tmax = 0.933

  • 4615 measured reflections

  • 3118 independent reflections

  • 2160 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.122

  • S = 1.04

  • 3118 reflections

  • 245 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2i 0.82 2.15 2.938 (3) 162
N3—H3A⋯Cl1 0.891 (10) 2.422 (19) 3.168 (2) 141 (2)
N4—H4A⋯O1 0.901 (10) 1.92 (2) 2.661 (3) 139 (2)
Symmetry code: (i) x, y-1, z-1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is similar to the previously reported N-(5-chloro-3-methyl-1-phenylpyrazole-4-ylcarbonyl)-N'- (4-methphenyl)thiourea (Du et al., 2007). The molecular structure of the title compound and the atom-numbering scheme are shown in Fig.1. The pyrazole ring makes dihedral angles of 67.4 (1) and 12.5 (1)°, with the C1—C6 and C13—C18 rings, respectively. These two six-membered rings are twisted by 60.1 (1)° with respect to each other. This geometry is stabilized by intramolecular N4-H4A ···O1 and N3-H3A···Cl hydrogen bonds (Fig.1, Table 1). In the crystal structure, molecules are linked by intermolecular N-H···O hydrogen bonds to form a one-dimensional polymeric structure (Fig.2). All bond lengths and angles are in the normal range (Du et al., 2007; Saeed & Flörke, 2007; Wang et al., 2007).

Related literature top

For related literature, see: Du et al. (2007); Saeed & Flörke (2007); Wang et al. (2007).

Experimental top

Powdered ammonium thiocyanate (15 mmol), 5-chloro-3-methyl-1-phenyl-pyrazole-4-carbonyl chloride (10 mmol), PEG-400 (0.5 mL) and acetone (25 mL) were placed in a dried round-bottom flask and stirred at room temperature for 1 h, then 4-aminophenol (9.5 mmol) was added, and the mixture was stirred for 5 h. The mixture was poured into water (20 mL). The resulting solid was filtered, dried and recrystallized from N,N-dimethylformamide/ethanol to give the title compound. Single crystals were obtained by slow evaporation of a solution in N,N-dimethylformamide/ethanol (1:1, v/v).

Refinement top

H atoms bonded to N atoms were located in a difference Fourier map and refined with distance restraints (N—H = 0.89 Å) and with Uiso(H) = 1.2Ueq(N). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å and O–H = 0.82 Å;, Uiso(H) = xUeq(carrier atom) where x = 1.5 for methyl groups and 1.2 for the remaining atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme, showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The polymeric structure via O-H···N hydrogen bonds. Hydrogen bonds are shown with dashed lines.
N-[(5-Chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)carbonyl]- N'-(4-hydroxyphenyl)thiourea top
Crystal data top
C18H15ClN4O2SZ = 2
Mr = 386.85F(000) = 400
Triclinic, P1Dx = 1.444 Mg m3
Hall symbol: -P 1Melting point: 456 K
a = 8.572 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.429 (2) ÅCell parameters from 1626 reflections
c = 11.170 (2) Åθ = 2.6–25.0°
α = 99.936 (4)°µ = 0.35 mm1
β = 105.817 (4)°T = 294 K
γ = 106.042 (4)°Prism, colorless
V = 889.5 (3) Å30.26 × 0.24 × 0.20 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
3118 independent reflections
Radiation source: fine-focus sealed tube2160 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 107
Tmin = 0.914, Tmax = 0.933k = 1212
4615 measured reflectionsl = 1013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.0911P]
where P = (Fo2 + 2Fc2)/3
3118 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.20 e Å3
2 restraintsΔρmin = 0.35 e Å3
Crystal data top
C18H15ClN4O2Sγ = 106.042 (4)°
Mr = 386.85V = 889.5 (3) Å3
Triclinic, P1Z = 2
a = 8.572 (2) ÅMo Kα radiation
b = 10.429 (2) ŵ = 0.35 mm1
c = 11.170 (2) ÅT = 294 K
α = 99.936 (4)°0.26 × 0.24 × 0.20 mm
β = 105.817 (4)°
Data collection top
Bruker SMART 1K CCD
diffractometer
3118 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2160 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.933Rint = 0.025
4615 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0452 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.20 e Å3
3118 reflectionsΔρmin = 0.35 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.12809 (11)0.51284 (7)0.87995 (7)0.0638 (3)
S10.24176 (14)0.24348 (8)0.57180 (8)0.0743 (3)
O10.2267 (3)0.66532 (18)0.52727 (17)0.0588 (6)
O20.4029 (3)0.19520 (19)0.00036 (17)0.0553 (5)
H20.36890.11040.01680.083*
N10.1986 (3)0.78380 (19)0.93012 (18)0.0391 (5)
N20.2336 (3)0.8960 (2)0.88065 (18)0.0419 (5)
N30.2115 (3)0.4873 (2)0.6192 (2)0.0462 (6)
N40.2649 (3)0.4289 (2)0.43005 (19)0.0441 (5)
C10.1829 (3)0.7990 (2)1.0561 (2)0.0380 (6)
C20.3043 (4)0.7804 (3)1.1543 (2)0.0464 (7)
H2A0.39500.75561.13940.056*
C30.2892 (4)0.7994 (3)1.2762 (3)0.0533 (7)
H30.37080.78831.34420.064*
C40.1535 (4)0.8345 (3)1.2966 (3)0.0582 (8)
H40.14310.84621.37820.070*
C50.0335 (4)0.8525 (3)1.1974 (3)0.0622 (8)
H50.05790.87631.21190.075*
C60.0477 (4)0.8354 (3)1.0758 (3)0.0506 (7)
H60.03290.84831.00840.061*
C70.2683 (4)0.9426 (3)0.6808 (2)0.0564 (8)
H7A0.29701.03620.72980.085*
H7B0.16670.91900.60680.085*
H7C0.36240.93430.65290.085*
C80.2354 (3)0.8466 (2)0.7635 (2)0.0384 (6)
C90.2041 (3)0.7020 (2)0.7349 (2)0.0362 (6)
C100.1803 (3)0.6678 (2)0.8446 (2)0.0391 (6)
C110.2136 (3)0.6184 (2)0.6186 (2)0.0388 (6)
C120.2401 (3)0.3889 (3)0.5323 (2)0.0429 (6)
C130.3013 (3)0.3615 (2)0.3244 (2)0.0395 (6)
C140.3412 (4)0.4386 (3)0.2413 (2)0.0490 (7)
H140.34390.52980.25740.059*
C150.3771 (4)0.3835 (3)0.1354 (3)0.0522 (7)
H150.40460.43760.08100.063*
C160.3726 (3)0.2478 (3)0.1094 (2)0.0415 (6)
C170.3379 (4)0.1723 (3)0.1931 (2)0.0504 (7)
H170.33890.08210.17800.061*
C180.3012 (4)0.2268 (3)0.2999 (3)0.0535 (8)
H180.27650.17300.35510.064*
H3A0.205 (4)0.459 (3)0.6890 (18)0.066 (9)*
H4A0.260 (4)0.5134 (15)0.426 (3)0.064 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1074 (7)0.0351 (4)0.0593 (5)0.0189 (4)0.0486 (4)0.0147 (3)
S10.1377 (9)0.0495 (5)0.0739 (6)0.0502 (5)0.0681 (6)0.0290 (4)
O10.1072 (17)0.0502 (11)0.0377 (10)0.0421 (12)0.0355 (11)0.0157 (9)
O20.0702 (14)0.0514 (11)0.0490 (11)0.0212 (11)0.0335 (10)0.0029 (9)
N10.0546 (14)0.0326 (11)0.0314 (11)0.0138 (10)0.0196 (10)0.0054 (9)
N20.0624 (15)0.0350 (11)0.0338 (11)0.0189 (10)0.0223 (10)0.0096 (9)
N30.0740 (17)0.0357 (12)0.0405 (13)0.0245 (11)0.0317 (12)0.0098 (10)
N40.0695 (16)0.0334 (12)0.0375 (12)0.0248 (11)0.0240 (11)0.0082 (10)
C10.0495 (17)0.0319 (13)0.0332 (13)0.0127 (12)0.0187 (12)0.0046 (10)
C20.0603 (19)0.0426 (15)0.0458 (16)0.0244 (14)0.0247 (14)0.0135 (12)
C30.076 (2)0.0499 (16)0.0380 (15)0.0244 (15)0.0209 (14)0.0154 (12)
C40.085 (2)0.0532 (17)0.0442 (17)0.0223 (17)0.0366 (17)0.0110 (14)
C50.068 (2)0.075 (2)0.0599 (19)0.0313 (17)0.0414 (17)0.0162 (16)
C60.0510 (18)0.0583 (18)0.0478 (16)0.0229 (14)0.0205 (13)0.0142 (13)
C70.095 (2)0.0413 (15)0.0418 (15)0.0289 (16)0.0298 (16)0.0146 (12)
C80.0502 (16)0.0359 (13)0.0311 (13)0.0182 (12)0.0142 (11)0.0080 (11)
C90.0457 (16)0.0332 (13)0.0305 (12)0.0154 (11)0.0135 (11)0.0062 (10)
C100.0493 (16)0.0330 (13)0.0366 (14)0.0150 (12)0.0175 (12)0.0067 (11)
C110.0460 (16)0.0373 (14)0.0324 (13)0.0164 (12)0.0124 (11)0.0054 (11)
C120.0509 (17)0.0373 (14)0.0398 (14)0.0156 (12)0.0183 (12)0.0032 (11)
C130.0491 (16)0.0352 (13)0.0339 (13)0.0164 (12)0.0154 (12)0.0028 (11)
C140.071 (2)0.0328 (13)0.0509 (16)0.0221 (14)0.0291 (15)0.0094 (12)
C150.071 (2)0.0446 (16)0.0491 (16)0.0214 (14)0.0310 (15)0.0135 (13)
C160.0436 (16)0.0398 (14)0.0379 (14)0.0141 (12)0.0155 (12)0.0001 (11)
C170.076 (2)0.0356 (14)0.0448 (15)0.0237 (14)0.0276 (14)0.0049 (12)
C180.088 (2)0.0389 (15)0.0445 (16)0.0248 (15)0.0351 (15)0.0126 (12)
Geometric parameters (Å, º) top
Cl1—C101.698 (2)C4—H40.9300
S1—C121.654 (3)C5—C61.382 (4)
O1—C111.224 (3)C5—H50.9300
O2—C161.369 (3)C6—H60.9300
O2—H20.8200C7—C81.496 (3)
N1—C101.347 (3)C7—H7A0.9600
N1—N21.373 (3)C7—H7B0.9600
N1—C11.436 (3)C7—H7C0.9600
N2—C81.327 (3)C8—C91.419 (3)
N3—C111.363 (3)C9—C101.384 (3)
N3—C121.407 (3)C9—C111.470 (3)
N3—H3A0.891 (10)C13—C141.380 (3)
N4—C121.331 (3)C13—C181.384 (3)
N4—C131.421 (3)C14—C151.374 (3)
N4—H4A0.901 (10)C14—H140.9300
C1—C61.374 (4)C15—C161.382 (3)
C1—C21.374 (4)C15—H150.9300
C2—C31.389 (4)C16—C171.363 (4)
C2—H2A0.9300C17—C181.384 (3)
C3—C41.375 (4)C17—H170.9300
C3—H30.9300C18—H180.9300
C4—C51.371 (4)
C16—O2—H2109.5H7B—C7—H7C109.5
C10—N1—N2110.66 (18)N2—C8—C9111.7 (2)
C10—N1—C1128.6 (2)N2—C8—C7119.6 (2)
N2—N1—C1120.68 (17)C9—C8—C7128.7 (2)
C8—N2—N1105.50 (18)C10—C9—C8103.6 (2)
C11—N3—C12130.5 (2)C10—C9—C11130.9 (2)
C11—N3—H3A118.6 (19)C8—C9—C11125.2 (2)
C12—N3—H3A110.4 (19)N1—C10—C9108.6 (2)
C12—N4—C13130.9 (2)N1—C10—Cl1120.04 (18)
C12—N4—H4A115.9 (18)C9—C10—Cl1131.33 (19)
C13—N4—H4A113.2 (18)O1—C11—N3121.8 (2)
C6—C1—C2121.7 (2)O1—C11—C9121.6 (2)
C6—C1—N1118.6 (2)N3—C11—C9116.6 (2)
C2—C1—N1119.7 (2)N4—C12—N3114.1 (2)
C1—C2—C3118.7 (3)N4—C12—S1129.42 (19)
C1—C2—H2A120.6N3—C12—S1116.46 (19)
C3—C2—H2A120.6C14—C13—C18118.3 (2)
C4—C3—C2120.1 (3)C14—C13—N4116.5 (2)
C4—C3—H3120.0C18—C13—N4125.3 (2)
C2—C3—H3120.0C15—C14—C13121.4 (2)
C5—C4—C3120.4 (3)C15—C14—H14119.3
C5—C4—H4119.8C13—C14—H14119.3
C3—C4—H4119.8C14—C15—C16120.1 (2)
C4—C5—C6120.3 (3)C14—C15—H15119.9
C4—C5—H5119.9C16—C15—H15119.9
C6—C5—H5119.9C17—C16—O2122.9 (2)
C1—C6—C5118.9 (3)C17—C16—C15118.7 (2)
C1—C6—H6120.5O2—C16—C15118.3 (2)
C5—C6—H6120.5C16—C17—C18121.6 (2)
C8—C7—H7A109.5C16—C17—H17119.2
C8—C7—H7B109.5C18—C17—H17119.2
H7A—C7—H7B109.5C13—C18—C17119.9 (2)
C8—C7—H7C109.5C13—C18—H18120.1
H7A—C7—H7C109.5C17—C18—H18120.1
C10—N1—N2—C80.3 (3)C11—C9—C10—N1173.8 (3)
C1—N1—N2—C8178.5 (2)C8—C9—C10—Cl1176.7 (2)
C10—N1—C1—C6112.6 (3)C11—C9—C10—Cl18.8 (4)
N2—N1—C1—C666.0 (3)C12—N3—C11—O17.4 (4)
C10—N1—C1—C269.0 (3)C12—N3—C11—C9171.0 (3)
N2—N1—C1—C2112.5 (3)C10—C9—C11—O1176.2 (3)
C6—C1—C2—C30.1 (4)C8—C9—C11—O110.4 (4)
N1—C1—C2—C3178.2 (2)C10—C9—C11—N35.4 (4)
C1—C2—C3—C40.7 (4)C8—C9—C11—N3168.0 (2)
C2—C3—C4—C50.7 (4)C13—N4—C12—N3178.3 (2)
C3—C4—C5—C60.0 (5)C13—N4—C12—S10.5 (4)
C2—C1—C6—C50.5 (4)C11—N3—C12—N43.7 (4)
N1—C1—C6—C5178.9 (2)C11—N3—C12—S1175.3 (2)
C4—C5—C6—C10.6 (4)C12—N4—C13—C14172.2 (3)
N1—N2—C8—C90.8 (3)C12—N4—C13—C187.1 (4)
N1—N2—C8—C7179.3 (2)C18—C13—C14—C151.2 (4)
N2—C8—C9—C101.0 (3)N4—C13—C14—C15179.4 (3)
C7—C8—C9—C10179.2 (3)C13—C14—C15—C160.5 (4)
N2—C8—C9—C11174.0 (2)C14—C15—C16—C172.2 (4)
C7—C8—C9—C115.9 (4)C14—C15—C16—O2177.6 (3)
N2—N1—C10—C90.3 (3)O2—C16—C17—C18177.5 (3)
C1—N1—C10—C9179.0 (2)C15—C16—C17—C182.4 (4)
N2—N1—C10—Cl1177.47 (17)C14—C13—C18—C171.0 (4)
C1—N1—C10—Cl11.2 (4)N4—C13—C18—C17179.6 (3)
C8—C9—C10—N10.7 (3)C16—C17—C18—C130.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2i0.822.152.938 (3)162
N3—H3A···Cl10.89 (1)2.42 (2)3.168 (2)141 (2)
N4—H4A···O10.90 (1)1.92 (2)2.661 (3)139 (2)
Symmetry code: (i) x, y1, z1.

Experimental details

Crystal data
Chemical formulaC18H15ClN4O2S
Mr386.85
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.572 (2), 10.429 (2), 11.170 (2)
α, β, γ (°)99.936 (4), 105.817 (4), 106.042 (4)
V3)889.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.26 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.914, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
4615, 3118, 2160
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.123, 1.04
No. of reflections3118
No. of parameters245
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.35

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2i0.822.152.938 (3)162
N3—H3A···Cl10.891 (10)2.422 (19)3.168 (2)141 (2)
N4—H4A···O10.901 (10)1.92 (2)2.661 (3)139 (2)
Symmetry code: (i) x, y1, z1.
 

Acknowledgements

The authors thank Guiyang College (project No. 2008012) for financial support.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, H.-T., Lu, M., Zhou, W.-Y. & Sun, L.-L. (2007). Acta Cryst. E63, o4287.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A. & Flörke, U. (2007). Acta Cryst. E63, o3695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J., Tian, L. & Liu, S.-Y. (2007). Acta Cryst. E63, o3667.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds