organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Bis(9-hydr­­oxy-9-fluoren­yl)biphen­yl–ethyl acetate (1/1)

aInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, H. Abdullaev 83, Tashkent 100125, Uzbekistan, and bInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: l_izotova@yahoo.com

(Received 25 June 2008; accepted 23 July 2008; online 31 July 2008)

In the title host–guest compound, C38H26O2·C4H8O2, the ethyl acetate mol­ecule (guest), which adopts a fully extended conformation, and the biphenyl derivative (host) are connected via O—H⋯O hydrogen bonds [H⋯O = 1.90 (3) Å] into discrete assemblies. The hydro­carbon skeleton of the host mol­ecule deviates only slightly from C2 symmetry. The OH groups of the host are involved in intra­molecular O—H⋯O hydrogen bonding [H⋯O = 1.83 (3) Å].

Related literature

For related literature, see: Barbour et al. (1993[Barbour, L. J., Bourne, S. A., Caira, M. R., Nassimbeni, L. R., Weber, E., Skobridis, E. K. & Wierig, A. (1993). Supramol. Chem. 1, 331-336.]); Ibragimov et al. (2001[Ibragimov, B. T., Beketov, K. M., Weber, E., Seidel, J., Sumarna, O., Makhkamov, K. K. & Kohnke, K. (2001). J. Phys. Org. Chem. 14, 697-703.]); Sardone (1996[Sardone, N. (1996). Private communication (refcode NABNIN). CCDC, Union Road, Cambridge, England.]); Sumarna et al. (2003[Sumarna, O., Seidel, J., Weber, E., Seichter, W., Ibragimov, B. T. & Beketov, K. M. (2003). Cryst. Growth Des. 3, 541-546.]); Weber et al. (1993[Weber, E., Skobridis, K., Wierig, A., Stathi, S., Nassimbeni, L. R. & Niven, M. L. (1993). Angew. Chem. Int. Ed. Engl. 32, 606-608.]).

[Scheme 1]

Experimental

Crystal data
  • C38H26O2·C4H8O2

  • Mr = 602.69

  • Monoclinic, P 21 /c

  • a = 11.645 (2) Å

  • b = 16.364 (3) Å

  • c = 17.471 (3) Å

  • β = 97.72 (3)°

  • V = 3299.1 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.4 × 0.2 × 0.2 mm

Data collection
  • Stoe STADI4 diffractometer

  • Absorption correction: none

  • 5807 measured reflections

  • 5650 independent reflections

  • 3654 reflections with I > 2σ(I)

  • 3 standard reflections every 100 reflections intensity decay: 2.6%

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.141

  • S = 1.20

  • 5650 reflections

  • 424 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1⋯O3i 0.88 (4) 1.90 (4) 2.779 (3) 173 (4)
O1—H2⋯O2 0.93 (4) 1.84 (4) 2.739 (3) 161 (3)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: STADI4 (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Crystalline inclusion compounds (clathrates, host–guest complexes) are of increasing importance in supramolecular chemistry because of their significant potential in addressing a variety of fundamental and practical issues. 2,2'-Bis(9-hydroxy-9-fluorenyl)biphenyl (I) is a host compound with good clathrate-forming ability and the crystal structures of its inclusion compounds with acetonitrile, cyclohexanone, n-propylamine (Barbour et al., 1993), acetone (three solvates) (Sardone, 1996; Ibragimov et al., 2001) and chloroform (two solvates) (Sumarna et al., 2003) were reported. Here, we report the crystal structure of a host–guest complex of (I) with ethyl acetate which resembles closely that of (I) with acetone (1/1) (Sardone, 1996). The molecule of (I) has three conformational degrees of freedom (rotation around the central aryl–aryl single bond and rotations around the aryl–fluorenyl bonds), however it exhibits considerable conformational rigidity due to the stabilizing effect of the intramolecular O—H···O hydrogen bond between the hydroxyl groups (Fig. 1, Table 1). The crystal packing is mainly stabilized by van der Waals forces (Fig.2).

Related literature top

For related literature, see: Barbour et al. (1993); Ibragimov et al. (2001); Sardone (1996); Sumarna et al. (2003); Weber et al. (1993).

Experimental top

2,2'-Bis(9-hydroxy-9-fluorenyl)biphenyl was synthesized according to the procedure described by Weber et al., (1993). The stable in the air crystals were grown by slow evaporation from ethyl acetate solution.

Refinement top

H atoms from the OH groups were located from difference Fourier maps and fully refined. The remaining H atoms were positioned geometrically (C—H 0.93–0.98 Å) and refined as riding on their carrier atoms with Uiso(H) = 1.2Ueq(C), except the methyl groups where Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: STADI4 (Stoe & Cie, 1997); cell refinement: STADI4 (Stoe & Cie, 1997); data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound, showing 30% probability displacement ellipsoids for the non-H atoms. Dashed lines represent hydrogen bonds.
[Figure 2] Fig. 2. Packing diagram of the title compound (I) viewed down the a axis. H atoms have been ommited for clarity. Hydrogen bonds are shown as dashed lines.
2,2'-Bis(9-hydroxy-9-fluorenyl)biphenyl–ethyl acetate (1/1) top
Crystal data top
C38H26O2·C4H8O2F(000) = 1272
Mr = 602.69Dx = 1.213 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.645 (2) Åθ = 10–20°
b = 16.364 (3) ŵ = 0.08 mm1
c = 17.471 (3) ÅT = 293 K
β = 97.72 (3)°Block, colourless
V = 3299.1 (10) Å30.4 × 0.2 × 0.2 mm
Z = 4
Data collection top
Stoe STADI4
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.6°
Graphite monochromatorh = 1311
ω/2θ scansk = 019
5650 measured reflectionsl = 020
5807 independent reflections3 standard reflections every 100 reflections
3654 reflections with I > 2σ(I) intensity decay: 2.6%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0281P)2 + 2.047P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max < 0.001
5650 reflectionsΔρmax = 0.24 e Å3
424 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0048 (4)
Crystal data top
C38H26O2·C4H8O2V = 3299.1 (10) Å3
Mr = 602.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.645 (2) ŵ = 0.08 mm1
b = 16.364 (3) ÅT = 293 K
c = 17.471 (3) Å0.4 × 0.2 × 0.2 mm
β = 97.72 (3)°
Data collection top
Stoe STADI4
diffractometer
Rint = 0.000
5650 measured reflections3 standard reflections every 100 reflections
5807 independent reflections intensity decay: 2.6%
3654 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.20Δρmax = 0.24 e Å3
5650 reflectionsΔρmin = 0.16 e Å3
424 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.70308 (18)0.69051 (14)0.20949 (13)0.0518 (6)
O20.63649 (17)0.85042 (13)0.21819 (12)0.0470 (5)
C10.8676 (3)0.62161 (19)0.1739 (2)0.0511 (8)
C20.8325 (3)0.5837 (2)0.1044 (2)0.0716 (11)
H2A0.77650.60730.06810.086*
C30.8827 (4)0.5090 (3)0.0897 (3)0.0937 (14)
H3A0.85960.48220.04320.112*
C40.9657 (5)0.4747 (3)0.1430 (4)0.0995 (17)
H4A0.99820.42480.13210.119*
C51.0019 (3)0.5126 (3)0.2122 (3)0.0828 (13)
H5A1.05880.48890.24780.099*
C60.9523 (3)0.5867 (2)0.2280 (2)0.0616 (10)
C70.9683 (3)0.6387 (2)0.2964 (2)0.0633 (10)
C81.0404 (4)0.6306 (3)0.3666 (3)0.0891 (14)
H8A1.09250.58740.37490.107*
C91.0330 (5)0.6877 (4)0.4232 (3)0.1026 (18)
H9A1.08140.68310.46980.123*
C100.9559 (4)0.7516 (3)0.4126 (2)0.0903 (14)
H10A0.95100.78850.45260.108*
C110.8848 (3)0.7614 (2)0.3424 (2)0.0701 (10)
H11A0.83340.80500.33430.084*
C120.8930 (3)0.7041 (2)0.28501 (19)0.0545 (9)
C130.8229 (3)0.70131 (18)0.20394 (17)0.0460 (7)
C140.8464 (3)0.77519 (18)0.15426 (17)0.0434 (7)
C150.9585 (3)0.8074 (2)0.16490 (18)0.0527 (8)
H15A1.01390.78350.20130.063*
C160.9899 (3)0.8735 (2)0.1234 (2)0.0592 (9)
H16A1.06550.89310.13150.071*
C170.9087 (3)0.9100 (2)0.07009 (19)0.0597 (9)
H17A0.92840.95510.04220.072*
C180.7978 (3)0.87899 (19)0.05842 (18)0.0524 (8)
H18A0.74340.90380.02190.063*
C190.7638 (3)0.81209 (18)0.09903 (16)0.0433 (7)
C200.6441 (3)0.77988 (17)0.06964 (16)0.0423 (7)
C210.6384 (3)0.73514 (19)0.00138 (17)0.0523 (8)
H21A0.70720.72340.01800.063*
C220.5355 (3)0.7074 (2)0.03899 (18)0.0584 (9)
H22A0.53510.67710.08400.070*
C230.4340 (3)0.7258 (2)0.01101 (18)0.0578 (9)
H23A0.36370.70780.03710.069*
C240.4363 (3)0.77059 (19)0.05528 (18)0.0514 (8)
H24A0.36650.78310.07300.062*
C250.5396 (3)0.79833 (17)0.09746 (16)0.0414 (7)
C260.5264 (2)0.84892 (18)0.16933 (16)0.0424 (7)
C270.4832 (3)0.93557 (18)0.14954 (17)0.0470 (8)
C280.5316 (3)0.9954 (2)0.10912 (19)0.0614 (9)
H28A0.59930.98550.08780.074*
C290.4774 (4)1.0712 (2)0.1008 (2)0.0726 (11)
H29A0.50881.11240.07330.087*
C300.3779 (4)1.0858 (2)0.1327 (2)0.0762 (12)
H30A0.34331.13700.12700.091*
C310.3284 (3)1.0264 (2)0.1728 (2)0.0682 (10)
H31A0.26051.03670.19380.082*
C320.3816 (3)0.9507 (2)0.18140 (17)0.0511 (8)
C330.3506 (3)0.8771 (2)0.22174 (17)0.0503 (8)
C340.2593 (3)0.8615 (3)0.2634 (2)0.0678 (11)
H34A0.20480.90180.26920.081*
C350.2510 (3)0.7854 (3)0.2959 (2)0.0734 (12)
H35A0.18990.77430.32350.088*
C360.3315 (3)0.7256 (3)0.28821 (19)0.0673 (10)
H36A0.32410.67460.31050.081*
C370.4236 (3)0.7407 (2)0.24757 (18)0.0548 (9)
H37A0.47850.70050.24250.066*
C380.4321 (3)0.81679 (19)0.21478 (16)0.0451 (8)
C390.5324 (3)0.5281 (3)0.1162 (2)0.0869 (13)
H39A0.57720.48050.13280.130*
H39B0.56550.57510.14370.130*
H39C0.53300.53600.06180.130*
C400.4118 (4)0.5169 (2)0.1319 (2)0.0696 (11)
C410.2259 (3)0.5774 (3)0.1255 (3)0.0903 (13)
H41A0.22320.57600.18070.108*
H41B0.18830.52870.10260.108*
C420.1664 (4)0.6520 (3)0.0910 (3)0.0979 (15)
H42A0.08690.65160.10030.147*
H42B0.16950.65270.03640.147*
H42C0.20430.69970.11420.147*
O30.3748 (3)0.45679 (18)0.15903 (17)0.0996 (10)
O40.3455 (2)0.58069 (16)0.11015 (16)0.0795 (8)
H20.677 (3)0.741 (2)0.223 (2)0.092 (14)*
H10.627 (3)0.883 (2)0.257 (2)0.098 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0430 (13)0.0475 (14)0.0667 (15)0.0008 (11)0.0142 (11)0.0074 (12)
O20.0447 (13)0.0490 (13)0.0467 (13)0.0032 (10)0.0036 (10)0.0076 (11)
C10.0485 (19)0.0426 (19)0.065 (2)0.0026 (16)0.0176 (17)0.0049 (17)
C20.082 (3)0.051 (2)0.084 (3)0.002 (2)0.018 (2)0.008 (2)
C30.119 (4)0.057 (3)0.112 (4)0.005 (3)0.040 (3)0.018 (3)
C40.107 (4)0.050 (3)0.155 (5)0.011 (3)0.068 (4)0.007 (3)
C50.063 (3)0.059 (3)0.132 (4)0.013 (2)0.037 (3)0.035 (3)
C60.050 (2)0.048 (2)0.089 (3)0.0038 (17)0.021 (2)0.021 (2)
C70.049 (2)0.066 (2)0.074 (3)0.0098 (19)0.0057 (19)0.030 (2)
C80.071 (3)0.097 (4)0.094 (3)0.016 (3)0.007 (3)0.050 (3)
C90.104 (4)0.126 (5)0.071 (3)0.048 (4)0.016 (3)0.042 (3)
C100.099 (4)0.116 (4)0.054 (3)0.047 (3)0.007 (2)0.004 (3)
C110.071 (3)0.079 (3)0.061 (2)0.021 (2)0.011 (2)0.002 (2)
C120.053 (2)0.057 (2)0.053 (2)0.0129 (18)0.0085 (16)0.0087 (17)
C130.0390 (18)0.0460 (18)0.0540 (19)0.0014 (14)0.0100 (14)0.0024 (15)
C140.0471 (19)0.0391 (17)0.0466 (18)0.0027 (14)0.0155 (15)0.0051 (14)
C150.047 (2)0.056 (2)0.055 (2)0.0029 (17)0.0090 (16)0.0008 (17)
C160.056 (2)0.063 (2)0.063 (2)0.0176 (18)0.0205 (18)0.0044 (19)
C170.073 (3)0.053 (2)0.056 (2)0.0111 (19)0.0217 (19)0.0012 (17)
C180.061 (2)0.048 (2)0.0491 (19)0.0008 (17)0.0138 (16)0.0026 (16)
C190.0537 (19)0.0388 (17)0.0392 (16)0.0013 (15)0.0131 (14)0.0020 (14)
C200.0490 (19)0.0391 (17)0.0389 (16)0.0011 (14)0.0066 (14)0.0019 (13)
C210.063 (2)0.050 (2)0.0453 (18)0.0062 (17)0.0116 (16)0.0004 (15)
C220.083 (3)0.051 (2)0.0395 (18)0.0038 (19)0.0034 (18)0.0082 (16)
C230.066 (2)0.059 (2)0.0458 (19)0.0139 (18)0.0034 (17)0.0015 (17)
C240.051 (2)0.054 (2)0.0489 (19)0.0045 (16)0.0051 (16)0.0017 (16)
C250.0466 (19)0.0363 (16)0.0411 (16)0.0015 (14)0.0054 (14)0.0038 (13)
C260.0416 (18)0.0440 (18)0.0418 (17)0.0010 (14)0.0059 (14)0.0029 (14)
C270.055 (2)0.0431 (18)0.0416 (17)0.0042 (15)0.0021 (15)0.0021 (15)
C280.078 (3)0.051 (2)0.057 (2)0.0031 (19)0.0170 (19)0.0005 (17)
C290.110 (3)0.046 (2)0.061 (2)0.006 (2)0.008 (2)0.0046 (18)
C300.113 (4)0.055 (2)0.058 (2)0.033 (2)0.003 (2)0.0008 (19)
C310.077 (3)0.072 (3)0.056 (2)0.029 (2)0.0095 (19)0.002 (2)
C320.053 (2)0.055 (2)0.0449 (18)0.0139 (17)0.0031 (15)0.0025 (16)
C330.0410 (19)0.067 (2)0.0424 (17)0.0075 (17)0.0030 (14)0.0042 (16)
C340.044 (2)0.102 (3)0.058 (2)0.012 (2)0.0087 (17)0.001 (2)
C350.052 (2)0.117 (4)0.052 (2)0.015 (2)0.0106 (18)0.007 (2)
C360.067 (2)0.083 (3)0.051 (2)0.018 (2)0.0041 (19)0.0135 (19)
C370.056 (2)0.055 (2)0.053 (2)0.0053 (17)0.0055 (17)0.0032 (16)
C380.0438 (18)0.052 (2)0.0393 (17)0.0020 (15)0.0046 (14)0.0004 (15)
C390.072 (3)0.086 (3)0.099 (3)0.003 (2)0.003 (2)0.013 (3)
C400.086 (3)0.062 (3)0.057 (2)0.009 (2)0.004 (2)0.015 (2)
C410.072 (3)0.103 (4)0.100 (3)0.019 (3)0.027 (3)0.007 (3)
C420.071 (3)0.095 (3)0.130 (4)0.000 (3)0.024 (3)0.001 (3)
O30.119 (2)0.086 (2)0.091 (2)0.0147 (19)0.0023 (18)0.0400 (18)
O40.0705 (18)0.0692 (18)0.101 (2)0.0052 (14)0.0190 (15)0.0229 (15)
Geometric parameters (Å, º) top
O1—C131.423 (3)C22—C231.372 (5)
O1—H20.93 (4)C22—H22A0.9300
O2—C261.442 (3)C23—C241.368 (4)
O2—H10.88 (4)C23—H23A0.9300
C1—C21.375 (5)C24—C251.399 (4)
C1—C61.394 (4)C24—H24A0.9300
C1—C131.524 (4)C25—C261.529 (4)
C2—C31.394 (5)C26—C271.528 (4)
C2—H2A0.9300C26—C381.532 (4)
C3—C41.369 (6)C27—C281.372 (4)
C3—H3A0.9300C27—C321.396 (4)
C4—C51.373 (6)C28—C291.391 (5)
C4—H4A0.9300C28—H28A0.9300
C5—C61.388 (5)C29—C301.372 (5)
C5—H5A0.9300C29—H29A0.9300
C6—C71.457 (5)C30—C311.370 (5)
C7—C121.382 (5)C30—H30A0.9300
C7—C81.397 (5)C31—C321.384 (4)
C8—C91.370 (6)C31—H31A0.9300
C8—H8A0.9300C32—C331.464 (4)
C9—C101.375 (7)C33—C381.386 (4)
C9—H9A0.9300C33—C341.390 (4)
C10—C111.394 (5)C34—C351.378 (5)
C10—H10A0.9300C34—H34A0.9300
C11—C121.385 (5)C35—C361.374 (5)
C11—H11A0.9300C35—H35A0.9300
C12—C131.537 (4)C36—C371.386 (5)
C13—C141.534 (4)C36—H36A0.9300
C14—C151.396 (4)C37—C381.379 (4)
C14—C191.404 (4)C37—H37A0.9300
C15—C161.378 (4)C39—C401.478 (5)
C15—H15A0.9300C39—H39A0.9600
C16—C171.372 (5)C39—H39B0.9600
C16—H16A0.9300C39—H39C0.9600
C17—C181.377 (4)C40—O31.197 (4)
C17—H17A0.9300C40—O41.323 (4)
C18—C191.391 (4)C41—O41.454 (4)
C18—H18A0.9300C41—C421.491 (5)
C19—C201.514 (4)C41—H41A0.9700
C20—C211.393 (4)C41—H41B0.9700
C20—C251.403 (4)C42—H42A0.9600
C21—C221.383 (4)C42—H42B0.9600
C21—H21A0.9300C42—H42C0.9600
C13—O1—H2106 (2)C24—C23—H23A120.0
C26—O2—H1106 (3)C22—C23—H23A120.0
C2—C1—C6120.9 (3)C23—C24—C25122.5 (3)
C2—C1—C13128.0 (3)C23—C24—H24A118.7
C6—C1—C13111.1 (3)C25—C24—H24A118.7
C1—C2—C3118.5 (4)C24—C25—C20118.2 (3)
C1—C2—H2A120.8C24—C25—C26115.7 (3)
C3—C2—H2A120.8C20—C25—C26126.1 (3)
C4—C3—C2120.6 (5)O2—C26—C27110.9 (2)
C4—C3—H3A119.7O2—C26—C25108.4 (2)
C2—C3—H3A119.7C27—C26—C25112.5 (2)
C3—C4—C5121.3 (4)O2—C26—C38110.0 (2)
C3—C4—H4A119.4C27—C26—C38101.5 (2)
C5—C4—H4A119.4C25—C26—C38113.4 (2)
C4—C5—C6118.9 (4)C28—C27—C32120.5 (3)
C4—C5—H5A120.6C28—C27—C26129.3 (3)
C6—C5—H5A120.6C32—C27—C26110.2 (3)
C5—C6—C1119.9 (4)C27—C28—C29118.6 (3)
C5—C6—C7131.5 (4)C27—C28—H28A120.7
C1—C6—C7108.6 (3)C29—C28—H28A120.7
C12—C7—C8119.6 (4)C30—C29—C28120.5 (4)
C12—C7—C6109.0 (3)C30—C29—H29A119.7
C8—C7—C6131.4 (4)C28—C29—H29A119.7
C9—C8—C7118.7 (5)C31—C30—C29121.4 (3)
C9—C8—H8A120.6C31—C30—H30A119.3
C7—C8—H8A120.6C29—C30—H30A119.3
C8—C9—C10121.7 (5)C30—C31—C32118.5 (3)
C8—C9—H9A119.2C30—C31—H31A120.7
C10—C9—H9A119.2C32—C31—H31A120.7
C9—C10—C11120.3 (5)C31—C32—C27120.4 (3)
C9—C10—H10A119.8C31—C32—C33130.7 (3)
C11—C10—H10A119.8C27—C32—C33108.8 (3)
C12—C11—C10118.0 (4)C38—C33—C34119.7 (3)
C12—C11—H11A121.0C38—C33—C32109.1 (3)
C10—C11—H11A121.0C34—C33—C32131.1 (3)
C7—C12—C11121.6 (3)C35—C34—C33118.9 (3)
C7—C12—C13111.0 (3)C35—C34—H34A120.6
C11—C12—C13127.4 (3)C33—C34—H34A120.6
O1—C13—C1107.5 (2)C36—C35—C34121.1 (3)
O1—C13—C14112.8 (2)C36—C35—H35A119.4
C1—C13—C14112.6 (2)C34—C35—H35A119.4
O1—C13—C12110.2 (2)C35—C36—C37120.5 (4)
C1—C13—C12100.4 (3)C35—C36—H36A119.7
C14—C13—C12112.7 (3)C37—C36—H36A119.7
C15—C14—C19118.1 (3)C38—C37—C36118.5 (3)
C15—C14—C13117.2 (3)C38—C37—H37A120.7
C19—C14—C13124.8 (3)C36—C37—H37A120.7
C16—C15—C14122.4 (3)C37—C38—C33121.2 (3)
C16—C15—H15A118.8C37—C38—C26128.4 (3)
C14—C15—H15A118.8C33—C38—C26110.3 (3)
C17—C16—C15119.4 (3)C40—C39—H39A109.5
C17—C16—H16A120.3C40—C39—H39B109.5
C15—C16—H16A120.3H39A—C39—H39B109.5
C16—C17—C18119.2 (3)C40—C39—H39C109.5
C16—C17—H17A120.4H39A—C39—H39C109.5
C18—C17—H17A120.4H39B—C39—H39C109.5
C17—C18—C19122.7 (3)O3—C40—O4122.3 (4)
C17—C18—H18A118.7O3—C40—C39125.3 (4)
C19—C18—H18A118.7O4—C40—C39112.4 (3)
C18—C19—C14118.3 (3)O4—C41—C42107.5 (3)
C18—C19—C20114.4 (3)O4—C41—H41A110.2
C14—C19—C20126.7 (3)C42—C41—H41A110.2
C21—C20—C25117.8 (3)O4—C41—H41B110.2
C21—C20—C19114.2 (3)C42—C41—H41B110.2
C25—C20—C19127.6 (3)H41A—C41—H41B108.5
C22—C21—C20123.2 (3)C41—C42—H42A109.5
C22—C21—H21A118.4C41—C42—H42B109.5
C20—C21—H21A118.4H42A—C42—H42B109.5
C23—C22—C21118.4 (3)C41—C42—H42C109.5
C23—C22—H22A120.8H42A—C42—H42C109.5
C21—C22—H22A120.8H42B—C42—H42C109.5
C24—C23—C22120.0 (3)C40—O4—C41117.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O3i0.88 (4)1.90 (4)2.779 (3)173 (4)
O1—H2···O20.93 (4)1.84 (4)2.739 (3)161 (3)
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC38H26O2·C4H8O2
Mr602.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.645 (2), 16.364 (3), 17.471 (3)
β (°) 97.72 (3)
V3)3299.1 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.4 × 0.2 × 0.2
Data collection
DiffractometerStoe STADI4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5650, 5807, 3654
Rint0.000
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.141, 1.20
No. of reflections5650
No. of parameters424
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.16

Computer programs: STADI4 (Stoe & Cie, 1997), X-RED (Stoe & Cie, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O3i0.88 (4)1.90 (4)2.779 (3)173 (4)
O1—H2···O20.93 (4)1.84 (4)2.739 (3)161 (3)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

References

First citationBarbour, L. J., Bourne, S. A., Caira, M. R., Nassimbeni, L. R., Weber, E., Skobridis, E. K. & Wierig, A. (1993). Supramol. Chem. 1, 331–336.  CAS Google Scholar
First citationIbragimov, B. T., Beketov, K. M., Weber, E., Seidel, J., Sumarna, O., Makhkamov, K. K. & Kohnke, K. (2001). J. Phys. Org. Chem. 14, 697–703.  Web of Science CSD CrossRef CAS Google Scholar
First citationSardone, N. (1996). Private communication (refcode NABNIN). CCDC, Union Road, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationStoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSumarna, O., Seidel, J., Weber, E., Seichter, W., Ibragimov, B. T. & Beketov, K. M. (2003). Cryst. Growth Des. 3, 541–546.  Web of Science CSD CrossRef CAS Google Scholar
First citationWeber, E., Skobridis, K., Wierig, A., Stathi, S., Nassimbeni, L. R. & Niven, M. L. (1993). Angew. Chem. Int. Ed. Engl. 32, 606–608.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds